
Rzanny et al. Plant Methods  (2017) 13:97 
DOI 10.1186/s13007-017-0245-8

RESEARCH

Acquiring and preprocessing leaf 
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Abstract 

Background: Automated species identification is a long term research subject. Contrary to flowers and fruits, leaves 
are available throughout most of the year. Offering margin and texture to characterize a species, they are the most 
studied organ for automated identification. Substantially matured machine learning techniques generate the need 
for more training data (aka leaf images). Researchers as well as enthusiasts miss guidance on how to acquire suitable 
training images in an efficient way.

Methods: In this paper, we systematically study nine image types and three preprocessing strategies. Image types 
vary in terms of in-situ image recording conditions: perspective, illumination, and background, while the preprocess-
ing strategies compare non-preprocessed, cropped, and segmented images to each other. Per image type-preproc-
essing combination, we also quantify the manual effort required for their implementation. We extract image features 
using a convolutional neural network, classify species using the resulting feature vectors and discuss classification 
accuracy in relation to the required effort per combination.

Results: The most effective, non-destructive way to record herbaceous leaves is to take an image of the leaf’s top 
side. We yield the highest classification accuracy using destructive back light images, i.e., holding the plucked leaf 
against the sky for image acquisition. Cropping the image to the leaf’s boundary substantially improves accuracy, 
while precise segmentation yields similar accuracy at a substantially higher effort. The permanent use or disuse of a 
flash light has negligible effects. Imaging the typically stronger textured backside of a leaf does not result in higher 
accuracy, but notably increases the acquisition cost.

Conclusions: In conclusion, the way in which leaf images are acquired and preprocessed does have a substantial 
effect on the accuracy of the classifier trained on them. For the first time, this study provides a systematic guideline 
allowing researchers to spend available acquisition resources wisely while yielding the optimal classification accuracy.

Keywords: Leaf image, Image acquisition, Preprocessing, Segmentation, Cropping, Background, Leaf side, Back light, 
Effort, CNN, Computer vision
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Background
Accurate plant identification represents the basis for 
all aspects of related research and is an important 

component of workflows in plant ecological research. 
Species identification is essential for studying the bio-
diversity richness of a region, monitoring populations 
of endangered species, determining the impact of cli-
mate change on species distributions, payment of envi-
ronmental services, and weed control actions [1, 2]. 
Accelerating the identification process and making it 
executable by non-experts is highly desirable, especially 
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when considering the continuous loss of plant biodiver-
sity [3].

More than 10  years ago, Gaston and O’Neill [4] pro-
posed that developments in artificial intelligence and 
digital image processing could make automated species 
identification realistic. The fast development and ubiq-
uity of relevant information technologies in combination 
with the availability of portable devices such as digital 
cameras and smartphones results in a vast number of 
digital images, which are accumulated in online data-
bases. So today, their vision is nearly tangible: that mobile 
devices are used to take pictures of specimen in the field 
and afterwards to identify their species.

Considerable research in the field of computer vision 
and machine learning resulted in a number of studies 
that propose and compare methods for automated plant 
identification [5–8]. The majority of studies solely utilize 
leaves for identification, as they are available for examina-
tion throughout most of the year and can easily be col-
lected, preserved and photographed, given their planar 
nature. Previous methods utilize handcrafted features for 
quantifying geometric properties of the leaf: boundary 
and shape as well as texture [9–13]. Extracting such fea-
tures often requires a preprocessing step in order to dis-
tinguish the leaf from the background of the image, i.e., 
a binary segmentation step. For the ease of accurate and 
simple segmentation, most studies use leaf images with a 
uniform, plain background, e.g., by utilizing digital scan-
ners or photographing in a controlled environment [14]. 
Only few studies addressed the problem of segmenting 
and identifying leaves in front of cluttered natural back-
grounds [15, 16].

At the same time, machine learning techniques have 
matured. Especially, deep learning convolutional neural 
networks (CNNs) have almost revolutionized computer 
vision in the recent years. Latest studies in object cat-
egorization demonstrate that CNNs allow for superior 
results compared to state of the art traditional methods 
[17, 18]. Current studies on plant identification utilize 

CNNs and achieve significant improvements over meth-
ods developed in the decade before [19–22]. Furthermore 
it was empirically observed that CNNs trained for a task, 
e.g., object categorization in general, also achieve excep-
tional results on similar tasks after minor fine-tuning 
(transfer learning) [18]. Making this approach usable in 
an experimental setting, researchers demonstrated that 
using pre-trained CNNs merely for feature extraction 
from images results in compact and highly discrimina-
tive representations. In combination with classifiers like 
SVM, these CNN derived features allow for exceptional 
classification results especially on smaller datasets as 
investigated in this study [17].

