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METHODOLOGY
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Abstract 

Background:  Plant breeding requires numerous generations to be cycled and evaluated before an improved cultivar 
is released. This lengthy process is required to introduce and test multiple traits of interest. However, a technology 
for rapid generation advance named ‘speed breeding’ was successfully deployed in bread wheat (Triticum aestivum 
L.) to achieve six generations per year while imposing phenotypic selection for foliar disease resistance and grain 
dormancy. Here, for the first time the deployment of this methodology is presented in durum wheat (Triticum durum 
Desf.) by integrating selection for key traits, including above and below ground traits on the same set of plants. This 
involved phenotyping for seminal root angle (RA), seminal root number (RN), tolerance to crown rot (CR), resistance to 
leaf rust (LR) and plant height (PH). In durum wheat, these traits are desirable in environments where yield is limited 
by in-season rainfall with the occurrence of CR and epidemics of LR. To evaluate this multi-trait screening approach, 
we applied selection to a large segregating F2 population (n = 1000) derived from a bi-parental cross (Outrob4/Cap‑
aroi). A weighted selection index (SI) was developed and applied. The gain for each trait was determined by evaluat‑
ing F3 progeny derived from 100 ‘selected’ and 100 ‘unselected’ F2 individuals.

Results:  Transgressive segregation was observed for all assayed traits in the Outrob4/Caparoi F2 population. Applica‑
tion of the SI successfully shifted the population mean for four traits, as determined by a significant mean difference 
between ‘selected’ and ‘unselected’ F3 families for CR tolerance, LR resistance, RA and RN. No significant shift for PH 
was observed.

Conclusions:  The novel multi-trait phenotyping method presents a useful tool for rapid selection of early filial gen‑
erations or for the characterization of fixed lines out-of-season. Further, it offers efficient use of resources by assaying 
multiple traits on the same set of plants. Results suggest that when performed in parallel with speed breeding in early 
generations, selection will enrich recombinant inbred lines with desirable alleles and will reduce the length and num‑
ber of years required to combine these traits in elite breeding populations and therefore cultivars.

Keywords:  Root architecture, Crown rot, Leaf rust, Drought adaptation, Segregating populations, Fusarium, Speed 
breeding, Trait pyramiding
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Background
Durum wheat (Triticum durum Desf.) is one of the major 
staple crops in the Mediterranean region. It is known for 
its unique properties such as hardness, yellow pigment 
and high protein content. Therefore, it is ideal for making 
pasta [1–4], couscous and burghul [2]. However, durum 

wheat production continues to face many challenges 
associated with environmental constraints, pests and dis-
eases [5, 6]. The number one constraint limiting produc-
tion is insufficient water availability, as variable in-season 
rainfall can dramatically affect yield and grain quality [1]. 
In addition, durum wheat production is restricted due to 
susceptibility to several fungal diseases. In comparison to 
bread wheat (Triticum aestivum L.), durum wheat cul-
tivars are particularly susceptible to Fusarium species, 
including Fusarium  graminearum (Fg) and Fusarium 
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pseudograminearum (Fp), which cause fusarium head 
blight [7, 8] and crown rot (CR) [9–11], respectively. CR 
is an increasing issue in many parts of the world due to 
adoption of minimum tillage practices, which retains the 
inoculum on stubble across seasons [12, 13]. Notably, 
yield losses due to CR are exacerbated under terminal 
drought conditions [14–18], thus drought adaptation fea-
tures related to increased water uptake and or water-use 
efficiency are expected to reduce production losses in 
CR affected production systems  [19]. Air-borne patho-
gens, such as rust, also pose an ongoing constraint as 
races constantly evolve to acquire new virulence against 
the deployed resistance genes. Several studies have 
reported a number of highly virulent isolates of the leaf 
rust pathogen Puccinia triticina, causing leaf rust (LR), 
in major durum production areas such as North Africa 
[20], Southern Europe [21, 22], and West Asia [23] and 
have now rendered susceptible many previously resistant 
durum cultivars.

Traditional cereal breeding programs around the world 
have delivered many significant improved varieties over 
the past 100  years. Nonetheless, progress is slow, in 
part due to lengthy breeding cycles which often takes 
10–15 years from cross to cultivar release [24]. A major 
challenge is combining large numbers of traits that are 
polygenic in nature [25]. While marker-assisted selection 
(MAS) has proven itself a useful tool in crop improve-
ment programs, the approach is most effective when tar-
geting a small number of genes with large effect, such as 
leaf rust resistance genes (e.g. Lr23) in bread and durum 
wheat [26] and Yr15 in durum wheat [27]. In addition, 
MAS can only be applied if the target gene or quantita-
tive trait loci (QTL) responsible for the trait of interest is 
known. Thus, MAS is less feasible for complex traits for 
which little is known about the underlying genetic con-
trols [28]. Recently, genomic selection (GS) has overcome 
the limitations of MAS as it uses genome-wide markers 
to estimate the breeding values (EBVs), which provide an 
estimate of the genomic merit associated with all minor 
or major effects across the entire genome [29, 30]. GS 
also facilitates selection for multiple traits in parallel; 
yet despite the efficiency and promise of this breeding 
tool, costs associated with genotyping large numbers of 
selection candidates is still relatively high to facilitate full 
adoption in the majority of wheat breeding programs. 
Further, GS is typically applied to inbred lines [31–33], 
therefore the rate of progress is limited by the time 
required to make crosses and generate new selection can-
didates that are genetically stable.

