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METHODOLOGY

Combining laser‑assisted 
microdissection (LAM) and RNA‑seq allows 
to perform a comprehensive transcriptomic 
analysis of epidermal cells of Arabidopsis 
embryo
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Christine Paysant‑Le Roux2,3, Etienne Delannoy2,3, Marie‑Laure Martin Magniette2,3,4, Loïc Lepiniec1, 
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Abstract 

Background:  Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in 
biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted micro‑
dissection for analyzing different tissues of the small Arabidopsis embryo.

Methods and results:  We first characterized the number of genes detected according to the quantity of tissue yield 
and total RNA extracted. Our results revealed that as low as 0.02 mm2 of tissue and 50 pg of total RNA can be used 
without compromising the number of genes detected. The optimised protocol was used to compare the epider‑
mal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The 
approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in 
flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by 
the characterization of several transcription factors preferentially expressed in epidermal cells.

Conclusion:  This technical advance unlocks some current limitations of transcriptomic analyses and allows to investi‑
gate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. 
For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of 
Arabidopsis or other plant tissues.
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Background
Multicellular (higher) organisms like plants are char-
acterized by cell-specific differentiation and tissue 

formation during development. Over the last decades, 
many studies have addressed the question of gene expres-
sion during plant growth, under stress conditions, at pre-
cise stages or in specific genetic backgrounds. One aim of 
modern biology is to provide more quantitative and tis-
sue- or cell-specific analyses with regard to the regulatory 
networks controlling biological processes. Nevertheless, 
the characterization and isolation of cell types organised 
in a three-dimensional space requires specific and tricky 
physical manipulations (for review see [13]). Different 
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approaches have been used including, the expression of 
reporter genes coupled to affinity purification system 
(e.g. INTACT, [10], fluorescent-activated cell sorting [2, 
13, 35, 44], or manual dissection based on morphological 
characters). These techniques are limited in their applica-
tion due to the need for protoplasting or genetic transfor-
mations with cell type-specific markers.

Laser Assisted Microdissection (LAM) allows precise 
recovery of specific tissues or cell types, based on their 
morphology or fluorescence staining when cell spe-
cific markers have been introduced. If based on paraffin 
embedded sections, the identification of specific zones 
can be facilitated by the use of a microscope, although 
decreasing the size of the section lowers the amount of 
RNA extracted. Similarly, very small areas of interest will 
have poor total RNA content, hampering comprehensive 
transcriptional analysis. The size of the zone of interest 
and its subsequent RNA content are therefore a crucial 
issue in the production of good-quality data. Coupling 
LAM to quantitative RT-PCR and then to DNA chips has 
increased the number of genes detected and thus, these 
approaches have been widely and successfully used on 
seed [4, 5, 37]. However, the development of NGS (Next 
Generation Sequencing) technologies offers many other 
advantages: sensitivity, ability to quantify expression in 
species for which no genome sequences are available (i.e. 
new species of interest), access to differentially spliced 
forms or to non-coding RNAs. Moreover, in a specific 
case of plant-pathogen interaction studies, the LAM pro-
vides also a cellular-level resolution to reveal the often 
low coverage of pathogen transcripts [14]. The NGS has 
an additional advantage compared to traditional chip 
hybridization, as it requires a smaller amount of total 
RNA for analysis. Some studies combined LAM, RNA 
ribosomal depletion and RNA-seq experiment in order 
to reveal the entire diversity of transcripts [16, 30]. In 
these cases, the amounts of total RNA coming from LAM 
is in the range of ng, requiring spending a lot of time to 
microdissection step, often at the expense of RNA quality 
or/and biological repetition number. Therefore, we com-
bined ultra-low-RNA-seq sequencing with laser micro-
dissection for undertaking precise and comprehensive 
analyses of the epidermal versus mesophyll cell transcrip-
tomes of the cotyledons, at the torpedo-shaped stage of 
the small Arabidopsis embryo.

The development of Arabidopsis embryo has been 
extensively described [17, 41]. Briefly, after fertilization, 
the zygotic cell gains polarity and develops following 
a precise pattern of divisions to give rise to specific cell 
types (epidermis, vascular bundles, cortex, and meso-
phyll). The epidermis, which originates from the dif-
ferentiation of the protoderm at the dermatogen stage, 
marks the junction between the embryo and the external 

environment [15]. This cell layer forms a hydrophobic 
barrier over the aerial surfaces of the plant [39]. Specific 
secondary metabolites accumulate in the epidermis in 
the form of cuticular fatty acids. The cutin and flavonoids 
then form protective compounds. Previous analyses have 
shown that several genes are specifically expressed in the 
epidermis during aerial organ development [39] or dur-
ing embryo development [15, 27, 40].

