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METHODOLOGY

Detecting spikes of wheat plants using 
neural networks with Laws texture energy
Li Qiongyan1, Jinhai Cai2*  , Bettina Berger4, Mamoru Okamoto3 and Stanley J. Miklavcic2*

Abstract 

Background:  The spike of a cereal plant is the grain-bearing organ whose physical characteristics are proxy measures 
of grain yield. The ability to detect and characterise spikes from 2D images of cereal plants, such as wheat, therefore 
provides vital information on tiller number and yield potential.

Results:  We have developed a novel spike detection method for wheat plants involving, firstly, an improved colour 
index method for plant segmentation and, secondly, a neural network-based method using Laws texture energy for 
spike detection. The spike detection step was further improved by removing noise using an area and height thresh-
old. The evaluation results showed an accuracy of over 80% in identification of spikes. In the proposed method we 
also measure the area of individual spikes as well as all spikes of individual plants under different experimental condi-
tions. The correlation between the final average grain yield and spike area is also discussed in this paper.

Conclusions:  Our highly accurate yield trait phenotyping method for spike number counting and spike area estima-
tion, is useful and reliable not only for grain yield estimation but also for detecting and quantifying subtle phenotypic 
variations arising from genetic or environmental differences.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Wheat is one of the three most important crop species 
worldwide with 700 million tonnes of grain produced 
annually [1]. However, with population growth, increas-
ing demand and climate change threatening supply, 
greater effort is needed to ensure sustainable wheat crop 
production [2]. This translates into increased pressure on 
plant breeders to rapidly and accurately identify suitable 
wheat plant varieties that could be used for commercial 
production. In this effort, crop phenotyping by quantita-
tive assessment of crop canopy features plays an impor-
tant role as a quantifier of crop performance. It thus 
represents an important tool for identifying high-yielding 
novel varieties. One of the aims of digital crop phenotyp-
ing is to predict, non-destructively, the yield of a crop and 
preferably at an early stage in plant development.

The life span of cereal plants can be divided into four 
stages [3, 4] based on the Feekes scale: tillering, stem 

elongation, heading and ripening. Of the critical fac-
tors contributing to crop yield, tiller number is estab-
lished at the early stage while spike number features in 
the mid-life of plant development. Other factors such 
as spike size, grain number per spike and grain weight 
feature at later stages. One aim of the phenotyping pro-
cess is to understand plant development over time and 
its relevance to final yield. If, however, yield can be esti-
mated at an early stage using early indicators alone, then 
the length of experiments can be reduced which would 
potentially accelerate breeding efforts; it would cer-
tainly reduce the cost per trial. However, to achieve this 
requires complex growth models that link early or middle 
plant development to final yield. Tillers are important ini-
tial components related to yield as they have the potential 
to develop grain-bearing spikes. However, the number of 
tillers a plant develops is not constant and will vary due 
to the interaction between genetic makeup, environmen-
tal conditions and agricultural practice. In this study, we 
focus on the heading growth stage and one of the yield 
measures—spike number, rather than tiller number. This 
will serve as the basis for a top-down approach to plant 
and growth modelling to be implemented later.
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To date, there have been relatively few studies con-
cerned with spike detection and specific characterisation 
[5–8]. Some spike characteristics, such as awn number, 
awn length and spike length were measured in wheat 
using morphological image processing of images taken of 
single spikes in order to classify the wheat variety in ques-
tion [5, 6]. Lv [7] developed a spike identification method 
based on a back propagation neural network using Hu 
moments that measured seven characteristic parameters 
with images of individually cut spikes. A similar destruc-
tive spike measurement method was proposed by Hongju 
and Changing [8]. However, these methods are unsuit-
able for high-throughput, non-destructive, phenotyping 
for the purpose of identifying spikes from whole living 
wheat plants.