Despite all improvements in transfer learning, to suc-
cessfully train a classifier for species identification 
requires a large amount of training data. We argue that 
the quality of an automated plant identification system 
crucially depends not only on the amount, but also on 
the quality of the available training data. While funding 
organizations are willing to support research into this 
direction and nature enthusiasts are helpful by contrib-
uting images, these resources are limited and should 
be efficiently utilized. In this paper, we explore differ-
ent methods of image acquisition and preprocessing to 
enhance the quality of leaf images used to train classifiers 
for species identification. We ask: (1) How are different 
combinations of image acquisition aspects and preproc-
essing strategies characterized in terms of classification 
accuracy? (2) How is this classification accuracy related 
to the manual effort required to capture and preprocess 
the respective images?

Methods
Our research framework consists of a pipeline of four 
consecutive steps: image acquisition, preprocessing, 
feature extraction, and training of a classifier as shown 
in Fig. 1. The following subsections discuss each step in 
detail and especially refer to the variables, image types 
and preprocessing strategies that we studied in our 

Fig. 1 Consecutive steps of our research framework
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experiments. We used state of the art feature extraction 
and classifier training methods and kept them constant 
for all experiments.

Image acquisition
For each observation of an individual leaf, we system-
atically varied the following image factors: perspective, 
illumination, and background. An example of all images 
collected for a single observation is shown in Fig. 2. We 
captured two perspectives per leaf in-situ and in a non-
destructive way: the top side and the back side, since 
leaf structure and texture typically substantially differ 
between these perspectives. If necessary, we used a thin 
black wire to arrange the leaf accordingly. We recorded 
each leaf under two illumination conditions using a 
smartphone: flash off and flash on. Flash off refers to a 
natural illumination, without artificial light sources. In 
case of bright sunlight, we used an umbrella to shade the 
leaf against strong reflections and harsh shadows emerg-
ing from the device, the plant itself, or the surrounding 
vegetation. Flash on was used for a second image, taken 
in the same manner, but with the built-in flashlight acti-
vated. We also varied the background by recording an 
initial image in the leaf ’s environment composed of other 
leaves and stones, termed natural background. Addition-
ally, we utilized a white sheet of plastic to record images 
with plain background. Leaves were not plucked for this 
procedure but arranged onto the sheet using a hole in the 
sheet’s center. Eventually, the leaf was picked and held up 
against the sky using a black plastic sheet as background 
to prevent image overexposure. This additional image 
type is referred to as back light. In summary, we captured 
nine different image types per observation.

All images were recorded with the use of an iPhone 6, 
between April and September 2016, throughout a single 
vegetation season. Following a strict sampling protocol 
for each observation, we recorded images for 17 species 
representing typical, wild-flowering plants that com-
monly occur on semi-arid grasslands scattered around 
the city of Jena, located in eastern Germany. At the time 
of image acquisition, every individual was flowering. The 
closest focusing distance represented a technical limit for 
the resolution of smaller leaves while ensuring to capture 
the entire leaf on the image. The number of observations 
per species ranged from eleven (Salvia pratensis) to 25 
(Pimpinella saxifraga). In total, we acquired 2902 images. 
The full dataset including all image annotations is freely 
available from [23].

Image preprocessing
Each leaf image was duplicated twice to execute the three 
preprocessing strategies: non-preprocessed, cropped, 
and segmented. Non-preprocessed images were kept 

unaltered. Cropping was performed based on a bound-
ing box enclosing the leaf (see Fig.  2). To facilitate an 
efficient segmentation, we developed a semi-automated 
approach based on the GrabCut method [24]. GrabCut is 
based on iterated graph cuts, and was considered accu-
rate and time-effective for interactive image segmenta-
tion [25, 26]. The first iteration of GrabCut was initialized 
by a rectangle placed at the relevant image region, the 
focus area defined during image acquisition and available 
in an image’s EXIF data. This rectangle should denote the 
potential foreground whereas the image corners were 
used as background seeds. The user was then allowed to 
iteratively refine the computed mask by adding markers 
denoting either foreground or background, if necessary. 
The total amount of markers was logged for every image. 
To speed up the segmentation process, every image was 
resized to a maximum of 400 px at the longest side while 
maintaining the aspect ratio. Finally, the binary mask 
depicting only the area of the leaf was resized to the orig-
inal image size. The boundary of the upsized mask was 
then smoothed using a colored watershed variant after 
morphological erosion of the foreground and background 
labels, followed by automated cropping to that mask.