A technology that permits rapid generation advance-
ment, named ‘speed breeding’, has been refined to 
achieve up to 6 generations of wheat per year [34], thus 
presenting a useful tool to reduce the length of breeding 

cycles. Several phenotyping protocols adapted to the 
speed breeding system have been developed, which ena-
ble characterisation and selection for important traits. 
Examples include seminal root traits for drought adap-
tation [35], grain dormancy for tolerance to pre-harvest 
sprouting [36, 37], and disease traits such as adult plant 
resistance (APR) to LR [38], stripe rust [39] and yellow 
spot [40] in bread wheat.

Importantly, these protocols provide phenotypes that 
correspond with field-based measures [37, 38, 40, 41]. 
While these reported methods focus on a single trait, 
there is an opportunity to integrate phenotyping and 
selection for multiple traits in the same plant generation 
grown under speed breeding conditions.

In this study, we designed and applied a novel multi-
trait phenotyping method adapted to speed breeding 
for characterising fixed lines out of season and provide 
selection pressure during early generations of durum 
wheat. To test the effectiveness of early generation selec-
tion, we applied selection to a large F2 population for 
multiple traits in order to evaluate the shift in pheno-
typic response and discuss the opportunity to accelerate 
pyramiding of multiple target traits in durum breeding 
populations.

Methods
Plant materials
A bi-parental population was generated to combine mul-
tiple desired traits. Parents consisted of an elite ICARDA 
durum line, Outrob4 (Ouassel–1/4/GdoVZ512/Cit//
Ruff/Fg/3/Pin/Gre//Trob) and the Australian durum 
cultivar Caparoi (LY 2.6.3/930054). The ICARDA line 
was selected for its desirable tolerance to severe drought 
conditions, as well as its lack of yield losses when grown 
under severe CR infection with a response of moderately 
resistant to moderately susceptible (MRMS) in Latakia, 
Syria. Caparoi is a high quality durum cultivar that is very 
susceptible to CR and displays a moderately resistant and 
resistant (MRR) response to LR. The two parental lines 
and two standards, depending on the traits to be meas-
ured, were included in 12 replicates in all experiments 
using a randomised complete block design (RCBD). 
Standards included spring bread wheats: Mace (wide root 
angle), Scout (narrow root angle), Thatcher (susceptible 
to LR), Thatcher + Lr34 (adult plant resistance to LR), 
Sunguard (moderately resistant to CR) and durum wheat 
Yawa (very high yielding, susceptible to CR). Details for 
all standards and parental lines are provided in Table 1.

Crossing, population development and selection
An overview of the population development and multi-
trait screening applied in this study is illustrated in Fig. 1. 
Outrob4 and Caparoi were grown in the speed breeding 
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system to rapidly bring them to the flowering stage for 
crossing. Outrob4 was used as the female and Caparoi 
as the pollen donor. Approximately 9  weeks after sow-
ing, the F1 seed from physiologically mature spikes were 
harvested and placed in an air-forced dehydrator at 35° 
for 5  days, and subsequently threshed by hand. 1000 
of the resulting F2 seeds were sown and phenotyped as 
indicated below. Selection was applied using a weighted 
selection index (SI) incorporating all phenotypic data. 
The 100 best performing individuals were ‘selected’ along 
with 100 random individuals, which represented the 
‘unselected’ population. To investigate the response to 
selection, the selected and unselected sets were pheno-
typed following the same procedure using a RCBD design 
with five individuals representing each F3 family (total 
1000 plants) and 12 replicates per standard.

Multi‑trait phenotyping procedure for F2 and F3
The F2 and F3 generations were subject to selection 
for CR, RA, RN, LR and PH by adapting the ‘clear pot’ 
method reported by Richard et al. [35] (Fig. 2a). The phe-
notyping method described below was performed under 
speed breeding conditions where each generation was 
completed within 77 days from sowing to harvest.

Sowing and root phenotyping
Clear (transparent) pots (ANOVApot®, 200  mm diam-
eter, 190  mm height) were filled with composted fine 
pine bark (70%) particles (0–5  mm) pre-mixed with 
coco peat (30%) to increase water holding capacity of 
the medium. To reduce the acidity of the medium for 
growing durum wheat, Dolomite was added at a rate of 
1 kg per 1 m3 of soil providing a pH of 6.5. The F2 seeds 
were sown according to the Richard et al. [35] clear pot 
method, using the RCBD design where 24 seeds were 
sown in each 4 L pot, which enables evaluation of up to 
600 plants/m2 of glasshouse space (Fig.  2a). Seeds were 
sown using tweezers to carefully position the embryo 
down and facing the wall of the pot to allow good vis-
ibility of the seminal roots following germination. Plants 
were grown in the glasshouse under diurnal natural light 
conditions adopting a constant temperature (17 ± 2  °C) 
as recommended [35]. Images were captured at two time 
points: 5 days (seminal roots 3–5  cm in length) for RA 
and 10 days after sowing (DAS) for RN, using a Canon 
PowerShot SX600 HS 16MP Ultra–Zoom Digital cam-
era. The first set of images were analysed for seminal root 
angle (Fig.  2b), where the angle between the first pair 
of seminal roots emerging from the seed was measured 

