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Kinetic modelling: an integrated 
approach to analyze enzyme activity assays
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Abstract 

Background:  In general, enzyme activity is estimated from spectrophotometric data, by taking the slope of the 
linear part of the progress curve describing the rate of change in the substrate or product monitored. As long as the 
substrate concentrations are sufficiently high to saturate the enzyme and, the velocity of the catalyzed reaction is 
directly proportional to the enzyme concentration. Under these premises, this velocity can be taken as a measure of 
the amount of active enzyme present. Estimation of the enzyme activity through linear regression of the data should 
only be applied when linearity is true, which is often not the case or has not been checked.

Results:  In this paper, we propose a more elaborate method, based on a kinetic modelling approach, to estimate the 
in vitro specific enzyme activity from spectrophotometric assay data. As a case study, kinetic models were developed 
to estimate the activity of the enzymes pyruvate decarboxylase and alcohol dehydrogenase extracted from ‘Jonagold’ 
apple (Malus x domestica Borkh. cv. ‘Jonagold’). The models are based on Michaelis–Menten and first order kinetics, 
which describe the reaction mechanism catalyzed by the enzymes.

Conclusions:  In contrast to the linear regression approach, the models can be used to estimate the enzyme activity 
regardless of whether linearity is achieved since they integrally take into account the complete progress curve. The 
use of kinetic models to estimate the enzyme activity can be applied to all other enzymes as long as the underly‑
ing reaction mechanism is known. The kinetic models can also be used as a tool to optimize the enzyme assays by 
systematically studying the effect of the various design parameters.

Keywords:  Kinetic model, Enzyme activity, Alcohol dehydrogenase, Pyruvate decarboxylase, Spectrophotometric 
enzyme assay
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Background
The most diverse and largest group of proteins are 
enzymes, biological catalysts enhancing the rates of met-
abolic reactions and thereby play an important role in the 
regulation of metabolic steps within a cell [1]. Michaelis 
and Menten discovered that the activity of an enzyme is 
highly dependent on conditions such as temperature, pH 
and the availability of substrate and cofactors inside the 
cell [2].

Many assays are described to measure enzyme activ-
ity in vitro [3, 4]. Generally, data obtained with enzyme 
assays can only be reliably compared between different 

experiments and between different labs and publica-
tions if each time conditions that guarantee the high-
est possible enzyme activity have been used. Therefore, 
temperature, pH, nature and strength of ions, and the 
proper concentration of all assay components have to be 
strictly controlled [5, 6]. Most enzymatic assays are based 
on measuring the rate of the reaction catalyzed by the 
enzyme. To this end, the consumption of the substrate 
or the generation of a product has to be monitored over 
a given time. The progress of the reaction can be moni-
tored continuously (continuous assay) using spectro-
scopic [7–9] or electrochemical techniques revealing the 
full progress curve. The advantage of a continuous assay 
is that the result is immediately available, and any errone-
ous influences and artefacts can be detected. However, if 
continuous monitoring is not feasible one has to obtain 
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data at limited discrete time points using the same tech-
niques or stop the reaction and measure the total amount 
of product formed or substrate consumed within the 
given reaction time by a subsequent chemical indicator 
reaction or a separation method (stopped assay) [4–6].

As long as the substrate concentrations are sufficiently 
high to saturate the enzyme and, thus ensure operation at 
its maximum rate, the velocity of the catalyzed reaction is 
directly proportional to the enzyme concentration. Under 
these premises, this velocity can be taken as a measure of 
the amount of active enzyme present. However, to exper-
imentally realize substrate saturation and engage 99% 
of the enzymes binding sites, the substrate is required 
to be present in a 100-fold surplus of the Km value [5]. 
The enzyme database BRENDA contains a wide range 
of Km values for many enzymes and their substrates. As 
these Km values differ widely not only between species 
but also within one species, it becomes difficult to know 
when substrate saturation is achieved. Moreover, enzyme 
saturation cannot always be maintained throughout the 
course of the reaction due to substrate conversion; as the 
reaction progresses and substrate gets depleted, the reac-
tion slows down and the progress curve becomes non-
linear. While this final non-linear phase provides valuable 
information on the kinetics of the underlying reaction, 
it is the initial linear part of the progress curve that pro-
vides a proper measure of the maximum enzyme activity 
realized under the imposed assay conditions. Assuming 
linearity, linear regression can be applied to this initial 
part of the progress curve to calculate the rate of change 
as a measure of the enzyme activity and, therefore, of the 
amount of active enzyme present. However, the assump-
tion of linearity is, too often, not explicitly checked in 
a stopped assay. Only when the reaction time of the 
stopped assay is restricted to the linear part of the pro-
gress curve, proper results will be obtained [4–6].