Quantifying manual effort
Image acquisition and preprocessing require substantial 
manual effort depending on the image type and preproc-
essing strategy. We aim to quantify the effort for each 
combination in order to facilitate a systematic evaluation 
and a discussion of their resulting classification accuracy 
in relation to the necessary effort.

For a set of ten representative observations, we meas-
ured the time in seconds and the amount of persons 
needed for the acquisition of each image. This was done 
for all combinations of the image factors perspective 
and background. Whereas a single photographer is suf-
ficient to acquire images in front of natural background, 
a second person is needed for taking images with plain 
background and for the back light images in order to 
arrange the leaf and the plastic sheet. We then quantified 
the effort of image acquisition for these combinations 
by means of average ’person-seconds’ by multiplying the 
time in seconds with the amount of persons.

In order to quantify the manual effort during pre-
processing, we measured the time in seconds an experi-
enced user requires for performing either cropping or 
segmentation on a set of 50 representative images. For 
each task, the timer was started the moment the image 
was presented to the user and was stopped when the 
user confirmed the result of his task. For cropping, the 
time needed for drawing a bounding box around the 
leaf. This required 6.8  s on average independently from 
the image conditions. Image segmentation on the other 



Page 4 of 11Rzanny et al. Plant Methods  (2017) 13:97 

Fig. 2 Leaf image set belonging to one observation of Aster amellus depicting all nine image types and the preprocessing strategies explored in 
this study
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hand involved substantial manual work depending on 
the leaf type, e.g., compound or pinnate leaves, and the 
image background. In case of natural background, often 
multiple markers were required. We measured the aver-
age time for setting one marker, amounting to 4.7 s, fol-
lowed by multiplying this average time with the amount 
of markers needed for segmenting each image. In case 
of plain background and simple leaves, the automati-
cally initialized first iteration of the segmentation process 
often delivered accurate results. In such cases, the man-
ual effort was taken only to confirm the segmentation 
result, which took about 2 s. For compound and pinnate 
leaves, e.g., of Centaurea scabiosa, the segmentation task 
was considerably more difficult and required 135  s on 
average per image with natural background.

The mean effort measured in “person-seconds” for all 
combinations of image types and preprocessing steps is 
displayed in Fig. 3. We define a baseline scenario for com-
paring the resulting classification accuracy in relation 
to the necessary effort for each combination: With an 
empirically derived average time of 13.4 s, the minimum 
manual effort is in acquiring a top side leaf image with 
natural background and no preprocessing steps.

Feature extraction
Using CNNs for feature extraction results in power-
ful image representations that, coupled with a Support 
Vector Machine as classifier, outperform handcrafted 
features in computer vision tasks [17]. Accordingly, 
we used the pre-trained ResNet-50 CNN, that ranked 
among the best performing networks in the ImageNet 

Large Scale Visual Recognition Challenge in 2015 
[27], for extracting compact but highly discrimina-
tive image features. Every image was bilinearly resized 
to fit 256 px at the shortest side and then a center crop 
of 224×224  px was forwarded through the network 
using the Caffe deep learning framework [28]. The out-
put of the last convolutional layer (fc5) was extracted 
as 2048 dimensional image feature vector, followed by 
L2-normalization.