In this paper, we investigated the effect of decreas-
ing the total amount of tissue and RNA template using 
ultra-low RNA-seq methods and the technical limit of 
this approach. After validation, the optimized method 
was used to characterize genes that are differentially 
expressed in the epidermis versus mesophyll cells at the 
torpedo stage of Arabidopsis embryo development.

Methods
Plant material and growth conditions
Arabidopsis thaliana plants, accession Columbia (Col-0), 
were grown in a greenhouse under the following condi-
tions: 13 h of light, 25  °C/17  °C day/night, and irrigated 
three times per week with mineral nutrient solution. To 
harvest seeds at defined developmental stages, individ-
ual flowers were tagged on the day of opening, and then 
opened flowers and developing siliques were counted 
daily. Siliques at 8 days after fertilization, corresponding 
to seeds containing embryos at linear stage were har-
vested under RNase free conditions: all materials and 
working surfaces were treated with RNase Zap (Ambion) 
and immediately fixed in 3:1 (vol/vol) ethanol:acetic acid 
at 4 °C on ice. Siliques were cut at the edge into ∼ 1 cm 
segments before fixation to allow better penetration of 
the fixator. The seeds were fixed under vacuum for 1  h 
and left O/N in the fixator at 4 °C.

The plant material was dehydrated in a graded ethanol 
series (70% 1 h, 85% 1 h, 95% 1 h, 100% 1 h two  times, 
100% ethanol O/N), and infiltrated with histoclear (1:3 
1  h, 1:1 1  h, 3:1 2h30 histoclear: ethanol). This was fol-
lowed by 100% histoclear for 30  min three times. Sam-
ples were then incubated with 1:1 paraffin/histoclear for 
1  h and paraffin 100% at 60  °C O/N. The paraffin was 
replaced twice over 1–2  days. Seeds were sectioned at 
8 µm thickness using an automatic microtome (Microm 
HM 355S) and mounted on polyethylene napthalate 
(PEN)-membrane slides (Zeiss) in RNase-free condi-
tions. Slides were dried with a hot plate set at 24 °C and 
deparaffinized twice in 100% histoclear for 1  min and 
dehydrated in 100% ethanol for 1  min. Laser capture 
microdissection was performed using a PALM Micro-
Beam system (Zeiss). For pilot experiment, 20 whole 
cotyledons sections coming from 6 siliques on 3 indi-
vidual plants were microdissected and captured. For the 
second experiment, each tissue type (i.e. Epidermis and 
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Mesophyll) of each seed was separately microdissected 
to minimize contamination from adjacent cell and tis-
sue types (Fig.  2a). Four biological replicates harvested 
at four different dates were captured for each tissue type. 
Each biological replicate consisted of around 25 micro-
dissected tissue sections from at least 5 siliques coming 
from one individual plant. All tissues were captured in a 
collection tube with adhesive cap (Zeiss) within 10  min 
to maximize the quality of total RNA extraction.

RNA‑seq experiments
Microdissected samples were harvested and incubated 
directly into RNA extraction buffer. Total RNA was 
extracted using the Arcturus Pico RNA extraction kit 
(Thermo Fisher Scientific, Inc) and then treated with 
RNase-free DNase (1:8 dilution of DNase I in RDD 
buffer; Qiagen). RNA quantity and quality were checked 
by microcapillary electrophoresis RNA 6000 Pico Chip 
(Agilent 2100 BioAnalyzer; Agilent Technologies Wald-
broon, Germany). RIN (RNA Integrity Number, Agilent) 
obtained were around 6.3 (6.0 for epiderm and 6.5 meso-
phyll: range between 5.7 and 6.7).