In this paper, we propose a novel approach for detect-
ing spikes from digital images of wheat plants. We have 
observed that there is a difference in the texture features 
between spikes and leaves despite their colors being simi-
lar. This is particularly true at the early heading stage, 
where texture is defined as the spatial arrangement of 
color or intensity in a region of interest. Therefore, we 
propose to use Laws texture energies as texture features 
and use neural network for spike detection. The major 
advantage of our approach is that it is non-destructive 
and a high-throughput approach for spike detection 
which opens the door for phenotyping of spike traits in 
time sequences of plant images.

Results and discussion
Spike identification on living plants (single time point)
We have argued that spike number is one key param-
eter contributing to the determination of yield of a cereal 
plant. Thus, even the seemingly simple task of counting 
the number of spikes is a valuable exercise. To validate 
the approach we have taken, analyses were conducted 
using images of 194 (the 2013 dataset) single wheat plants 
grown per pot. The images were taken from the tillering 
stage until about 1  week after the first spike emerged. 
The 194 plants were organised into six groups based 
on the number of spikes counted manually as shown in 
Table  1. By comparing the number of spikes detected 
using our automated method with manual counts, we 
find instances of over-counting and under-counting for 
each group. In any given image, detection errors arise 
usually due either to overcounting or undercounting. 
In the more complex case involving both an undetected 
spike and a falsely detected spike, a classification of over-
counting or under-counting is appropriate depending on 
the area size of the miscounting. There are two main rea-
sons for overestimating the number of spikes: (1) a mis-
classification of a leaf as a spike when the leaf and stem 
overlap (Fig. 1a), and (2) a miscount of one spike as two 

spikes (Fig.  1b). In any practical application, it is inevi-
table that there will be some classification errors. In our 
sample evaluation, some younger spikes were misclas-
sified as two separated regions instead of a single spike 
(over-counting) as shown in Fig. 1b. In other cases, two 
overlapping spikes (red circled area of Fig. 1c) were clas-
sified as a single spike (undercounting). In some images, 
young spikes had not yet fully emerged from the sheath 
resulting in overlap with leaves, thus posing a considera-
ble challenge to classification. Consequently, these young 
spikes were not classified as individual spikes (Fig.  1d). 
Generally, very young spikes do not share the same tex-
ture features as more mature spikes which leads to a mis-
counting error. However, our algorithm appears to work 
well for the majority of cases even at the early heading 
stage (see Fig.  1d), which is fortunate since one aim of 
the method is to quantify traits that contribute to predict 
final grain yield as early as possible.

We based the evaluation of our spike detection method 
on two sets of data (Table 2). The first dataset (2013) had 
a single wheat plant grown per pot. The second data set 
(2014) had either a single plant or four plants per pot. 
The resulting spike identification accuracy was 86.6 and 
81.5%, respectively (Table 2). Not surprisingly, the more 
accurate result with the 2013 dataset, featuring only one 
plant per pot, was due to fewer instances of spike overlap 
with other spikes or with leaves appearing in images.

We remark here that the evaluation thus far was 
based on individual images of plants at a single time 
point. However, using a time-series of images as well as 
images of the same plant from different perspective could 
improve the accuracy further.

Measuring the growth of individual spikes
One other factor contributing to yield is spike size  [9]. 
Consequently, in addition to detecting and counting the 

Table 1  Results of counting the number of spikes

a  The number of spikes per plant
b  The number of images in the dataset which have the corresponding number 
of spikes based on manual counting
c  The number of plants where spike number was over-counted or under- 
counted with the automated method compared to the manual count