Image classification
We used the CNN image features discussed in the pre-
vious section to train linear Support Vector Machine 
(SVM) classifiers. Each combination of the nine image 
types and the three preprocessing strategies resulted 
in one dataset creating 27 in total. These datasets were 
split into training (70% of the images) and test sets (30% 
of the images). In order to run comparable experiments, 
we enforced identical observations across all 27 datasets, 
i.e., for all combinations of image types and preprocess-
ing strategies, the test and train sets were composed of 
the same individuals. Using the trained SVM, we clas-
sified the species for all images of each test dataset and 
calculated the classification accuracy as percentage of 
correctly identified species. All experiments were cross-
validated using 100 randomized split configurations. 
Similarly, we quantified the species specific accuracy as 
percentage of correctly identified individuals per species. 
We used R version 3.1.1 [29] with the packages e1071 
[30] for classifier training along with caret [31] for tuning 
and evaluation.
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Fig. 3 Mean manual effort per image, quantified by means of ’person-seconds’ for the five different image types and three preprocessing strategies
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Results
Figure 4 displays the mean species classification accuracy 
separated for the nine image types and aggregated for the 
three preprocessing strategies. The highest classification 
accuracy (91± 3)% was achieved on cropped back light 
images, while the lowest accuracy was obtained for non-
preprocessed backside images with natural background 
and without flash (55± 4)%. Across all three preproc-
essing strategies, back light images achieved the highest 
classification accuracy. Preprocessed images, i.e.cropped 
and segmented images, yielded higher accuracy than 
non-preprocessed images. Images of leaves in front of 
natural background benefit most from cropping and seg-
mentation as they indicate the highest relative increase 
among the three preprocessing strategies. Starting with 
an already high accuracy, its relative gain between non-
preprocessed and preprocessed back light images is 
smaller than that of natural and plain background images. 
Taking images with or without flash light seems not to 
affect classification accuracy in a consistent manner.

Figure 5 shows classification results not only separated 
per image type and preprocessing strategy, but addition-
ally per species within the dataset. The results show that 
classification accuracy depends on the classified species. 
While cropping and segmentation notably increase clas-
sification accuracy for some species, e.g., Fragaria vir-
idis and Centaurea scabiosa, other species remain at a 
low classification accuracy despite of preprocessing, e.g., 

≈ 70% for Prunella grandiflora. Especially for these low-
performing species, back light images yield a consider-
ably higher accuracy, e.g., > 90% for Prunella grandiflora. 
Furthermore, Fig.  5 shows that: (1) back light images 
yield a higher and more homogenous classification accu-
racy across the different species; (2) preprocessing by 
cropping or segmentation increases accuracy; and (3) 
the images with plain background achieve higher accu-
racies if cropped, while the images with natural back-
ground obtain higher accuracies when segmented prior 
to classification.

In order to investigate species dependent misclassifica-
tions in more detail, we computed the confusion matri-
ces shown in Fig.  6. This figure illustrates the instances 
of an observed species in rows versus the instances of 
the same species being predicted in columns, averaged 
across all image conditions. We present one matrix per 
preprocessing strategy, visualizing how a certain spe-
cies was confused with others, if its accuracy was below 
100%. This is, for example, the case for Anemone sylvestris 
versus Fragaria viridis and Prunella grandiflora versus 
Origanum vulgare. Evidently, cropping and segmenta-
tion, notably decrease the sparse tendency towards false 
classification. Prunella grandiflora achieved the low-
est classification accuracy across all species (Fig.  6) and 
was often misclassified as Origanum vulgare, a species 
with similarly shaped leaves. Some species, such as Aster 
amellus or Origanum vulgare are more or less invariant 
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to subsequent preprocessing. Other species, such as Fra-
garia viridis, Salvia pratensis, or Ononis repens show 
very different results depending on whether or not the 
images were preprocessed.

These differences seem to be strongly species specific, 
even perspective specific without any discernible pattern. 
As an example, the classification accuracy of Sanguisorba 
minor is greatly improved by cropping for the backsides 
in front of natural background, while segmenting of these 
images does not further increase the classification accu-
racy (Fig.  5). In contrast, the accuracy of the topsides, 
also recorded in front of natural background is only 
slightly improved by cropping, while subsequent segmen-
tation clearly improves the result. This species is a plant 
with pinnate compound leaves and the leaflets are often 
folded inwards along the midrib.

Discussion
We found the classification accuracy to differ substan-
tially among the studied image types, the applied pre-
processing strategy, and the studied species. While 
species specific effects exist (see Figs. 5, 6), they were not 
the focus of our study and are not changing the general 
conclusions drawn from these experiments. The overall 
achieved classification accuracy is rather low when com-
pared to other studies classifying leaf image datasets. In 
contrast to most other studies, our dataset comprises 
smartphone images of leaves from herbaceous plants. 
Here, small and varying types of leaves occur on one 
the same species. Many of the other datasets achieving 

higher accuracies primarily contain images of tree leaves 
that are comparably larger and can be well separated by 
shape and contour [6]. In addition, the leaves in our data-
set were still attached to the stem upon imaging (except 
for the backlight images) and could not be perfectly 
arranged as it is possible for scanned, high resolution 
images in other datasets.