For the pilot experiment, in order to focus on optimis-
ing the quality of extracted RNA in relation to the time 
spent on microdissection, 6 dilutions of a same RNA 
sample of whole cotyledons were used (5  ng, 100  pg, 
75  pg, 50  pg, 25  pg, and 10  pg). For the second experi-
ment, the objective of which was to compare epidermis 
and mesophyll tissues, a dilution of 100 pg of total RNA 
was used. cDNA syntheses were performed using the 
SMARTer Ultra Low Input RNA Kit for Sequencing-
v4 (Clontech Laboratories, Inc.) and libraries were pre-
pared according to DNA Sample Preparation Illumina 
kit instructions with a different bar code for each sample 
(Illumina, Cat. Nos. FC-131-1024). Ultra-low RNA-seq 
libraries were checked for their quality on High-sensi-
tivity DNA chip using Agilent 2100 bioanalyzer (Wald-
broon, Germany) before Illumina sequencing (Illumina®, 
California, U.S.A.). The UltraLowRNA-seq samples were 
sequenced in Paired-End (PE) with a read length of 100 
bases. For the pilot experiment, the six libraries were 
sequenced on Hiseq 2000 machine. Samples with a dilu-
tion of 100  pg and 5  ng were first sequenced to obtain 
around 50 million reads/sample. Samples with a dilu-
tion of 100 pg, 75 pg, 50 pg, 25 pg, and 10 pg were then 
sequenced at a second date to obtained around 30 million 
reads/sample. The 100  pg sample was thus sequenced 
twice and used to correct a sequencing bias effect. The 
value of Spearman’s correlation coefficient between the 
two 100 pg samples was 0.61 before correction and 0.86 
after. After correction, the results of the two sequencing 
for the 100 pg sample were similar and only the second 
one was kept for the analyses. For the second experiment, 

the eight libraries were sequenced on Hiseq  2000 
machine to obtained around 35 million reads/sample 
with a multiplexing rate of 4 libraries/lane.

Bioinformatics and statistical analyses
The raw data (fastq) were trimmed for Phred Quality 
Score >  20, read length >  30 bases, and the ribosome 
sequences were removed with tool sortMeRNA [19]. The 
mapper Bowtie version 2 [20] was used to align reads 
against the A. thaliana transcriptome (with ‘local’ option 
and other default parameters). The 33602 annotated 
genes were extracted from TAIR (v10) database corre-
sponding to the representative gene model (longest CDS) 
given by TAIR. The abundance of each gene was calcu-
lated by a home-made script which counts only paired-
end reads for which both reads map unambiguously one 
gene, removing multi-hits.

All the statistical analyses were done with the R soft-
ware using also EdgeR package version 3.8.6 [28]. For 
the pilot experiment, to compare the gene expression, 
the raw counts were normalized to take the difference of 
the library sizes into account with TMM method and a 
sequencing date effect. It was done with a negative bino-
mial generalized linear model with one factor (sequenc-
ing date). Normalized counts equal to the raw counts 
divided by the scaling factor minus a date sequencing 
effect. The second experiment concerned the tissue com-
parison between epidermis and mesophyll. First, genes 
which did not have at least 1 read after a count per mil-
lion normalization in at least one half of the samples, 
were discarded. Then, raw counts were normalized using 
TMM method and count distribution was modelled with 
a negative binomial generalized linear model where the 
tissue type and the harvest date were taken into account 
and where the dispersion is estimated by the edgeR 
method. A likelihood ratio test was performed to evalu-
ate a tissue effect. Raw p-values were adjusted with the 
Benjamini–Hochberg procedure to control the False 
Discovery Rate (FDR). A gene was declared differentially 
expressed if it’s adjusted p value ≤ 0.05.

Data deposition
RNA-Seq projects were deposited in the international 
repository GEO (Gene Expression Omnibus, Edgard 
et  al. [11]): http://www.ncbi.nlm.nih.gov/geo/; acces-
sion no. GSEGSE NGS2014_01_MicroD GSE98176 
163 and NGS2012_02_MicroD GSE98313, according 
to the MINSEQE ‘minimum information about a high-
throughput sequencing experiment’. All steps of the 
experiment, from growth conditions to bioinformat-
ics analyses, were detailed in CATdb [12]: http://tools.
ips2.u-psud.fr.fr/CATdb/; Project: NGS2012_02_microD 
and NGS2014_01.