Number 
of spikesa

No of imagesb Over-countingc Under-countingc

0 41 5 0

1 57 5 0

2 44 2 3

3 45 4 5

4 5 0 1

5 2 0 1

Total 194 16 10
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spikes, we also measured their projected area in the 2D 
digital images. Example results of measuring areas of 
individual spikes are shown in Fig.  2. This analyses was 
carried out on the 2013 data set. Results based on daily 
measurements of two plants over a period of 8 days are 
illustrated in Fig. 2a, b. It is clear that spikes grow faster 
in the first 4 or 5 days following their emergence, before 
asymptoting to their maximum size. However, the spike 
measured in Fig.  2b was partially enveloped by the leaf 
sheath on day 1 and this can result in either an overes-
timated or underestimated spike area. In Fig.  2a, b, we 
observe that there was no significant change in terms of 
the spike size during the last 4 days, when the plants were 
at the anthesis stage. It appears that the spike is close to 
its maximum size already within 5 days following emer-
gence. This fact provides us with a means to an early esti-
mation of final yield. More examples of growth curves for 
spikes are shown in Fig. 2c, with curves starting from the 
day of spike emergence and lasts to the end of the imag-
ing period for this experiment. All plants had the same 
end date for imaging, but the date of spike emergence 
varied from plant to plant.

Measuring the growth of spike area of whole plants (Mace 
in small pot)
Next, we examined entire plants with multiple, rather 
than single, spikes using the 2014 dataset. The changes in 
spike areas of whole wheat plants over a period of about 
1  month are illustrated in Fig.  3. In Fig.  3A, the total 
spike area increase in a step-wise manner. The images 
(a–h) in Fig.  3A exemplify the spike area estimation by 
our method and explain the step-wise increase. Although 
there is actually a continual increase in projected area as 
the plants develop, so long as spikes are still enclosed in 
their respective sheaths, even if only partially, our method 
does not identify or recognize them as spikes. Conse-
quently the area of partially exposed spikes is not consid-
ered and does not contribute to the total area. However, 
once a spike is fully emerged it can be identified and 
its projected area is counted. This results in a stepwise 
increase in the total area. The addition of each new spike 
is highlighted in Fig. 3A by the jumps from “a” to “b” and 
“c” to “d”, or “a” to “b” in Fig. 3B. On the other hand, not 
all jumps are caused by the emergence of spikes from flag 
leaves. Two other complicating factors can result in step 
changes in spike area. For instance, there is the possibil-
ity of a spike changing its position from overlapping to 
non-overlapping state as illustrated by the estimates from 
“g” to “h” (Fig.  3A). On the other hand, the occasional 
step decrease in total area can be caused by one spike 
becoming occluded by another spike as seen in Fig. 3A-g 
and 3B-e. There are other complications too, such as the 
emergence of spikes and the overlapping of two spikes in 
the same image as illustrated by the estimates from “e” to 
“f” in Fig. 3B. In general, the main reasons for the signifi-
cant increases in projected spike areas are the separation 
of overlapped spikes, the overlap of previously separated 
spikes and the emergence of new spikes.

Fig. 1  Examples of over counting (a, b) and undercounting(c, d) problems: a the misclassification of a leaf as a spike; b the miscount of one spike 
as two spikes; c the miscount of two overlapping spikes as a single spike; d a young spike not classified as a spike

Table 2  Evaluation of spike detection

a  For 2013 dataset, we selected the image on the last imaging day for each 
plant; for 2014 dataset, in order to get more sample images, we took few images 
for each plant on the last few imaging days
b  Manually check whether all the spikes in the image are detected, if all the 
spikes are recognized, and no any misclassified, we defined as correct; If there is 
some spikes are not recognized, or misclassified, we defined as incorrect
c  Accuracy =

Ncorrect
Ntotal

× 100%

Experiment Total number 
of imagesa

Correctb Incorrectb Accuracyc (%)