We studied nine image types varying the factors: per-
spective (top side, back side, and back light), illumination 
(flash on, flash off), and background (natural and plain). 
Studying results for the different perspectives, we found 
that back light images consistently allowed for the highest 
classification accuracy across species and preprocessing 
strategies; followed by top side images that yield in most 
combinations higher accuracy than back side images, 
especially for the non-processed ones. Taking back sides 
images of a leaf, still attached to the stem, requires to 
bend it upwards while forcing it into an unnatural posi-
tion. This results in variation across the images with 
respect to exact position, angle, focal plane and perspec-
tive, each hardly to control under field conditions. We 
studied illumination by enforcing a specific flash setting 
on purpose and found that it did not affect classification 
results in a consistent way. Hence, we conclude that auto-
matic flash settings depending on the overall illumination 
of the scene may be used without negative impact on the 
classification result. However, in contrast to back light 
images, the different illumination conditions cause strong 
and undesired variations in the image quality. For exam-
ple, a disabled flash results in images with small dynamic 
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range while an enabled flash affects the coloring and cre-
ates specularities that mask leaf venation. We also varied 
the background by imaging leaves with plain—as well 
as natural background, of which the latter allowed for 
higher classification accuracy compared to plain back-
ground images. We found that imaging leaves in front of 
a plain background strongly affects the dynamic range of 
the leaves’ colors. Leaves in front of a plain background 
typically appear darkened and with an overall reduced 
contrast (cp. Figs. 2, 7).

We conclude from the analysis of image types that back 
light images contain the largest amount of visual infor-
mation and the least amount of clutter (cp. Fig. 7). This 
image type facilitates: (1) sharply imaged leaf bounda-
ries, especially in comparison to images with natural 
background; (2) homogeneously colored and illuminated 
leaves with high dynamic range making even slight 
details in the venation pattern and texture visible; (3) a 
lighting geometry that suppresses specularities by design; 
and (4) images that can be automatically cropped and 
segmented.

We also studied three preprocessing strategies per 
image (non-preprocessed, cropped, and segmented). We 
found that preprocessing consistently increased classifi-
cation accuracy for all species and image types compared 
to the original non-preprocessed images. For those, the 
classifier is trained on a lot of potentially misleading 
background information. Removing vast parts of this 
background, through either cropping or segmentation, 
improved classification accuracy in all cases. In general, 
classification accuracy is substantially increased upon 
cropping, since the CNN features encode more infor-
mation about the leaves, not the background. We found 
only slight increases in accuracy for images with natural 
background for segmented compared to cropped images. 
For images with plain background, the accuracy even 
decreases upon segmentation. This is induced since parts 
of compound leaves were accidentally removed dur-
ing the segmentation especially in cases of delicate leaf-
lets. This is true for species such as Sanguisorba minor, 
Hippocrepis comosa, and Pimpinella saxifraga, where 
the segmented images with plain background contained 