Table 1  Trait means and standard error (SE) for parents and standards evaluated in the multi-trait screening of F2 and F3 
experiments

Trait Genotype Pedigree Standard/parents F2 F3

Mean SE Mean SE

Root angle Mace Wyalkatchem/Stylet//Wyalkatchem Wide 79.6 4.3 67.0 6.3

Scout Sunstate/Qh71-6//Yitpi Narrow 31.9 5.1 45.3 7.1

Outrob4 Ouassel-1/4/Gdovz 512/Cit//Ruff/Fg/3/Pin/Gre//Trob, syn.Fadda98 Parent 1 50.1 2.1 32.4 6.2

Caparoi LY 2.6.3/930054 Parent 2 77.3 6.6 55.1 6.3

Root number Mace – High 4.6 0.2 3.1 0.3

Scout – Low 3.2 0.5 2.7 0.3

Outrob4 – Parent 1 4.3 0.4 4.7 0.3

Caparoi – Parent 2 3.7 0.3 3.5 0.3

Crown rot Sunguard Sun289e/Sr2janz Resistant 3.8 0.4 3.8 0.6

Yawa Westonia/Kalka//Kalka/Tamaroi///Rac875/Kalka//Tamaroi Susceptible 6.3 0.4 6.2 0.6

Outrob4 – Parent 1 4.3 0.3 4.7 0.6

Caparoi – Parent 2 7.5 0.4 6.8 0.6

Leaf rust Thatcher + Lr34 Thatcher*6/PI-58548 Resistant 5.5 0.3 6.9 0.6

Thatcher Marquis/Iumillo durum//Marquis/Kanred Susceptible 8.6 0.3 9.0 0.6

Outrob4 – Parent 1 5.4 0.5 6.4 0.6

Caparoi – Parent 2 3.1 0.2 2.0 0.7

Plant height Mace – Short 46.0 2.2 54.1 3.7

Thatcher – Tall 62.9 3.5 77.9 3.7

Outrob4 – Parent 1 56.2 3.9 61.0 3.7

Caparoi – Parent 2 49.0 2.0 50.2 4.1
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using ImageJ (http://image​j.nih.gov/ij/). Images captured 
to determine the number of seminal roots were used to 
score visible roots through the transparent wall. Follow-
ing the final image capture at 10 DAS, growth conditions 
were changed to a ‘speed breeding’ regime using constant 
light and controlled temperature of 22/17 °C (day/night) 
to accelerate plant development. Under such conditions, 
plants obtain the adult growth stage (i.e. stem elongation) 
within about 3 weeks [38]. At this time, approximately 5 g 
of slow release Osmocote® fertiliser was added to each 
pot to provide adequate nutrients to sustain healthy plant 
growth.

Phenotyping leaf rust response
At 35 DAS, plants were inoculated with LR spores. By 
this time most plants had reached the stem elongation 
growth stage (Zadoks GS 39), which is essential to attain 
infection types that resemble adult plants in the field [38, 
39]. The Puccinia triticina (Pt) pathotype 104–1, 2, 3, (6), 
(7), 11, 13 was used for population screening. This Pt iso-
late was first reported in South Australia in 2000 [42] and 
is virulent for Lr1, Lr3a, Lr14a, Lr16, Lr17a, Lr20, Lr24 
and Lr27 resistance genes. This Pt isolate was used due to 
the absence of durum specific Pt pathotypes in Australia 

Fig. 1  The breeding strategy for applying selection in early segregating generations to reach superior inbreds in a period of 11 months. The 
figure highlights the crossing parents and further generations where a weighted SI was used. The blue colour indicates generations where the 
phenotyping was conducted. The green coloured generations indicate the generations subject to growth under speed breeding for the entire cycle 
without selection

http://imagej.nih.gov/ij/
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and since LR disease on durum wheat crops in Australia 
is caused by bread wheat pathotypes [43].

Pt urediniospores were suspended in light mineral oil 
(Isopar 6) at a rate of 0.005  g  mL−1. The inoculum was 
applied using the airbrush method (Fig. 2c), as reported 
by Riaz et  al. [38]. Plants were then lightly misted with 
deionized water and placed overnight in a dew cham-
ber with 100% humidity using an ultrasonic fogger. 
Post–inoculation, plants were grown under diurnal and 
controlled temperatures of 17/22  °C (night/day). These 
conditions favour pathogen development and provide 
significant differentiation between resistant and suscep-
tible genotypes. Each plant was evaluated 49 DAS (i.e. 
14 days after infection) for resistance using a 0–9 scale, 
where 0 is resistant and 9 is very susceptible [44].