2013 194 168 26 86.6

2014 206 168 38 81.5
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Fig. 2  Example results from measuring the growth of individual spikes: a, b daily growth curves over a period of 8 days of two individual spikes 
with images of the detected spike on each day shown on the top of the curves, where day 1 is the day when the first spike became visible in the 
plant image and it is 42nd day after planting; c other examples of growth curves showed similar trends, which can be used to predict the growth 
trend in order to estimate yield at a much earlier stage. The end point is the last imaging day, while day 1 is the day when the spike became visible, 
it corresponds to the 42nd day after planting for curve 1, 3, the 44th and 45th day after planting for curve 2 and 4, respectively
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Measuring the growth of spikes under different nitrogen 
treatments
Spike emergence, development and growth are features 
that are dependent on both genotypic makeup and envi-
ronmental (i.e., nutrient) condition. Consequently, we 
have investigated spike growth and development under a 
variety of stress conditions. In order to avoid the impact 
of spike overlap on our estimation of spike growth, this 
study focused only on the first spikes to emerge from 
individual plants. We studied plants from two wheat 
genotypes, each type subjected to five different nitrogen 
treatments (2013 dataset). Earlier tests have shown that 
spike area calculation can be inaccurate in the first few 
days after spike emergence, due to the presence of the 
envelope within the sheath as well as possible overlap 
with the flag leaf (Fig.  2). Therefore, the growth curves 

shown in Fig.  4 are referenced from the fourth day fol-
lowing initial spike detection and end on the last imaging 
day, day 49. For Gladius, the growth response corre-
sponding to different treatments appeared to be parallel, 
and initially in the order of increasing nitrogen (n1–n3). 
However, further added (excess) nitrogen resulted in a 
progressively poorer growth response (n4–n5). We have 
not investigated the reason for the slightly more rapid 
growth rate of curve n4 compared with the responses 
to the other treatments. Generally, the biggest size was 
attained under the n3 treatment, while the smallest sizes 
resulted from the n1 and n5 treatments. It is also interest-
ing to point out that the first spike came out 1 or 2 days 
earlier than under n3 treatment compared with other 
treatments. Thus, although the same reference point 
(4  days after first emergence) was used in the analysis, 

Fig. 3  Example results from measuring the growth of whole plant: the daily growth within around a month of a single plant (cultivar Mace) in a 
pot for two different plants A and B was shown in the scatter chart, the end point is the last imaging day, and day 1 is the day when the first spike 
became visible in the plant image. The images a–h above the charts are the detected spikes corresponding to the points a–h in the scatter charts, 
which showed two main reasons for the bigger data changes in the charts: overlapping and new spikes came out
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different absolute emergence days were observed. A simi-
lar qualitative response was found for the Kukri variety, 
although with some subtle differences: the spike emerged 
a few days earlier under n1, n2 (both on the 42nd day 
after planting) and n5 (41st day after planting) treat-
ments, compared to n3 and n4 treatments (both on the 
45th day after planting). It would seem from the above 
comparison that we can use the method to differentiate 

spike growth trends pertaining to different genotypes as 
well as subject to different stress treatments.

Prediction of yield based on spike size
One of the principle aims of image-based phenotyping 
is to quantify plant traits non-destructively as a function 
of plant genotype, environmental conditions and time. 
However, it is also theoretically possible for image-based 
information derived at early stages of plant development 

Fig. 4  Example results from measuring spike growth under different nitrogen treatments: the measurement was carried on the first spike of plant 
for 2 genotypes (Gladius and Kukri) under 5 nitrogen treatments (n1, n2, n3, n4, n5). The end point is the last imaging day (49th day after planting), 
while the start point is the 4th day after the spike became visible in the plant image. Logarithmic model was applied for all the data set to get the 
curves
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to be utilised for the prediction of plant traits at later 
stages. In this study, we demonstrate this possibility by 
predicting final grain yield based on the spike size data 
obtained at the early heading stage.

There is, however, one major issue that needs to first be 
resolved for the purpose of making an absolute yield pre-
diction. The issue relates to the spike number of a plant at 
the last imaging day being potentially different from the 
final number at day of harvest. To deal with this issue, we 
may focus only on predicting the average grain yield per 
spike, instead of the final total yield, using the size of the 
first spike of a plant for that analysis.