Teucrium chamaedrys

Stachys recta

Sanguisorba minor

Salvia pratensis

Prunella grandiflora

Pimpinella saxifraga

Origanum vulgare

Ononis repens

Knautia arvensis

Hypericum perforatum

Hippocrepis comosa

Fragaria viridis

Centaurea scabiosa

Bupleurum falcatum

Aster amellus

Anemone sylvestris

Ajuga genevensis

Ajuga genevensis

Anemone sylvestris

Aster amellus

Bupleurum falcatum

Centaurea scabiosa

Fragaria viridis

Hippocrepis comosa

Hypericum perforatum

Knautia arvensis

Ononis repens

Origanum vulgare

Pimpinella saxifraga

Prunella grandiflora

Salvia pratensis

Sanguisorba minor

Stachys recta

Teucrium chamaedrys

Ajuga genevensis

Anemone sylvestris

Aster amellus

Bupleurum falcatum

Centaurea scabiosa

Fragaria viridis

Hippocrepis comosa

Hypericum perforatum

Knautia arvensis

Ononis repens

Origanum vulgare

Pimpinella saxifraga

Prunella grandiflora

Salvia pratensis

Sanguisorba minor

Stachys recta

Teucrium chamaedrys

Ajuga genevensis

Anemone sylvestris

Aster amellus

Bupleurum falcatum

Centaurea scabiosa

Fragaria viridis

Hippocrepis comosa

Hypericum perforatum

Knautia arvensis

Ononis repens

Origanum vulgare

Pimpinella saxifraga

Prunella grandiflora

Salvia pratensis

Sanguisorba minor

Stachys recta

Teucrium chamaedrys

0

25

50

75

100

A
cc

ur
ac

y 
in

 %

Non-preprocessed Cropped Segmented

Fig. 6 Confusion matrices presenting classification accuracy per preprocessing strategy. Observed species (rows) versus predicted species (col-
umns) are averaged across the different image preprocessing steps

Fig. 7 Detailed view of the leaf margins of the top side of Aster amellus. The images are the same as in the example shown in Fig. 2
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less visual information of the leaves compared to images 
with natural background. Against our expectation, the 
segmentation of images with natural background results 
in a very minor beneficial effect on species recognition 
(Fig.  4). This conclusion, however, holds only for fea-
ture classification based on CNNs, as they are superior 
in handling background information, when compared 
to handcrafted features. The images with natural back-
ground may contain more species related information 
such as leaf attachment to the stem, and the stem itself. 
The CNN features possibly encode the relative size of 
the object by comparing it with its background. Also, the 
common perspective in which leaf images of certain spe-
cies are acquired is taken into account from the leaves’ 
natural surroundings [32].

Theoretically, it is possible to combine multiple images 
from the same observation in the recognition process, 
which could further improve the accuracy, as shown for a 
different dataset by [33]. We expect that the combination 
of different image types would also benefit the classifica-
tion accuracy within our dataset. The scope of this work, 
however, is to reveal the most effective way of dataset 
acquisition.

Our discussion so far compared image types and pre-
processing strategies solely based on classification accu-
racy. However, various combinations of methods differ 
only marginally from each other and it is reasonable to 
also consider the effort related to the acquisition process 

and the preprocessing of an image. Therefore we defined 
the accuracy-effort gain

relating obtained accuracy to the manual effort. In Eq. 1, 
ai represents the achieved classification accuracy using 
the ith combination of image type and preprocessing 
strategy and ei is the manual effort necessary to create an 
image of this combination. ab and eb correspond to accu-
racy and effort of the baseline scenario, i.e., imaging the 
leaf top sides in front of a natural background and apply-
ing no further preprocessing.

Figure 8 indicates that the solution with optimal accu-
racy-effort gain is to take a top side image of a leaf with 
natural background and to crop it with a simple bound-
ing box. Comparing the manual effort during image 
acquisition and no preprocessing, only back light images 
yield a positive effect on the accuracy-effort gain. Any 
other effort during image acquisition, e.g., by imaging the 
back side of a leaf or using a plain background, does not 
sufficiently improve the classification accuracy over the 
baseline. Comparing preprocessing strategies, the highest 
positive impact on the accuracy-effort gain is achieved by 
cropping. Realized by drawing a bounding box around 
the object of interest, cropping is a comparably sim-
ple task and required only 6.8 s per image on average in 
our experiments. It notably improved the classification 
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accuracy for all image types (cp. Fig. 4). Hence, we con-
sider cropping the most effective type of manual effort.

Conclusion
While high accuracy is clearly the foremost aim in clas-
sification approaches, acquiring sufficiently large train-
ing datasets is a substantial investment. We argue that 
researchers should consider carefully how to spend avail-
able resources. Summarizing our findings in the light of 
human effort during image acquisition and further pro-
cessing, we found that it is very useful to crop images 
but not to segment them. Image segmentation is a dif-
ficult and time-consuming task in particular for images 
with natural background. Our results show that within 
the used framework, this expensive step can be replaced 
by the much simpler but similarly effective cropping. 
Against our expectation, we also found no evidence that 
imaging leaves on plain background yields higher clas-
sification accuracy. We considered a leafs back side to 
be more discriminative than its top side. However, our 
results suggest that back side images do not yield higher 
accuracy but rather require considerably more human 
effort due to a much more challenging acquisition pro-
cess. In conclusion, the most effective, non-destructive 
way to record herbaceous leaves in the field is taking leaf 
top side images and cropping them to leaf boundaries. 
When destructive acquisition is permissible, the back 
light perspective after plucking the leaf yields the best 
overall result in terms of recognition accuracy.
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