This paper aims to promote an alternative, more elabo-
rate procedure to estimate the in  vitro specific enzyme 
activity from the progress curve based on a kinetic 
modeling approach taking into account the complete 
progress curve, including the non-linear range. The 
kinetic models are to be dedicated to the enzyme activ-
ity studied. In contrast to the linear regression approach, 
the kinetic modelling approach is also valid when the 
assumption of linearity is not fulfilled. Furthermore, 
the kinetic models are able to estimate the maximum 
enzyme activity, whether or not optimal assay conditions 
were achieved.

The proposed approach is demonstrated on the deter-
mination of the in  vitro specific enzyme activity of two 
fermentation enzymes, pyruvate decarboxylase (PDC) 
and alcohol dehydrogenase (ADH), extracted from 

Jonagold apple (Malus x domestica Borkh., cv. ‘Jonagold’). 
To prolong their storage life and maintain the quality of 
the fruit, Pome fruit are commonly stored at low temper-
ature in combination with low O2 and/or high CO2 par-
tial pressure [10]. However, the optimal gas composition 
is critical as the respiratory metabolism at low oxygen 
conditions can shift to a fermentative metabolism. This 
shift is expected to be regulated by changes in the level 
of involved enzyme, which affect their overall activity [11, 
12]. Kinetic models for pyruvate decarboxylase and alco-
hol dehydrogenase were developed based on Michaelis–
Menten and first order kinetics.

Methods
Plant material
‘Jonagold’ apples (Malus x domestica Borkh., cv. ‘Jona-
gold’) were harvested from an orchard in Rotselaar, 
Belgium on September 24 2015, during the commer-
cial harvest window for long term storage of ‘Jonagold’ 
apples.

Chemicals
MES hydrate, triton X-100 (laboratory grade), acetalde-
hyde (ACS reagent, ≥99.5%), β-nicotinamide adenine 
dinucleotide [reduced disodium salt hydrate ≥97% 
(HPLC)], thiamine pyrophosphate, alcohol dehydroge-
nase (Deinococcus radiodurans recombinant from E. coli 
≥10,000 units mL−1), sodium pyruvate and polyvinylpyr-
rolidone were purchased from Sigma-Aldrich (Overijse, 
Belgium). Dithiothreitol was obtained from VWR Inter-
national (Leuven, Belgium) and magnesium chloride 
from Chem-Lab Analytical (Zedelgem, Belgium).