Although a better prediction of yield can be achieved 
using data from periods closer to the day of harvest, 
we shall use the information on spike growth patterns 
shown in Figs.  2 and 4 to estimate spike size well after 
the last imaging day. To this end we analysed the relation 
between the average final yield per spike and the area of 
the first spike, measured on day 12 after spike emergence 

(Fig. 5a). Using a power law function to model the data, 
we achieved a satisfactory correlation of R2  =  0.783 
between this model and our quantified spike size. It is 
worthwhile noting that the power law model improves in 
accuracy of representation (increased R2 values) as more 
data from later periods is used. However, improvement 
beyond 10  days after first spike emergence is marginal. 
Taking time of plant growth and yield prediction accu-
racy into account, we recommend estimation of spike 
yield at day 10–12 after first spike emergence to achieve 
reasonable accuracy without the need for prolonged 
plant growth and imaging.

The power law model allowed us to predict grain yield 
per spike essentially at an early stage. It is also possible 
to estimate the grain yield potential of a whole plant 
using the combination of spike numbers and spike size. 
In the cases that were studied, we were actually able to 
predict yield using data as at the 8th day after the first 
spike became visible. We also find that the accuracy 

Fig. 5  Relation between grain yield and spike area: a The horizontal axis is the area of single spike, and the vertical axis is the average harvest yield 
per spike. All the spike areas were predicted on the 12th day after spike became visible. b R2 value of prediction based on the data of different day 
after spike visible
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of the prediction can be further improved slightly if we 
measure for a longer period (i.e., up to 17 days after spike 
emergence).

Conclusions
We present an effective method for cereal spike detec-
tion from digital images. We employ the neural network 
based method with Laws texture energy for spike detec-
tion [21]. The proposed approach has been evaluated on 
plant images achieving an accuracy higher than 80% in 
the identification of wheat spikes. We also demonstrated 
that the proposed method is able to determine both the 
number of spikes and the spike growth, which we indi-
cate can be useful to quantify phenotypic traits for genetic 
variation and for treatment effects. Spike detection and 
final grain yield per spike were found to be highly corre-
lated, providing the user with a potential algorithm with 
which to estimate final grain yield at earlier developmen-
tal stages. From an application prospective, the method-
ology can conceivably be used to estimate grain yield in 
the field. Consequently, it is possible to predict final grain 
yield at least 50–60 days prior to harvesting, which could 
provide growers with early decision making opportunities 
for additional practices. For example, if predicted yield is 
higher than originally designed, later unnecessary applica-
tion of nitrogen fertilizer may be avoided (unless aimed 
to boost grain protein content). Finally, the proposed 
approach has the potential to be applied to other cereal 
crops such as barley and rice, and the concepts can also 
form the basis of a solid platform for non-cereal crops.

In future work, we shall explore the possibility of tak-
ing greater advantage of time-course image sequences of 
plants grown in individual pots to further improve the 
performance of spike detection method. A natural but 
ambitious extension we shall also consider is to adapt 
the algorithm to suit spike detection in field situations, 
which is arguably a more relevant enterprise addressing 
the need of plant breeders and cereal crop agriculture 
generally.

Methods
Plant material and growth condition
The 2013 dataset
Australian spring wheat cultivars Gladius and Kukri were 
grown in pots in glasshouse conditions between Janu-
ary and June, 2013. Preselected seeds of similar size were 
sown in pots filled with 2.5  kg of soil mix (coco-peat 
based potting media containing with different amount 
of N). Nitrogen was applied at sowing as urea at 10 mg 
(n1), 25  mg (n2), 75  mg (n3), 150  mg (n4), and 450  mg 
(n5) N/kg of soil. Four week old plants were phenotyped 
using the LemnaTec Scanalyzer 3D imaging system. RGB 
images were automatically captured daily for another 

30  days. The plants were grown to maturity and har-
vested for their biomass and grain yield.