http://www.ncbi.nlm.nih.gov/geo/
http://tools.ips2.u-psud.fr.fr/CATdb/
http://tools.ips2.u-psud.fr.fr/CATdb/
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Results
We analysed the quality and quantity of total RNA 
extracted from microdissected tissues performed on 
paraffin-embedded seeds according to the protocol pre-
viously described. In order to optimize RNA quality tak-
ing into consideration the microdissection process itself, 
we first evaluated the quantity and quality of total RNA 
extracted from the entire embryo. Focusing on the rela-
tionship between RNA quality and quantity extracted, we 
observed that RIN values are very variable, between 0 and 
7.8, for very low concentrations of total RNA (from 0 to 
200 pg/µl) (Fig. 1a). At a surface of 20.000 µm2, the qual-
ity appears to stabilize between RIN 5.5 and 6 for higher 
concentration (Fig. 1c). Although, as expected, the RNA 
quantity increases with the amount of microdissected 
surface (Fig.  1b) whereas no improvement of the RNA 
quality was obtained by increasing the microdissected 

surface (Fig. 1c). This surface of 20.000 µm2 was thus cho-
sen as a reference to reach around 200 pg of total RNA. 
High quality Epidermis/Mesophyll microdissected total 
RNAs (RIN = 6.8) coming from torpedo stage embryos 
were obtained and used for RNA-seq (Fig. 2b).

We first investigated the number of genes detected 
according to the quantity of mRNA template by using the 
pilot experiment (see Methods section). The numbers of 
reads and detected genes obtained for each sample after 
mapping and gene allocations are shown in Table 1. The 
quality of sequencing was very good for each library, with 
around 90% of reads mapped and unambiguously associ-
ated to genes. The number of detected genes decreases 
from 19266 to 15936 in parallel with RNA quantities 
ranging from 100 to 10 pg. The percentage of genes hav-
ing at least 1 read in the 5 ng RNA sample and conserved 
in other samples is around 90% for 75 and 100 pg sam-
ples, and around 85% for the other. Normalized count 
distribution is presented in Fig.  3. Median of the gene 
expression level seems to be lower for samples with a 
dilution of 10 and 25 pg. Moreover, the first axis of the 
Principal Component Analysis (PCA) made from the 
normalized counts states a clear separation of 10 pg sam-
ple from the others and the second axis a clear separation 
of 25 pg sample from the others. Both axes explain more 
than 50% of the variability (Additional file 1: Fig. S1). This 
discrepancy between 10 and 25 pg samples and the oth-
ers is also observed on the dendrogram cluster graph 
(Additional file 2: Fig. S2). A scatter-plot matrix showed 
a correlation between samples increasing with the RNA 
quantity from 10 pg to 5 ng, and always greater than 0.83 
from 5 ng (Fig. 4).   

We then performed a microdissection experiment 
using a 100 pg RNA template and 4 biological replicates, 
with the aim to identify differentially expressed genes of 
epidermis versus mesophyll cells. Here, we used cotyle-
dons at the torpedo stage of embryo development (see 
Methods section). To assess data quality, we performed a 
principal component analysis (Additional file 3: Fig. S3). 
The latter clearly showed no replicate bias and the two 
first axes, which represent 41.46% of the explained vari-
ance discriminate the two types of tissue. It is to be noted 
that epidermis samples are much more variable than 
mesophyll samples that may reflect a contamination by 
endosperm-specific expressed genes during the dissec-
tion process.

The analysis of differential gene expression based on 
four biological replicates allowed to characterize 870 Dif-
ferentially Expressed Genes (DEGs) with an adjusted p 
value <  0.05 (Table  2). We compared this number with 
respect to the number of biological replicates used. As 
expected, the results showed that the overall number of 
DEGs increased with the number of biological replicates. 

Fig. 1  Quantity and quality of extracted RNA related to microdis‑
sected surface coming from whole cotyledons embryo. a Relation‑
ship between RNA quality (RIN) and quantity extracted (pg). b 
Relationship between RNA quantity (pg) and the amount of microdis‑
sected surface (µm2). c Relationship between microdissected surface 
(µm2) and RNA quality (RIN)
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The significant log ratio beyond which a gene is declared 
differentially expressed did not change: an average of 0.65 
for 2 replicates and 0.75 with 3 replicates, whereas a sig-
nificant log-ratio of 0.6 was obtained with the 4 replicates 
(Table 2). Thus, in this experiment, increasing the num-
ber of biological replicates did not reduce the detected 
differential expression between two conditions, but 
increased the completeness of the information.