Enzyme extraction
Enzymes were extracted according to Saquet and Streif 
[13], with the following modifications. For each repli-
cate, 0.5  g frozen apple tissue was homogenized with 
1  mL ice-cold extraction buffer. The extraction buffer 
contained 100  mM 2-(N-morpholino) ethane sulfonic 
acid (MES) buffer (pH 7.5), 5  mM dithiothreitol and 
2.5% (w/v) polyvinylpyrrolidone and 0.02% (w/v) triton 
X-100. The homogenate was kept below 4 °C for 20 min 
and stirred continuously. The homogenate was centri-
fuged at 14,000g for 20 min at 4  °C. In order to achieve 
80% efficiency for the extraction, the pellet was extracted 
once more using the same protocol. The supernatants of 
both extractions were well mixed and retained as enzyme 
extract for measuring PDC and ADH activities. The pro-
tein concentration of the crude extracts was determined 
using the Bradford assay [14]. The measured enzyme 
activity in this study was expressed relative to the total 
protein content of the sample.
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Enzyme activity measurement
The enzyme activity of pyruvate decarboxylase (PDC) 
and alcohol dehydrogenase (ADH) was assayed as 
described by Ke et  al. [10], Imahori et  al. [15] and 
Saquet and Streif [13], with the following modifica-
tions. In order to study the in  vitro enzyme activity of 
PDC and ADH, the oxidation of NADH by the extracts 
was monitored spectrophotometrically. ADH activity 
was measured by mixing 100  µL of crude extract with 
115 µL 1 M MES buffer (pH 6.5), 25 µL of 800 mM acet-
aldehyde and 10  µL of 10  mM NADH. PDC activity 
was assayed through coupling with the ADH catalyzed 
reaction. To this end, 100  µL crude extract was mixed 
with 90 µL of 1 M MES buffer (pH 6.5), 10 µL of 5 mM 
thiamine pyrophosphate, 10  µL of magnesium chlo-
ride, 5 µL of commercial ADH solution (containing 50 
enzyme units), 25 µL of 500 mM sodium pyruvate and 
10 µL of 10 mM NADH. In this PDC assay, a surplus of 
commercial ADH was added to make sure that acetal-
dehyde formed through the PDC reaction was directly 
converted to ethanol, meanwhile oxidizing NADH. For 
both assays the reactions were initiated by addition of 
the reaction buffer, which contained both substrates 
(NADH and pyruvate/acetaldehyde) and cofactors. The 
oxidation of NADH was measured by continuously 
recording the decrease in absorbance at 360  nm using 
a spectrophotometer (Multiskan spectrum microplate 
spectrum, ThermoLabsystems, Finland) until a steady 
base level was reached. To ensure the noise in the reac-
tion was limited to a minimum, the absorbance spec-
tra of all compounds involved in the reaction mixture 
were measured between 200 and 400  nm. The signal 
to noise ratio was determined by dividing the spectra 
of NADH by the sum of the spectra of the other com-
pounds involved in the reaction. In order to check the 
technical and biological variation between the different 
extracts, absorbance of different extracts was measured 
at 360 nm in duplicate. All assays and additional spec-
trophotometric measurements were executed in flat 
bottom 96 well microtiter plates (Thermo Fisher Sci-
entific) with a final reaction volume of 250 µL per well. 
The pH and salt concentration used in this paper was 
based on the existing protocols as described by Ke et al. 
[10], Imahori et al. [15] and Saquet and Streif [13] and 
not subject to further optimization.

Determination of the absorption coefficient of NADH
The absorbance coefficient of NADH was determined 
by making a calibration curve with varying amounts of 
NADH (0–0.2–0.4–0.6–0.8–1 mM) prepared under assay 
conditions. Based on this calibration curve, linearity of 
the absorbance data measured with the spectrophotom-
eter was confirmed up to a value of 1.887.

Data analysis
The differential equations of the developed model (as will 
be described below) were implemented and parameters 
were estimated in OptiPa [16], a dedicated optimization 
tool which was developed using Matlab (The MathWorks, 
Inc., Natick, MA, USA). The differential equations 
were solved using the MATLAB solver ode45 and the 
model parameters were estimated using non-linear least 
squares optimization applying the Levenberg–Marquardt 
method.

Results and discussion
Optimization of the enzymatic assays
In most enzymatic assays, enzyme activity is calculated 
by measuring the rate of consumption of a substrate or 
the production of a product over a given time period. 
In the case of PDC and ADH, the rate of oxidation of 
NADH is monitored. Given NADH has a known maxi-
mum light absorbance at 340 nm, most enzymatic assays, 
which depend on the conversion of NADH to NAD+, 
base themselves on the absorbance values measured at 
this wavelength. However, the spectrophotometric data 
obtained in the enzymatic assays of both PDC and ADH 
were not reaching zero (Fig. 1) indicating NADH may not 
be the only compound in the reaction mixture absorbing 
UV light at 340 nm, introducing unwanted noise.