Phenotyping for crown rot response
At 38 DAS, 3 days after LR inoculation, plants were 
inoculated with F. pseudograminearum. The isolate of F. 
pseudograminearum used in this experiment was derived 
from CR infected wheat plants collected from a farm-
er’s field located at Brookstead (Queensland, Australia), 
thus named “BE”. This isolate was tested with eight other 

isolates collected from different wheat fields located in 
the eastern wheat-belt of Australia (Queensland and New 
South Wales) and BE was selected as the most aggressive 
isolate causing symptoms on durum wheat and barley 
cultivars (Additional file  1: Table  S1). Prior to inocula-
tion, the isolate was cultured on 20% V8 medium com-
prising 200  mL of V8 juice, 2  g of CaCO3 and 20  g of 
agar, which was mixed in 800 mL of distilled water and 
pH adjusted to 7.2 [45]. The mixture was then autoclaved 
for 30 min at 121 °C. The medium was poured into Petri 
dishes and left to solidify. The BE isolate was cultured on 
Petri dishes and left at room temperature (20–25 °C) for 
2 weeks to generate sufficient mycelial growth and conid-
ial spores for inoculation. For each screening experiment, 
a pure source of the isolate was used to avoid changes in 
pathogenicity of the isolate, which can occur as a result of 
repeated media culturing without a host.

To reduce variation in the timing of infection among 
plants, a piece of cultured F. pseudograminearum (1 cm2) 
was placed at the base of the stem of each plant using 
tweezers (Fig.  2d). The soil surface was then covered 
with ground sterilised millet. Moisture at the surface was 
maintained by lightly spraying demineralised water three 

Fig. 2  Visual summary of a generation from sowing to harvest using the multi-trait phenotyping procedure: a seeds sown in the clear-pot, b 
seminal root image analysis, c plants inoculated with leaf rust using airbrush method, d plants inoculated with Fusarium crown rot, e plant height 
measured using a barcode reader, and f whole-pot view at the time of crown rot assessment during the grain filling stage
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times per day for the first week to encourage mycelium 
growth and infection. Within 5 days, the surface of the 
pot was covered with white to pink coloured mycelium, 
which facilitated consistent infection at the base of the 
stem. Twenty-five days post-inoculation (63 DAS), dis-
ease severity for each plant was assessed visually by scor-
ing the level of discoloration of the base of the stem using 
a 0–9 scale, where 0 is resistant and 9 is very susceptible.

Plant height
A bluetooth barcode reader (Laser Bar Code Scanner) 
was used to measure height for each plant at maturity, 
9 weeks after sowing (Fig. 2e). Barcode readings were at 
1 cm intervals and the records were connected to a tablet 
allowing for instant data collection.

Data analyses
The phenotypic value for each trait (RA, RN, CR, LR and 
PH) for each F2 plant was used to generate population 
distributions using GraphPad prism version 6 (Graph-
pad Software Inc). The mean for standards and parental 
lines were calculated for the F2 and F3 screens. The con-
fidence interval (95%) was calculated using MS Excel for 
the mean of replicated parental lines included in the F2 
screen.

F2 individuals were deemed to display transgres-
sive segregation if phenotype scores could be identified 
outside the confidence interval of parental lines. A SI 
incorporating information for all traits was calculated 
according to Crosbie et al. [46] where the prefered traits 
included: narrow RA, high RN, tolerance to CR, resist-
ance to LR and short PH. The following weights were 
applied based on the importance of each trait [47] in The 
University of Queensland durum wheat pre-breeding 
program: 35% for crown rot, 30% for root angle, 15% for 
LR, 10% for root number, 10% for PH. As the highest pri-
ority was resistance to CR, low weighting was applied to 
PH. CR resistance is typically correlated with a reduction 
in PH in wheat and barley [48–53], however high infec-
tion can retard plant growth, which further complicates 
selection for this trait. The SI was used to rank the 817 F2 
individuals which had data for all traits. Individuals with 
a minimum of one ‘NA’ value were excluded from selec-
tion. The top 100 performing F2 individuals were consid-
ered the ‘selected’ set.

Best linear unbiased predictors (BLUPs) were calcu-
lated for each F3 family in the selected and unselected 
sets, plus parents and standards. BLUPs were calculated 
by fitting a linear model in ASReml-R [54], where geno-
type, replicate and pot were fitted as random terms in the 
model. The broad-sense heritability was calculated using 
the predicted variance components which were calcu-
lated using residual maximum likelihood, as described by 

Cullis et al. [55]. In the F2 and F3 experiments, the broad-
sense heritability was calculated using repeated measures 
for inbred lines (i.e. parental lines and standards).

BLUPs were used for comparison to perform selection 
on the basis of genetic merit of each individual using the 
phenotypic response. Analysis of variance was performed 
for the F3 families to determine whether the selected set 
was significantly different in comparison to the unse-
lected set. Analyses were performed using ASReml in R 
[54]. Selection was repeated for the F3 selected set using 
the same SI and weightings detailed above. The top 10% 
of best performers in the population were retained and 
rapidly advanced via single seed descent in the speed 
breeding system to develop inbred lines.

Results
Phenotypes displayed by standards
Using multi-trait phenotyping, above and below ground 
traits including adaptive root traits seminal RA and RN, 
and economically significant diseases CR and LR were 
screened (Fig. 2f ). The standards performed as expected 
even though the absolute values for each trait varied 
across the F2 and F3 experiments. For example, the stand-
ard for wide RA (Mace) consistently displayed a wider 
mean RA than the narrow standard (Scout) in the F2 
(79.6° vs. 31.9°) and F3 (67° vs. 45.3°) screening experi-
ments (Table  1). Mace, a bread wheat cultivar grown 
across Australia, displayed not only the widest RA, but 
also the highest RN in the F2 experiment (4.6), but was 
lower in the F3 experiment (3.1). On the other hand, 
Scout displayed a lower RN in both the F2 (3.2) and F3 
(2.7) screening experiments.