To validate the approach and confirm the biologi-
cal significance of the DEGs identified, we selected two 
different metabolic pathways known to take place more 
specifically in the epidermal cells, wax and flavonoid syn-
thesis, and checked the expression of the genes involved 
in our data. RNA-Seq analysis revealed a specific sub-
set of fatty acid biosynthetic genes, whose expression is 
higher in the epidermal cell layers than in mesophyll cells 
(Fig.  5). One of the main physiological functions of the 
epidermis is to produce a protective hydrophobic bar-
rier made of epicuticular waxes and cutin. It involves 
the synthesis of alkanes, alcohols aldehydes, free fatty 
acids, and wax esters that are all derived from long and 
very long chain acyl-CoA, elongated in the Endoplasmic 

Fig. 2  Micro-dissected samples in this study. a Mesophyll or epiderm 
of linear staged embryos were microdissected at X40. Image shows 
the different steps of microdissection process: area selection, laser 
cutting, catapulting and capture of the sample. In red the epider‑
mis, in blue the mesophyll. Bar = 30 µm. b Quality of the total RNA 
(Agilent Bioanalyzer profile) extracted after microdissection of the 
epidermis. 1: marker, 2: small RNA, 3: 18S rRNA, 4: 28S rRNA

Table 1  Read mapping and gene detection statistics based on starting RNA quantity

Both first lines are the number of sequenced PE reads in million(s), and number of PE reads kept after mapping and gene association. Detected genes are the number 
of genes with a1 PE or more. The last line is the number of genes in common between 17446 genes detected with 5 ng compared to the other samples. The raw 
counts are already rid of rRNA reads, 3–6% have been removed for each sample

RNA template 5 ng 100 pg 75 pg 50 pg 25 pg 10 pg

Librairy size (million) 53.341628 38.317268 25.174298 31.510988 32.682558 29.791112

Mapped reads (million) (percentage) 51.127950 (96%) 30.780261 (81%) 22.402608 (89%) 28.652941 (91%) 29.123427 (89%) 26.701774 (90%)

Detected genes (level 0) 17446 19266 19539 18485 16829 15936

Common reads with 5 ng reference 
sample (percentage)

15704 (90%) 15880 (98.8%) 15317 (87.8%) 14312 (85%) 13748 (86.3%)

Fig. 3  Boxplot of normalized counts after Log2 + 1 transformation, for the 6 samples of the pilot experiment (RNA quantity from 5 ng to 10 pg)
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Reticulum [29]. The list of genes detected is indicated in 
the Fig. 5 and as well as those strongly expressed in the 
epidermis identified by a red dot. A limited subset of 27 
genes was found differentially expressed in embryo epi-
dermis. Interestingly, these genes were mostly found 
either upstream or downstream of the wax and cutin 
biosynthetic pathways. Thirteen genes were involved in 

acylCoA synthesis (ACCase, LACS and elongase), and ten 
were associated with transport/export of wax and cutin 
constituents of the extracellular space.

We then checked the expression of known flavonoid 
genes. This pathway is usually presented with a com-
mon part made of the “early biosynthetic genes” (EBGs) 
that leads to flavonoid precursors (i.e. dihydroflavonols) 

Fig. 4  Scatter-plot matrix of the normalized counts after Log2 + 1 transformation for the 6 samples of the pilot experiment (RNA quantity from 
5 ng to 10 pg). The scatter-plot matrix shows histograms of the variables in the diagonal. Each cell on the bottom of the diagonal contains Spear‑
man’s correlation coefficient between the pair of variables indicated in the diagonal. Each cell on the top of the diagonal corresponds to the plot of 
the pair of variables indicated in the diagonal
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and more specific branches made of the late biosynthetic 
genes (LBG) involved in the synthesis of specific flavo-
noids (e.g. anthocyanins or tannins) [21]. The analysis 
showed that most of the EBGs are DEGs in the epidermis 
compared to the mesophyll (Fig. 6) that is fully consist-
ent with epidermal biosynthesis of flavonoids. Interest-
ingly, flavonoids transcriptional regulators ENHANCER 
OF GLABRA 3 (EGL3, At1g63650) and MYB111 
(At5g49330), involved in anthocyanins and flavonols bio-
synthesis, respectively [43], were also shown to be differ-
entially accumulated in the epidermis.