In general, the intensity of the signal produced by the 
reaction must exceed the noise produced by the other 
compounds by at least a factor two [5]. To understand 
which other compounds were absorbing UV light at 
340 nm and if the noise could be limited to a minimum, 
the absorbance spectra of all compounds involved in 
the reaction mixture were measured between 200 and 
400 nm (Fig. 2).

Acetaldehyde showed no absorbance in the range of 
320–400  nm, making NADH the only substrate of the 
ADH assay absorbing light in this wavelength range. 
However, of the substrates involved in the PDC assay, 
pyruvate showed a clear absorbance in the UV range. 
Since pyruvate is present in excess, its concentration dur-
ing the enzymatic assay will stay nearly constant, causing 
a nearly constant absorbance signal throughout the assay, 
explaining the much higher base level in the PDC assay 
(Fig. 1b). Consequently, the decrease in absorbance in the 
PDC assay can still be assigned to the change in NADH. 
Interesting to notice is that in both example spectra 
the order of magnitude of the difference in absorbance 
between the enzymatic extracts was quite large (Fig. 2). 
By comparing technical and biological replicates (Fig. 3), 
it became clear that the variance in signal was not due to 
pipetting errors possibly induced by the foamy properties 
of the extract but rather came from compositional varia-
tion between the extracts.
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In order to increase the signal to noise ratio as much as 
possible, the measurement wavelength for the enzymatic 
assays was switched from 340 to 360 nm (Fig. 2). In gen-
eral, enzyme activity can be estimated from the spectro-
photometric data, by taking the slope of the linear part of 
the progress curve resembling the rate of change in the 
substrate or product monitored. The concentration of 
the substrate, in this case NADH, can be calculated from 
the signal intensity applying an absorption coefficient [5]. 
The absorption coefficient of NADH (2.519  mM−1) was 

determined by making a calibration curve with varying 
amounts of NADH prepared under assay conditions, at 
the same time confirming the linearity of the absorbance 
reading up to a value of 1.887.

The overall change in absorbance during the enzyme 
assay, is due to the conversion of NADH to NAD+. 
Assuming a complete conversion of NADH, this change 
in absorbance is directly related to the initial amount of 
NADH through its absorption coefficient. Interesting to 
notice is that the experimentally determined absorption 
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Fig. 1  Representative example of spectrophotometric data obtained in the enzymatic assays. Spectrophotometric data obtained in the enzymatic 
assay to measure the activity of alcohol dehydrogenase (a) and pyruvate decarboxylase (b). Measured values (dots) are shown

a b

200 250 300 350 400
0

1

2

3

4

200 250 300 350 400
0

1

2

3

4

A
bs

or
ba

nc
e

Wavelength (nm)

NADH
Extract
ACA
MES buffer

S
ignal/noise ratio

signal/noise

200 250 300 350 400
0

1

2

3

4

200 250 300 350 400
0

1

2

3

4

A
bs

or
ba

nc
e

Wavelenght (nm)

Tpp
MgCl2
Pyruvate
NADH
Extract
ADH
MES buffer

S
ignal/noise ratio

signal/noise

Fig. 2  Spectra of all the compounds in the reaction mixture involved in the enzymatic assay. Spectra of all the compounds in the reaction mixture 
involved in the enzymatic assay to measure the activity of alcohol dehydrogenase (a) and pyruvate decarboxylase (b). Tpp thiamine pyrophosphate, 
MgCl2 magnesium chloride, ADH alcohol dehydrogenase, ACA acetaldehyde. Bars on top indicate standard error (n = 3)
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coefficient of NADH (2.519  mM−1) differed from the 
absorption coefficient calculated from the average dif-
ference in absorbance between the start and the end of 
the enzyme assay. Additionally, this also differed between 
the two assays (2.410  mM−1 for the ADH assay and 
2.149 mM−1 for the PDC assay, Fig. 4). This discrepancy 
was more pronounced for the PDC assay, as compared to 
the ADH assay, suggesting some matrix effects occurred 

in this assay. Given the enzyme extracts used between 
the two assays were identical, this effect was not related 
to the sample matrix as such but to the other assay 
conditions.