The bread wheat standards for CR displayed very con-
sistent phenotypes across the two experiments (Table 1). 
As expected, the incidence of CR was lower in Sunguard 
(3.8), which is considered moderately resistant (MR). In 
the field, the cultivar Sunguard is rated (MRMS) to CR 
(GRDC-NVT 2016). On the other hand, Yawa (an Aus-
tralian durum wheat) was used as a susceptible standard 
for CR and displayed a mean score of 6.3 and 6.2 across 
both experiments. Thatcher was included as a very sus-
ceptible (VS) standard for LR, and as expected, allowed 
the pathogen to freely produce large pustules and spore 
masses (Fig.  3). Thatcher attained susceptible means 
of 8.6 and 9.0 in F2 and F3 experiments, respectively. In 
contrast, the standard for APR to LR (Thatcher + Lr34), 
showed a moderate level of resistance with a mean score 
of 5.5 in the F2 experiment and a lower level of resist-
ance in the F3 experiment 6.9. The standards for PH were 
Mace for short height (46, 54.1 cm) and Thatcher for the 
tall types (62.9, 77.9  cm) in the F2 and F3 experiments, 
respectively.
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F2 screening and population distributions
Root angle
Measures for RA were successfully obtained for 882 F2 
individuals, as determined by the angle between the first 
pair of seminal roots. RA could not be measured for the 
remaining 118 seedlings because one or both roots were 
not visible. The number of missing values was within the 
expected range for this method [35]. Outrob4 displayed a 
narrower RA (50.1°) compared to Caparoi (77.3°). The F2 
progeny displayed a high degree of variation for RA phe-
notypes, ranging from 12° to 120° (Fig. 4a). To determine 
the extent of transgressive segregation, the upper and 
lower limits of the 95% confidence interval were calcu-
lated for both parental lines: Outrob4 ranging 45.1°–54.9° 
and Caparoi ranging 67.3° to 87.2° (Table  2). Interest-
ingly, the F2 population exhibited bi-directional trans-
gressive segregation, where seemingly different sets of 
genes influencing RA were contributed by both parents. 
For instance, 38.3% of F2 individuals displayed a narrower 
RA and 3.9% displayed a wider RA when compared to 
the maximum confidence interval (95%) attained by the 
parental lines.

Root number
Measures for RN were obtained for 927 F2 individu-
als. For the remaining 73, RN could not be determined 
because roots were not visible and in some cases the 
seed failed to germinate. Images captured 10 days after 
sowing were used to determine the number of semi-
nal roots. Outrob4 displayed the highest mean RN (4.3) 
in comparison to Caparoi (3.7). The number of seminal 
roots per plant varied from one to seven roots (Fig. 4b). 

Similar to RA, the F2 population demonstrated bi-direc-
tional transgressive segregation. Individuals deemed to 
exhibit transgressive segregation were those that dis-
played phenotypes outside the lower and upper bound 
(95% confidence interval) of the two respective parental 
lines (Outrob4 3.4–5.3, Caparoi 3.1–4.2). The number of 
individuals that showed higher RN than both parents was 
45, representing 4.9% of the population.

Crown rot response
A total of 912 F2 individuals were evaluated for CR dur-
ing the grain filling stage. Caparoi displayed the most sus-
ceptible score amongst the set of parents and standards 
with an average of 7.5 (Table 1). In contrast, Outrob4 dis-
played a lower CR mean score of 4.3, which is equivalent 
to a MRMS response. Confidence intervals (95%) were 
calculated for CR scores obtained by Outrob4 (3.8–4.6) 
and Caparoi (6.7–8.2). Based on these limits, the F2 pop-
ulation demonstrated bi-directional transgressive seg-
regation: 108 individuals (11.8%) displayed higher levels 
of tolerance, whereas 94 individuals (10.3%) displayed 
increased susceptibility to CR (Fig. 4c).

Leaf rust response
A total of 908 F2 individuals were successfully pheno-
typed for LR resistance at the adult plant stage. The 
level of disease intensity and infection was measured on 
the flag leaf during the early stages of grain fill. A scale 
of (0–9) was used, where 0 is resistant and 9 is very sus-
ceptible. Caparoi displayed MRR response to LR and 
Outrob4 demonstrated MRMS, as a result, segrega-
tion was evident in the F2 population (Fig. 4d). Outrob4 

Fig. 3  Leaf rust response on the flag leaf for parental genotypes (Outrob4 and Caparoi) and standards (Thatcher and Thatcher + Lr34)
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obtained a mean score of 5.4 (MRMS), whereas Caparoi 
displayed a higher level of resistance with a mean of 3.1 
(MR). The 95% confidence intervals were calculated for 
both Outrob4 (5.0–5.8) and Caparoi (2.5–3.7). Falling 

outside this range, F2 individuals were deemed to dis-
play transgressive segregation, including 85 that dis-
played higher levels of resistance, representing 9.4% of 
the population (Fig. 4d).