The 2014 dataset
Two common Australian bread wheat cultivars (Mace, 
Emu Rock) were grown in a coco-peat based potting mix 
containing slow release fertiliser (Osmocote). Multiple 
seeds were planted in 2.5 and 4.5  L draining pots and 
thinned out at the two-leaf stage to a single plant or four 
plants per pot, respectively. Seeds were planted on 20-12-
2013 and grown and watered to bench capacity until 
20-1-2014. Plants were then loaded onto The Plant Accel-
erator’s LemnaTec imaging system (LemnaTec GbmH, 
Aachen, Germany) for automated imaging and watering 
until 5-3-2014. Watering was maintained at 35% (w/w) 
gravimetric water content for the duration of the experi-
ment. Average greenhouse temperatures were 25 °C dur-
ing the day and 20 °C at night.

Image capture
Visible light RGB images of wheat were taken daily 
using a LemnaTec 3D Scanalyzer (LemnaTec, GmbH, 
Aachen, Germany) at the Plant Accelerator® (TPA), the 
University of Adelaide. At each time point three images 
were taken, two side view images at 90° horizontal rota-
tion and a top view image. RGB images were taken with 
a Basler Pilot GigE Vision Camera (piA2400-12  gm/gc) 
with a 2454 × 2056 resolution and stored in PNG format. 
Since the side view images provided more information 
compared to the top view images, we only used side view 
images in this study.

Image processing pipeline for spike detection
The flow chart in Fig.  6 shows the image processing 
steps used for spike detection, with image examples 
from our experiments. We developed our spike detec-
tion algorithm within the Matlab environment. In order 
to extract visual characteristics or features of plants from 
images, plant regions needed to be separated from the 
background by a segmentation process. For this pur-
pose we used a color index-based method. A morphol-
ogy algorithm was applied to binary images which were 
segmented using color indices to remove unwanted back-
ground pixels. An example of the segmentation result is 
shown in Fig.  6b after foreground (plant) segmentation 
and spikes were detected in the segmented plant images. 
In all cases spikes emerged from the top of the plant, as 
observed from the side-view TPA images. Therefore, to 
separate spikes from leaves, we applied a neural network-
based Laws texture energy method to distinguish spikes 
from leaves (a straightforward height threshold analysis 
was not always successful as spikes could grow at differ-
ent heights). An example result of spike detection using 
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the neural network scheme is shown in Fig. 6c. The resid-
ual noise in the result was removed using a morphology 
algorithm based on height and area thresholds.

Two of the important objectives of this study were to 
detect the emergence of spikes and to count the number 
of spikes present. To avoid the problem of single spikes 
appearing as separate regions, the morphological clos-
ing (the dilation and then erosion) algorithm was used 
to integrate regions belonging to the same head into one 
region. To obtain the correct number of detected spikes 
it is necessary to resolve any issue arising from spike 
overlap (with leaves or other spikes). As individual spikes 
generally have similar size and shape, as shown in Fig. 6, 
we used the average size as a criterion to detect spike 
overlap. Two geometric parameters, the average area and 
perimeter, were used for this task. If the size of a detected 
region is deemed too large, relative to the average spike 
size, it is classified as overlapped spikes and treated as 
two spikes. In this way, we can reduce spike counting 
error from the initial counting. An example of the final 
result is shown in Fig. 6d.

Image segmentation using colour indices
Colour indices are widely used for plant segmentation 
from image backgrounds [10–14]. Five colour indices: 

r − g, g − b (g − b)/(r − g), and 2 g − r − b, derived using 
chromatic coordinates (r, g and b for red, green, and blue) 
and modified hue, were tested to distinguish living plant 
material from background [5]. By trial and error, it was 
established that the best segmentation result could be 
achieved using modified hue and the 2g – r − b (excessive 
green: ExG) contrast index. In addition, an improved col-
our index, Excess Green minus Excess Red (ExG − ExR) 
[11], where ExR = 1.4r − g, was compared to the more 
commonly used Excess Green (ExG). The excessive green 
index relies on a calculated threshold value to convert 
the index near-binary to a full-binary image, while the 
improved index (ExG − ExR) does not require a special 
threshold calculation. Plant pixel values become positive, 
while all remaining background pixels become negative. 
The index is capable of self-generating a binary image 
with a constant threshold of zero. Thus, the improved 
index (ExG − ExR) was used in this study, which is given 
by [11]:

Spike detection with neural network based Laws texture 
energy method
Texture analysis is an important specific methodology 
in computer image analysis for classification, detection 
and segmentation. Some of the most popular texture 
feature extraction methods are based on grey level co-
occurrence statistics [15, 16], wavelet packets approaches 
[17], filtering methods like morphological filters, Fourier 
filters, random field models [18], Gabor filters [19] and 
local binary patterns [20]. Each method offers certain 
advantages and some disadvantages in discriminating 
texture characteristics. The method of choice depends on 
the problem at hand.

Laws texture energy method [21] has been used for 
many applications [17, 22–24]. This method seeks to 
classify each pixel of an image by mapping each pixel 
onto a texture energy plane. The mapping process is fast, 
requiring only convolutions and simple moving window 
techniques. This method uses micro-texture and macro-
texture measures. Micro-texture measures are computed 
within very small overlapping windows. The windows are 
typically 3 × 3 or 5 × 5, small enough to make it unlikely 
that more than a single texture region exists within the 
window. Macro-texture measures are large-window sum-
maries of the micro-features. Macro-windows must be 
large enough to include a representative sample of the 
image texture. A micro-window is used to measure the 
gray irregularities within a small region to form proper-
ties, while the macro window is used to find the statis-
tics of properties in a larger window (normally mean or 
standard deviation). Laws method is simple but effec-
tive and can handle changes in luminance, contrast, and 

(1)ExG − ExR = 3g − 2.4r − b.

Fig. 6  Image processing pipeline for spike detection. a orignial 
image; b the segmented plant image; c the initial detected spikes; 
and d the final detected spikes labelled in the original image
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rotation without histogram equalization or other pre-
processing operations. In this study, we used Laws local 
texture energy measures as features for the spike detec-
tion, typical 5  ×  5 was chosen as micro-window size, 
and 25 ×  25 as macro-window size. Laws developed a 
set of two-dimensional convolution masks typically used 
for texture discrimination that are derived from simple 
one-dimensional convolution masks. Equation (2) shows 
the set of one-dimensional convolution masks of length 
three. Each of these one-dimensional masks is associ-
ated with an underlying microstructure which is the level 
detection, edge detection and spot detection.

From these one-dimensional convolution masks, 9 dif-
ferent two-dimensional convolution masks can be gener-
ated by convolving a vertical one-dimensional mask with 
a horizontal one-dimensional mask. As an example, the 
L3E3 mask is found by convolving a vertical L3 mask 
with a horizontal E3 mask. 8 of the 9 two-dimensional 
convolution masks are zero-sum except the L3L3 mask. 
A listing of all 3 × 3 mask names with zero-sum is given 
below:

To build up a set of texture energy measures for each 
pixel in a digital image, two steps were performed [17]. 
The first step involves convolving the whole image by 

(2)

L3 =
[

1 2 1
]

− Level Detection

E3 =
[

−1 0 1
]

− EdgeDetection

S3 =
[

−1 2 −1
]

− SpotDetection

(3)

L3E3 = L3′ ∗ E3; E3S3 = E3′ ∗ E3;

L3S3 = L3′ ∗ S3; S3L3 = S3′ ∗ L3;

E3L3 = E3′ ∗ L3; S3E3 = S3′ ∗ E3;

E3E3 = E3′ ∗ E3; S3S3 = S3′ ∗ S3;

zero-sum masks. The 2D convolution of the image I and 
mask A of size (2a +1) by (2a + 1) is given by the relation:

where (2a +  1) is the micro-window size * denotes 2D 
convolution and the mask A can be one of masks in (3).