To go further in the transcriptional regulations occur-
ring specifically in the epidermis, we focused on the tran-
scription factors (TF) that are differentially expressed 
with a log ratio > 1  in the epidermis when compared to 
the mesophyll cell (Table 3). From the 870 DEGs genes, 
571 had a log ratio >  1 and from these 571, 43 (9.49%) 
were transcription factors, preferentially expressed in 
epidermal tissues, that is slightly higher than the normal 
occurrence of TF in Arabidopsis genome (5.6% - [9], and 
33 have been found in embryo (http://bar.utoronto.ca/
efp2/Arabidopsis/Arabidopsis_eFPBrowser2.html) and, 
according to literature, 9 more specifically in epidermis 
(Table 3). The log ratios of TF DEGs with a log ratio > 1, 
ranges from 1.08 for FUS3 to > 10 for MYB56 with 7 TF 
showing a log ratio above 5.

Discussion
In this paper we have undertaken a microdissection fol-
lowed by RNA-Seq in developing Arabidopsis embryos. 
We showed that robust and comprehensive RNA-Seq 
experiment can be performed starting with very small 
amount of starting material and optimized microdis-
section time. Embedded sections usually produce lower 
quality RNA than fresh tissue. However, the quality of 
the section remains much higher in embedded tissues 
compared to cryo-sections, which shrivel quickly at 
room temperature under the LAM. A key advantage of 
embedded sections is to reduce damages to organ struc-
ture before and during micro-dissection. Thus, the com-
bination of LAM and RNA-seq provide new powerful 

approach for investigating the transcriptome of specific 
tissues or cell types. First, based on mapped reads and 
detected genes, we concluded that a low amount of total 
RNA (i.e. 10  pg), is sufficient to generate libraries and 
produce RNA-seq data. The number of genes detected 
was comprised between 15936 and 17446, which is fully 
comparable with embryo data obtained in previous stud-
ies based on microarrays technologies [7, 37]. Surpris-
ingly, the number of genes detected in the 5  ng sample 
is lower than expected when compared to other samples 
(i.e. 100–50 pg), nevertheless we can observe a decrease 
of the number of genes detected according to the RNA 
quantity. The overlap between the genes detected in the 
reference sample (5 ng) and the other samples was good 
(≥ 90% with 75 and 100 pg), regardless of the variations 
of the library size. Based on these results and PCA/distri-
bution profiles, we therefore recommend a minimum of 
50 pg of total RNA to perform a comprehensive analysis 
of the expressed genome. Lower quantity of total RNA 
(up to 10 pg) can be used to raise libraries and sequence 
successfully, essentially in order to check for the pres-
ence of a given gene, but is not fully quantitative. Last, 
as expected, increasing the number of biological repeats 
positively impacted the number of DEGs detected (e.g. 
an additional repeat increases by around 10% the number 
of DEG detected).

Dissecting the epidermis for RNA-seq profiling at the 
torpedo stage of embryo development was a real chal-
lenge to tackle with Arabidopsis. Thus, we evaluated the 
approach on two well-known primary and secondary 
metabolic pathways, namely wax and flavonoids, both 
occuring preferentially in epidermal cells. Only 4 differ-
entially genes that are supposed to be directly involved 
in wax and cutin biosynthesis were found: one MAH-like 
(At4g39150), WAX2 (At5g57800), CUT1 (At1g68530) 
and HOTHEAD (At1g72970). The well-characterized 
genes involved in epicuticular waxes and cutin like 
CER1, CER3 or CER4 are however not found in the dis-
sected RNA dataset. It has to be noted that the precise 
biochemical functions of these 4 genes are still unknown. 
On the contrary, the function of acyl-CoA biosynthetic is 
better characterized. As expected, ACC1 gene, which is 
involved in malonyl-CoA synthesis was found to be pref-
erentially expressed in epidermal cells that is consistent 
with previous data [18]. Acyl-CoA is associated with epi-
cuticular wax synthesis in developing stems [39]. Several 
of them were found to have also a differentially enhanced 
expression in the embryo epidermis. For instance, out 
of the 21 KCS genes coding the first enzyme of the acyl-
CoA elongation complex), eleven showed an induced 
expression in stem epidermis, among which six were also 
induced in embryo epidermis [39]. Two out of the three 
remaining genes of the elongase complex, KCR and ECR 

Table 2  Number of  differentially expressed genes 
detected based on number of biological replicates

Top—comparison of gene expression levels needed (log ratio) to validate a 
differential expression (DE) according to number of repeats with 0.1 ng total 
microdissected input RNA. Bottom—number of genes differentially expressed 
according to organs and repeats