Estimation of the enzyme activity through linear 
regression of the data should only be applied when lin-
earity is true, which is often not the case or has not been 
checked. For example, the spectrophotometric data of 
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coupled reactions like the PDC assay initially showed a 
lag phase before reaching a linear phase (Fig. 1b). Since 
the enzyme activity of PDC can only be correctly esti-
mated by taking the slope of the linear part of the pro-
gress curve, a large part of the progress curve cannot be 
taken into account. These data emphasize the impor-
tance of a continuous assay, as it is impossible to notice 
the initial non-linear part of the curve in a stopped assay. 
Furthermore, data like shown in Fig. 1b are pointing out 
the need for a more elaborate model based approach to 
determine the in vitro specific enzyme activity, which is 
also valid when the assumption of linearity is not fulfilled. 
To this end, dedicated kinetic models were developed.

Kinetic model development
Kinetic models were developed to estimate the in  vitro 
specific enzyme activity of PDC and ADH from the spec-
trophotometric data. The kinetic models were based on 
the underlying reaction mechanism of the fermentative 
metabolism, summarized by Eqs. 1 and 2.

where AC1 and AC2 are the intermediate enzyme–sub-
strate complexes formed in the reaction.

During fermentation acetaldehyde is produced through 
pyruvate decarboxylation by PDC (Eq.  1). In the next 
step acetaldehyde is converted to ethanol by ADH using 
NADH (Eq. 2).

Kinetic model for alcohol dehydrogenase
The kinetic model to estimate the activity of ADH is 
based on Michaelis–Menten kinetics describing Eq. 2 of 
the fermentative metabolism. Michaelis–Menten kinetics 
was used with regard to NADH only as the acetaldehyde 
concentration in this reaction was kept at high levels 
assuming saturation. The Michaelis–Menten equation 
to describe the conversion of NADH to NAD+ over time 
was defined as:

where Km,ADH is the Michaelis–Menten constant and 
Vm,ADH is the maximum reaction rate which, on its turn, 
was defined as:

(1)

Pyruvate+ PDC
k1

←→
k−1

AC1
kPDC
−→ acetaldehyde+ PDC

(2)
Acetaldehyde+NADH+ ADH

k2
←→
k−2

AC2
kADH
−−−→ ethanol+NAD+

+ ADH

(3)
d[NADH]

dt
=

−Vm,ADH · [NADH]

Km,ADH + [NADH]

(4)Vm,ADH = kADH · [ADH]0

where kADH is the maximum number of substrate mol-
ecules converted to product per enzyme molecule per 
second and [ADH]0 is the initial concentration of ADH 
present in the reaction mixture. The concentration 
of enzyme present in the reaction mixture is related 
to the concentration of enzyme present in the extract 
([ADHextr]), the volume of extract taken (Vextr) and the 
total volume of the reaction mixture (V) leading to:

Given the theoretical rate constant kADH and the extract 
depending enzyme concentration [ADHextr] are two 
unknowns appearing as a single product term, together 
being responsible for the overall perceived enzyme activ-
ity, a single composite replacement term, k ′ADH, was 
defined representing the ADH activity extracted from the 
sample. The Michaelis–Menten equation to describe the 
conversion of NADH to NAD+ (Eq. 3) was thus redefined 
as:

The numerical solution of this differential equation 
describes the concentration of NADH for every point in 
time ([NADH](t)), with [NADH]0 as the initial condition. 
As the absorbance measured in the enzymatic assay is the 
sum of the absorbance by the changing levels of NADH 
and the constant, but sample specific, absorbance by the 
extract (Aextr), the modelled absorbance Amod is given by:

with αNADH being the specific absorbance of NADH. To 
take into account the sample specific matrix effect (see 
Fig. 4), the specific absorbance of NADH was determined 
for every sample following:

with A0 the absorption measured at the start of the assay, 
Afinal the absorption measured at the end of the assay and 
[NADH]0 the starting concentration of NADH.

The final model of the ADH assay as defined by 
Eqs. 6–8 was implemented in OptiPa [16] which was also 
used to estimate for every sample the unknown model 
parameters k ′ADH and Km,ADH by fitting the model to the 
measured spectrophotometric data. The kinetic model 
to estimate the enzyme activity of ADH thus takes into 
account the entire progress curve, as shown in Fig. 5.