The second step consists of a windowing operation, 
which is done by looking in a local neighborhood (macro-
window of size (2n + 1) × (2n + 1)) and calculating the 
mean deviation around each pixel according to:

where E(i,j) is the so called texture energy measure 
(Laws), which is used in this study for the classification 
process.

A neural network was used to perform the classifica-
tion task in this study, which has one hidden layer, and 
10 neurons in the layer. 21 image patches from Dataset 
2013 and 2014 were manually selected to obtain the sam-
ple of spikes, while 14 image patches for the sample of 
leaves, considering the variation of the growth stages and 
the positions (as shown in Fig.  7). The total number of 
samples (pixels) of spike and leaf are 19,041 and 76,154, 
respectively, where around 15% of total samples are taken 
for both validation and testing (as shown in Table 3) and 
remainder are used for training. Note, images used for 
this experiment were excluded from the spike count-
ing experiment. For each pixel, the inputs are the eight 
texture features mentioned above, and the output is 
two classes: leaf or spike. The accuracy of the classifier 

(4)

F(i, j) = (A ∗ I)(i, j)

=

a
∑

p=−a

a
∑

l=−a

A(p, l)I(i + p, j + l)

(5)E(i, j) =
1

(2n+ 1)2

i+n
∑

p=i−n

j+n
∑

l=j−n

∣

∣F(p, l)
∣

∣

Fig. 7  Sample for neural network trainings: spike samples (left) and leaf samples (right)
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calculated from the confusion matrix is 92.3%. Fig-
ure 8c, d shows two examples of the initial pixels based 
classification.

Spike detection result refinement
Noise removing
As shown in Fig.  8, for dataset 2013, as spikes grow 
above the frame in the image, we simply extracted the 
region above the blue frame in order to remove the noise 
(Fig. 8e). But for dataset 2014, blue frames were not used 
in the experiment. In order to remove most noise on the 
bottom, we defined a circle centred at the centre of the 
top line of the pot, and the radius was calculated as 60% 
of the total height of the plant (Fig. 8f ). Pixels within the 
circle will be classified as non-spike pixels.

 As not all the pixels of a spike can be detected by our 
proposed method (as shown in Fig.  8c, d. If we use the 
detected area of a spike to estimate the spike size, we 
would underestimate the real size of the spike due to the 
edge effects of texture features. So it’s necessary to fur-
ther refine the spike detection. In order to accurately 

Table 3  Accuracy of the classification

a  Accuracy, TP rate and TN rate were defined as follows:

Accuracy =
TP+TN

TP+FP+TN+FN
; Tprate = TP

TP+FN
; TNrate = TN

FP+TN

where TP, TN, FP, and FN represent the numbers of true positives, true negatives, 
false positives, and false negatives, respectively

Training Testing Validation Total

Spike samples (pixels) 13,372 2890 2779 19,041

Leaf samples (pixels) 53,265 11,389 11,500 76,154

TP ratea (%) 80.2 79 78.8 79.9

TN ratea (%) 95.7 95.6 95.9 95.7

Accuracya(%) 92.5 92.3 92.4 92.4

Fig. 8  Initial pixels based classification and noise removing: a, b original image; c, d the initial pixels based spike identification of a, b respectively; 
noise removed by taking all the pixels above the blue frame for 2013 dataset (e), and noise removed by taking all the pixels outside the blue circle 
for 2014 dataset (f)
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estimate the sizes of all the spikes, we used the spike area 
in segmentation image in our research. The method is to 
find the spike area in segmentation image correspond-
ing to the detected spike region by first doing a logical 
‘and’ operation for each detected spike region and all 
the regions in segmentation image, then the region in 
segmentation image was extracted if the ‘and’ opera-
tion result is true. Figure 9a shows an example of a spike 
detected by our proposed method, the correspond-
ing area in segmentation image is shown in Fig. 9b, and 
Fig.  9c is the final result of the spike area used in our 
research.
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