Number of repeats

2 3 4

Log ratio for DE genes 0.65 0.75 0.65

Number of DE genes 752 803 870

http://bar.utoronto.ca/efp2/Arabidopsis/Arabidopsis_eFPBrowser2.html
http://bar.utoronto.ca/efp2/Arabidopsis/Arabidopsis_eFPBrowser2.html
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Fig. 5  Genes involved in VLCFA and WAXES are up regulated in the epidermis. Schematic representation of the very long chain fatty acid and waxes 
biosynthetic pathway. Adapted from http://aralip.plantbiology.msu.edu/pathways/fatty_acid_elongation_wax_biosynthesis. The red dots highlight 
the differentially expressed genes
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were also found to be induced in the embryo epidermis. 
The remaining member HACD coded by PASTICCINO 
gene was strongly expressed in seedling epidermis and 
was found as the most-differentially expressed gene in the 
apical part of the globular embryo [8, 26]. Other epicu-
ticular waxes and cutin genes like CER1, CER3 or CER4 
were not isolated, suggesting that they are either not dif-
ferentially expressed between the two tissues studied or 
expressed at low levels, below the detection threshold of 
the methods used. In conclusion, the embryo epidermis 
showed specific expression of fatty acid genes involved 
in the epicuticular waxes and cutin biosynthesis leading 
most probably to an increase in acyl-CoA elongation and 
in wax or cutin export.

For the flavonoid pathway, most of the EBGs involved 
in the biosynthesis of flavonoid precursors (i.e. dihydro-
flavonols) were found to be preferentially expressed in the 
epidermal cells. This is fully consistent with the simulta-
neous characterization of MYB111, which is involved in 
the regulation of these EBGs [38] and ENHANCER OF 
GLABRA 3 (EGL3, At1g63650) acting both as a regu-
lator of epidermal cell fate (see below) and flavonoid 

biosynthesis [43]. Moreover, this is also consistent with 
the usual epidermal localization of flavonoids, which can 
participate to the cuticle layer, providing some protective 
barrier against biotic or abiotic stresses [23, 24].

Last, we focused on DE transcription factors (TF). 
Among the most differentially expressed genes in the epi-
dermal cells compared to the mesophyll cell, we identified 
PROTODERMAL FACTOR 2 (PDF2) and ARABIDOPSIS 
THALIANA MERISTEM LAYER 1 (AtML1), two homol-
ogous HD-Zip expressed in epidermal cells [1, 27, 32], as 
well as WEREWOLF (WER) and EGL3 that interact to 
control epidermal cell fate in root [33, 36]. Our results 
are fully consistent with the epidermal localisation and 
function of these TF and again, validate the approach. 
It has to be noticed that MYB118 was identified as DE 
expressed with a high log ratio (> 5, Table 3). This tran-
scription factor was functionally analysed and mRNA 
accumulation as well as promoter analysis showed that 
its expression is restricted to the endosperm [3]. This 
clearly suggests a probable contamination of the epider-
mis by endosperm tissues, probably when the micro-
dissection itself was performed, a little bit outside the 
epidermis to protect the tissue. Thus the data we provide 
here are not strictly epidermis specific but represent an 
epidermis-enriched fraction of the genes expressed dur-
ing embryogenesis. We could have narrow the dissection 
beam to the epidermis’s cell wall but would probably have 
decreased the quality of the mRNA during the process. 
Nevertheless, our results also provide new putative epi-
dermal-specific or preferentially-expressed TFs (Table 3). 
They pave the way for new functional analyses of these 
interesting candidates for the regulation of epidermal 
cell differentiation and metabolic pathways. Many other 
factors have been identified as DE without preliminary 
data about their possible localisation, some of them being 
highly expressed in the epidermis, suggesting major roles 
in the specificity or in the differentiation of the epidermis 
in the growing embryo. It is to be noticed that, for many 
of the TF, the count number was relatively high in both 
cell layers, suggesting a difference of expression but no 
cell specificity. For some TF the count number was very 
low, or even not detected at all, outside the epidermis, 
suggesting these genes are not only DE in the epidermis 
compared to mesophyll, but specific for the epidermis. 
To go further in the characterization of these DE genes, 
it would be also very interesting to study the promoter 
sequences of all these epidermal specific or preferentially 
expressed genes in order to characterize putative con-
served epidermis specific cis-elements and then isolate 
new regulatory genes and build the regulatory networks 
involved. More broadly, identifying co-expressed genes 
in specific tissues or cell layers will allow a much more 
detailed analysis of these regulatory networks.
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highlight the differentially expressed genes
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Table 3  Transcription factors differentially expressed in  the epidermis in  the developing embryo. TAF from http://datf.
cbi.pku.edu.cn/download.php