Kinetic model for pyruvate decarboxylase
Since the PDC assay is a coupled assay combining the 
decarboxylation reaction catalyzed by PDC (Eq.  1) with 

(5)Vm,ADH = kADH ·

(

[ADHextr] · Vextr

V

)

(6)
d[NADH]

dt
=

−k
′

ADH
· (Vextr/V ) · [NADH]

Km,ADH + [NADH]

(7)A mod = [NADH](t) · αNADH + Aextr

(8)αNADH =
(

A0 − Afinal

)

/[NADH]0
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the indicator reaction catalyzed by ADH (Eq.  2), the 
kinetic model for the PDC assay has to cover both reac-
tions. The indicator reaction is responsible for generating 
a measurable spectrophotometric response thanks to the 
conversion of NADH to NAD+. To be able to unequivo-
cally quantify the PDC reaction, the indicator reaction 
catalyzed by ADH should not become rate limiting. For 
this reason, commercial ADH was added to the reac-
tion mixture to make sure that acetaldehyde formed in 
the PDC reaction was swiftly converted into ethanol. 
As acetaldehyde, as an intermediate substrate, was not 
assumed to reach saturating levels, first order kinetics 
was applied to describe the ADH reaction, at least with 
regard to acetaldehyde. As NADH can be expected to 
pass through the full concentration range from initial 
saturating levels to depletion, Michaelis–Menten kinet-
ics was assumed for NADH. Pyruvate levels in the assay 
were several magnitudes higher than the levels of NADH. 
As a consequence, the ADH reaction lasts not long 
enough to act as an indicator for the complete depletion 
of pyruvate. The part monitored by the assay is therefore 
only mirroring the initial phase where the PDC reaction 
operates at its maximum velocity, which can therefore be 
described using zero order kinetics. The process can thus 
be defined by the following two equations:

(9)

d[ACA]

dt
= kPDC · [PDC]0 −

kADH · UADH · [ACA] · [NADH]

Km,NADH + [NADH]

where kPDC is the rate constant of PDC at saturating 
pyruvate levels, [PDC] is the concentration of PDC in 
the reaction mixture, kADH is the rate constant of ADH, 
Km,NADH the Michaelis–Menten constant with regard to 
NADH, UADH the amount of commercial ADH added to 
the reaction mixture and [ACA], [NADH] are the con-
centrations of acetaldehyde and NADH in the reaction 
mixture, respectively.

Like before, the amount of PDC present in the reaction 
mixture is related to the concentration of enzyme pre-
sent in the extract ([PDCextr]), the volume of the extract 
(Vextr), and the total volume of the reaction mixture (V). 
Hence, Eq. 9 can be written as:

Similar as for the kinetic model of ADH, a composite 
term k ′PDC was introduced which combines the rate con-
stant kPDC and the concentration of PDC in the extract 
[PDCextr] into a single measure of the enzyme activity of 
PDC as extracted from the sample. Therefore, Eq. 11 was 
rewritten as follows:

The concentration of NADH at every point in time 
([NADH](t)) can be calculated by solving the two coupled 
differential equations, Eqs.  10 and 12, using [NADH]0 
and [ACA]0 as initial conditions.

According to Fig.  2, not only NADH and the extract, 
but also pyruvate absorbed UV light at 360 nm. Because 
the absorbance measured in the enzymatic assay was 
thus a combination of the absorbance by the changing 
NADH levels and a constant absorbance (Afinal) being, on 
its turn, a combination of a sample specific absorbance of 
the extract and the constant absorbance by pyruvate, the 
modelled absorbance Amod is given by:

with αNADH being the specific absorbance of NADH as 
determined by Eq.  8, and [NADH](t) being the concen-
tration of NADH estimated by the model for every time 
point.