Fig. 4  Frequency distribution for the F2 segregating population for root angle (a), crown rot (b), root number (c) and leaf rust (d). Calculations 
of parental line means and confidence intervals (95%) are displayed for each trait to highlight the individuals with higher or lower values in 
comparison to the parents (bi–directional transgressive segregation)

Table 2  Total number of  phenotyped individuals with  values for  all traits and  for  each trait separately (root angle, 
root number, crown rot, leaf rust and  plant height) in  the  F2 bi-parental segregating population.  Lower and  upper 
values of  interval confidence (95%) for each parent were calculated for each trait. Percentage of positive and negative 
transgressive segregation is displayed for each trait

F2 generation Root angle
°

Root number
#

Leaf rust
Severity 0–9

Crown rot
Severity 0–9

Plant height
cm

Total number screened 882 927 908 912 916

Outrob4 confidence interval 45.1–54.9 3.4–5.3 5.0–5.7 3.8–4.6 52.36–60.04

Caparoi confidence interval 67.3–87.2 3.1–4.2 2.5–3.7 6.7–8.2 44.9–53.4

Positive transgressive segregants (%) 38.3 4.9 9.3 11.8 20.4

Negative transgressive segregants (%) 3.9 51.8 32.3 10.3 17.2
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Plant height
The total number of F2 individuals evaluated for PH 
was 916. PH scores ranged from 24 to 94  cm. Outrob4 
was slightly taller (56.2  cm) than Caparoi (49.0  cm). As 
with all other traits, the F2 population demonstrated bi-
directional transgressive segregation. The number of 
individuals significantly shorter than both parents was 
187, representing 20.4% of the population while 17.3% 
of the population displayed taller phenotypes than their 
parents.

Implementing multi‑trait selection
Selection of the top 10% of F2 individuals using the 
SI resulted in a mean SI of 6.4 for the ‘selected’ set. 
Whereas, random selection of 100 F2 individuals resulted 
in a SI mean of 4.78 (Fig. 5). The distribution of SI in this 
‘unselected’ set overlapped with the distribution of the 
entire F2 population, thus was considered representative 
of a truly random population (Fig.  5). The means were 
also similar: 4.8 for the entire F2 population compared to 
4.7 for the ‘unselected’ subset of 100 F2 individuals.

Screening of ‘selected’ and ‘unselected’ F3 individuals
A total of 1000 F3 plants, plus parents and standards, 
were evaluated using the multi-trait phenotyping proce-
dure. BLUPs were calculated for all traits (RA, RN, CR, 
LR and PH) for each of the 100 F3 ‘selected’ families and 
the 100 F3 ‘unselected’ (random) families. To highlight 
the shift in the phenotypes for each trait, the distribution 
of selected and unselected families are illustrated as den-
sity distribution graphs (Fig. 6a–e).

The selected set of F3 families displayed a signifi-
cantly narrower mean RA (34.5°) in comparison to the 
unselected set (38.4°), representing a significant shift 
of −  3.9° (p value < 0.05). In the F3 screening experi-
ment, Outrob4 displayed a very narrow RA (32.4°) in 

comparison to Caparoi (55.1°). A highly significant shift 
was also observed for RN, where the mean RN for the 
selected set was 3.9 compared to 3.7 for the unselected 
set (p value < 0.01), representing a mean increase of 0.2 
roots per plant (Fig.  6b). RN ranged from 2 to7 for the 
entire population. Outrob4 displayed a higher RN mean 
(4.7) in comparison to Caparoi (3.5) in the F3 screening 
experiment.

Selection for positive CR response in the F2 genera-
tion resulted in a highly significant shift toward lower 
disease severity in the F3 selected set (Fig.  6c). Overall, 
the CR score significantly improved to a MR level (mean 
score 3.8) compared to the unselected which displayed a 
MRMS level (mean score 5.3) (p value < 0.001). Outrob4 
appeared to contribute the most resistance, displaying a 
MRMS level of infection (4.7), whereas Caparoi displayed 
a MSS level (6.8). As expected, the bread wheat standard 
Sunguard, displayed the lowest levels of infection (mean 
score 3.8).

Selection for response to LR in the F2 generation 
resulted in a significant shift toward increased resist-
ance in the F3 selected set (Fig. 6d). Overall, the mean LR 
response improved from 3.9 to 3.6. In the F3 screening 
experiment, Caparoi displayed a high level of resistance 
(2.0) in comparison to Outrob4 (6.4) (Fig. 6d). No signifi-
cant difference between selected and unselected sets was 
detected for PH (Fig. 6e). Despite this, Outrob4 displayed 
a taller phenotype (61.0  cm) in comparison to Caparoi 
(50.2 cm) in the F3 screening experiment.

Trait heritability using the multi‑trait phenotyping procedure
The broad-sense heritability of the multi-trait pheno-
typing procedure was calculated for F2 and F3 experi-
ments. Heritability for the F2 experiment was calculated 
using the replicated parents and standards (inbred lines), 
as the F2 individuals each represent a unique geno-
type. In the F2 screening experiment, the heritability 
for all traits was high (RA = 0.75, RN = 0.81, CR = 0.78, 
LR = 0.79 and PH = 0.57). In the F3 experiment, using 
the same technique, the heritability for all traits was also 
high (RA = 0.62, RN = 0.69, CR = 0.85, LR = 0.79 and 
PH = 0.82) (Table 3).