AGI Name LogDiff Epidermis/
mesophyll

Expressed in the embryo Localisation References

At5g17800 AtMYB56 myb domain protein 56 > 10 Yes

AT3G15510 ATNAC2 NAC domain containing 
protein 2

9.70 Yes

AT5G45980 WOX8 WUSCHEL-related home‑
obox 8

9.09 Yes

AT4g31680 Transcriptional factor B3 
family protein

6.5 Yes

AT2G20825 ULT2 ULTRAPETALA 2 5.23

AT1G49770 bHLH 5.08

AT3G27785 MYB118 myb domain protein 118 5.03 Yes

AT2G38470 #N/A 4.97 Epidermis Suh et al. [39]

AT1G27730 STZ SALT TOLERANCE ZINC 
FINGER

4.71

AT4G25490 CBF1 C-REPEAT/DRE BINDING 
FACTOR 1

4.58 Yes

AT5G62470 MYB96 myb domain protein 96 4.43 Yes

AT3G61250 AtMYB17 myb domain protein 17 4.23 Yes

AT5G47230 ERF5 ETHYLENE RESPONSIVE ELE‑
MENT BINDING FACTOR 5

4.15

AT5G59820 RHL41 RESPONSIVE TO HIGH LIGHT 
41

3.95

AT1G65620 AS2 ASYMMETRIC LEAVES 2 3.83 Yes

AT5G18270 ANAC087 3.81 Yes

AT3G47600 MYB94 myb domain protein 94 3.71 Yes

AT5G46880 HB-7 homeobox-7 3.65 Yes Epidermis Nakamura et al. [25]

AT2G27050 EIL1 ETHYLENE-INSENSITIVE3-
LIKE 1

3.54 Yes

AT5G49330 AtMYB111 myb domain protein 111 3.23

AT2G36890 ATMYB38 myb domain protein 38 3.11 Yes

AT4G38620 MYB4 myb domain protein 4 3.06 Yes

AT4G04890 PDF2 PROTODERMAL FACTOR2 3.03 Yes Epidermis Abe et al. [1]

AT4G21750 ATML1 MERISTEM LAYER 1 2.86 Yes Epidermis Sessions et al. [34]

AT5G14750 WER WEREWOLF 1 2.78 Yes Epidermis Ryu et al. [31]

AT1G32640 ATMYC2 JASMONATE INSENSITIVE 1 2.67

AT3G62610 AtMYB11 myb domain protein 11 2.64 Yes Stracke et al. 2007

AT1G63650 EGL3 ENHANCER OF GLABRA3 2.51 Yes Epidermis Bernhardt et al. [6]

AT3G52910 AtGRF4 GROWTH-REGULATING 
FACTOR 4

2.37 Yes

AT4G01250 WRKY22 WRKY DNA-binding protein 
22

2.34 Yes

AT1G21970 LEC1 LEAFY COTYLEDON 1 2.31 Yes Epidermis Lotan et al. [22]

AT4G16780 ATHB-2 Homeobox-leucine zipper 
protein HAT4

2.29

AT4G25470 CBF2 FREEZING TOLERANCE 
QTL 4

2.18

AT1G14687 ATHB32 2.14 Yes

AT3G16770 ATEBP/
RAP2.3

2.09 Yes

AT2G45190 AFO ABNORMAL FLORAL 
ORGANS

1.99 Yes

AT4G24240 WRKY7 1.88 Yes

http://datf.cbi.pku.edu.cn/download.php
http://datf.cbi.pku.edu.cn/download.php
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Conclusion
We have set up a robust protocol for RNA seq analysis of 
ultra low quantity of template RNA obtained after laser-
assisted-microdissection. We have shown that the proto-
col is still working below 50 pg of total RNA despite lower 
number of detected genes. This could be useful for some 
applications necessarily requiring a very small amount 
of starting material although not fully quantitative. We 
have successfully applied this method to the analysis of 
the epidermis in developing embryos, allowing detec-
tion of many differentially expressed transcription factors 
in this cell layer. This analysis will help for very precise 
transcriptomic analysis of specific tissues that could be of 
great use for a better understanding of gene regulation in 
specific organ or cell types.
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