Discussion
Plant breeders are interested in screening a large array 
of traits in early generations of population development. 
This enables breeding programs to save time and reduce 
costs associated with labour and field testing. In order to 
do so, high-throughput, repeatable and robust screening 
methodology is required. Improving the existing pheno-
typing methods and developing novel methods for phe-
notyping traits are essential for genetic studies and plant 
breeding. Traits that are highly variable not only in the 

Fig. 5  Density distribution of the weighted selection index values 
for selected, unselected and the entire F2 generation (F2). Selection 
index values are representative of the sum of all traits simultaneously 
(RN, RA, LR, CR and PH)
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Fig. 6  Density distribution and comparison of population means for selected and unselected F3 population sets for the following traits: a root 
angle, b root number, c crown rot severity, d leaf rust severity and e plant height. Each set includes 100 F3 families
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field but also in the glasshouse require the development 
of high-throughput, rapid, cost effective and repeatable 
methods. To meet this need, we developed a screening 
method to combine multiple traits including root system 
architecture, LR, CR and PH on the same plant genera-
tion, coupled with the rapid generation advancement sys-
tem ‘speed breeding’.

Rapid phenotyping fixed lines for multiple traits
The method developed in this study achieved high 
heritability when screening fixed (inbred) lines. Herit-
ability ranged from 0.57 to 0.91 across experiments for 
all five studied traits (Table 3). Overall, the heritability 
of each trait was relatively high and similar to those 
reported in previous studies [35, 56, 57]. Furthermore, 
and most importantly, standards included in the exper-
iments displayed similar phenotypic responses under 
speed breeding conditions to those displayed in the 
field. For example, Thatcher was used as a susceptible 
standard and displayed a VS phenotype in both experi-
ments. This result was consistent with those obtained 
from two previously conducted glasshouse experi-
ments and field trials [38, 58]. Standards for root sys-
tem architecture included in this study were Mace and 
Scout. Mace is a widely adopted cultivar and grown 
on broad acreage around Australia. In particular, this 
cultivar is preferred by farmers due to its higher yield 
potential in marginal environments with sporadic rain-
fall throughout the growing season. Scout by compari-
son is adapted to the southern regions of Australia with 
deep soils and known for high water use efficiency and 
drought adaptation [59]. Seemingly, a narrower and 
deeper root system would be advantageous in such field 
environments, while a wider root angle could be more 
preferred in shallow, sandy soils (for example, in parts 
of Western Australia). The results for RA standards 
aligned with the study conducted by Manschadi et  al. 
[60] which revealed that wheat lines grown in deep 
soils tended to have a narrower root angle and a lower 
number of seminal roots when compared to wheat lines 
grown in shallow soils.

The phenotypes displayed by standards in our experi-
ments confirmed the effectiveness of this robust tech-
nique for applying selection to RILs and segregating 
populations. The phenotyping method was designed by 
integrating two previously reported methods [35, 38]. 
In the first method, lines were screened for APR to LR 
adapted to speed breeding and phenotypes were highly 
correlated to field-based measurements. In the second 
method, seminal root angle and number were assayed 
using a transparent pot system, known as the ‘clear pot’ 
method. This study is novel because it integrated screen-
ing of these previously reported traits, plus the CR 
response, while maintaining high heritability for all traits 
in a single plant generation. Since the 1980s, scientists 
have been striving to develop CR screening assays that 
minimise variation and the time required for infection to 
occur [14, 49, 61–66]. We achieved this by positioning a 
piece of agar colonised by Fp directly next to the stem of 
each plant during the tillering stage. This also enhanced 
the repeatability in F2 and F3 assays (broad sense herit-
ability ranged 0.78–0.85) and guaranteed infection to 
take place within 4–5  days. In addition, growing plants 
under controlled conditions in the speed breeding system 
not only progressed generations rapidly, but also enabled 
control of growth conditions to facilitate pathogen devel-
opment and healthy plant growth. This helps to minimise 
the variation that can occur in field conditions with a 
high degree of G × E interaction and high marginal errors 
when screening individual plants, in the case of F2 and F3 
segregating populations. Nevertheless, it is important to 
validate levels of disease resistance in the field, as these 
traits are known for their interaction with environmen-
tal conditions and most importantly temperature. For 
example, the APR gene Lr34 is considered most effective 
under low temperatures of 7 °C at seedling stage and less 
effective at 17 °C and above [67, 68]. Therefore by manip-
ulating temperature, scientists were able to differentiate 
between Thatcher and Thatcher + Lr34 at the seedling 
stage under controlled conditions [69]. Rust infection 
during the adult growth stage in the field is highly vari-
able and environmentally dependent [38]. The APR gene 
Lr34 usually displays a higher level of resistance in the 
field in comparison to glasshouse conditions [58]. More-
over, variability of CR infection in the field is often due to 
a combination of factors including temperature, soil sur-
face moisture, stubble residue and inoculum level from 
previous year [53, 70].

Multi‑trait selection in early segregating generations 
of durum wheat
Applying selection to F2 and F3 progenies using the inte-
grated method enabled a shift in phenotypic responses 

Table 3  Broad sense heritability calculated for  each trait 
in  the  F2 and  F3 experiments using inbred lines (parents 
and standards)

Trait F2 experiment F3 experiment

Root angle 0.75 0.62

Root number 0.81 0.69

Crown rot 0.78 0.85

Leaf rust 0.79 0.91

Plant height 0.57 0.82
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for target traits including CR, RA, RN and LR. The differ-
ences that could be observed in the phenotypic responses 
of the parents resulted in the expression of transgressive 
segregation in their progenies. This is likely due to the 
existence of several positive alleles in the parents, which 
combined via additive or dominant expression into supe-
rior progenies. For example, RA for Caparoi and Outrob4 
in the F2 experiment were 77.3° and 50.1° respectively, 
while the RA for progenies ranged between 12° and 120°, 
thus highlighting individuals with narrower or wider RA 
in comparison to their parents. Transgressive segregation 
offers an opportunity to apply selection to the individu-
als with desired combinations of alleles. Selection in the 
F3 focused on retaining individuals with narrower RA, 
higher RN, tolerance to CR, resistance to LR and shorter 
PH. That was possible through the use of a weighted SI, 
with all traits summarised in one single value and the 
best performers were selected. When the selected set was 
compared to the unselected set, a significant shift for the 
mean was noted for all traits (Fig. 5), with the exception 
of PH. The lack of shift for PH was not entirely unex-
pected because only low weighting was applied (i.e. 10%) 
compared to the highest priority traits CR (35%) and RA 
(30%). Greater gain for the target traits could be achieved 
by performing multiple cycles of selection.

Selection in early generations is usually effective when 
applied to populations derived from parents that were 
phenotypically distinct. Applying selection to early gen-
erations of segregating populations is advantageous as it 
allows enriching the population with desirable alleles [39, 
71, 72]. The individuals with undesired combinations of 
genes are excluded and therefore the cost of field evalu-
ation can be reduced. Despite the variation observed in 
the F2 generation, phenotyping for multiple traits has 
proven to be an effective tool for excluding unwanted 
material. Breeding programs routinely apply early gen-
eration selection on F2 and F3 populations using MAS 
and require robust screening assays to phenotype large 
numbers of individuals efficiently at less cost. Selection 
in early generations increases allele frequency of desired 
traits and therefore the overall efficiency of the breed-
ing program. Selected material in early generations may 
undertake several testing pipelines before becoming elite 
material. It is then possible to test elite material in repli-
cated and multi-environmental trials across years which 
will have more likelihood of success [73].

Integrating with other breeding tools
MAS is a useful tool to impose additional selection for 
useful alleles at any stage of the breeding cycle. How-
ever, while the cost of genotyping has severely dropped in 
recent years. The use of MAS is subject to marker avail-
ability, which remains one of the biggest challenges. In 

particular, markers for CR resistance are limited, and all 
are derived from large QTLs, which lack the resolution to 
be truly effective [53]. The greenhouse screening method 
described here is a flexible and deployable system alone, 
or integrated with MAS if markers are available. The sys-
tem has the advantage that selection based on phenotype 
allows identification of individual plants that carry desir-
able ‘gene combinations’ for the traits of interest. Another 
strategy could be to screen segregating populations to 
cull undesirable individuals, which would increase allele 
frequency of desirable traits in the retained material, 
prior to conducting MAS. This increases the probabil-
ity of detecting individuals with all targeted traits using 
MAS in later generations, making it more cost effective.

The method described in this study has been adapted 
to speed breeding to enable multi-trait selection in par-
allel with rapid line development. Speed breeding has 
reduced the time required to generate RILs with a high 
degree of homozygosity—only 12 months is required to 
reach the F6 generation. This approach could be com-
bined with GS to identify lines with the highest breeding 
values for yield or quality, that could be used as parents 
to further reduce the length of the breeding cycle and 
increase genetic gain.

Conclusion
Breeding programs often screen for multiple traits to 
enhance genetic gain for economically important dis-
eases such as rusts and CR. However, depending on 
their resources, programs will often lack robust, rapid, 
high-throughput and repeatable methods for screening 
multiple complex traits. In this study, we report a novel 
multi-trait phenotyping method for selecting above and 
below ground traits, including: root system architecture, 
LR, CR, and PH. While rapid LR and root system archi-
tecture phenotyping protocols were previously reported 
[35, 38], these techniques were used to characterise fixed 
lines for a single trait. In contrast, reported here are the 
separate analyses of these traits integrated with a CR 
phenotyping procedure, to generate a powerful pheno-
typing tool for multi-trait selection. Using this method, 
we applied selection in early generations to enrich the 
resulting population with desirable allelic combinations 
for multiple traits. The consistent phenotypes displayed 
by standards in the phenotyping experiments confirmed 
the effectiveness of this robust technique for applying 
selection to segregating populations and shifting the pop-
ulation mean for all target traits simultaneously. PH was 
the only trait that did not experience a significant shift, 
as phenotypes were likely impacted by CR infection. This 
technique is compatible with speed breeding, making it 
possible to conduct up to four consecutive screens annu-
ally, compared to a single screen in the field.
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