(10)
d[NADH]

dt
= −

kADH · UADH · [ACA] · [NADH]

Km,NADH + [NADH]

(11)

d[ACA]

dt
= kPDC

(

[PDCextr] · Vextr

V

)

−
kADH · UADH · [ACA] · [NADH]

Km,NADH + [NADH]

(12)

d[ACA]

dt
= k

′

PDC ·

(

Vextr

V

)

−
kADH · UADH · [ACA] · [NADH]

Km,NADH + [NADH]

(13)A mod = [NADH](t) · αNADH + Afinal
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Fig. 5  Results of the kinetic model describing the spectro‑
photometric data of the enzymatic assay to measure alcohol 
dehydrogenase activity. Results are shown for 3 representative 
biological apple fruit extracts. Fitted (line) and measured (dots) 
values are shown. The estimated k′ADH values were respectively 
419 ± 56.5 mol L−1 s−1 kg−1 (triangle), 650 ± 2.2 mol L−1 s−1 kg−1 
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The final model for the PDC assay as defined by Eqs. 8, 
10, 12 and 13 was again implemented in OptiPa and used 
for estimating the unknown parameter values by fitting 
the model to the measured spectrophotometric data. 
The model parameters k ′PDC and Km,ADH were estimated 
per sample, but the model parameter kADH was estimated 
in common over all samples, as the concentration of the 
enzyme ADH added to the reaction mixture was the 
same for all of them.

The kinetic model to estimate the enzyme activity 
of PDC takes into account the entire progress curve, as 
shown in Fig. 6.

Comparison between linear regression and kinetic 
modelling approach to estimate enzyme activity
The linear regression approach is generally used to esti-
mate enzyme activity. In the next paragraph a com-
parison is made between the generally accepted linear 
regression approach and the kinetic modelling approach 
to estimate enzyme activity. Advantages of the latter 
method over the classic method are stressed in the text.

When optimum conditions are applied in the enzyme 
assay, i.e., substrate and cofactor saturation, standard 
pH, temperature and ionic strength, the slope of the lin-
ear part of the progress curve can be taken as a measure 
of the maximum enzyme activity. To correctly com-
pare the activity of different enzymes, it is important to 
always quantify their activity under the optimum work-
ing conditions. Like mentioned in the introduction, to 

experimentally realize substrate saturation, the substrate 
is required to be present in a 100-fold surplus of the Km 
value. However, in the case of NADH, to stay within the 
detection range, the NADH concentration should not 
exceed 0.2 mM [5]. As a result, it is practically impossible 
to estimate the theoretical maximum enzyme activity of 
PDC and ADH using a linear regression approach. Using 
the kinetic modelling approach the maximum activity of 
the enzyme can be estimated through extrapolation even 
if the saturating substrate conditions were not fully real-
ized. The onset of the progress curve of single step reac-
tions, like ADH, approximates linearity (Fig.  1a). With 
the linear regression approach it is advisable to take a 
linear part long enough to get reliable results, especially 
in the presence of remarkable scattering of the data, 
without extending into the nonlinear part of the pro-
gress curve. Using the kinetic modelling approach the 
whole progress curve is taken into account making this 
method more robust to measurement noise. It becomes 
more complex in the case of a coupled reaction, like for 
PDC, where the progress curve often does not show an 
initial linear response as a function of time (Fig.  1b). 
Depending on the size of the lag phase relative to the 
linear phase, and depending on whether both phases or 
only the linear part is considered, the final quantification 
of the slope will change (Fig.  7). As an example, linear 
approximations were done for two extracts, one with a 
high (Fig. 7a) and one with a low PDC activity (Fig. 7b). 
Depending on the sample and the time interval used 
for the linear approach the obtained values are differ-
ent. As more time points are used for the linear regres-
sion approach, the enzyme activity becomes higher and 
the 95% confidence interval becomes smaller. If only 
the linear part of the curve is considered, the enzyme 
activity calculated is the most reliable. Furthermore, 
it is important to mention that, in case of the coupled 
PDC reaction, the enzyme activity estimated by the lin-
ear regression approach is a lumped value, encompass-
ing the activity of both PDC and ADH. In contrast, when 
using the kinetic model the activity of PDC and ADH are 
estimated separately. This accounts for the completely 
different values obtained by the model (Fig.  7). The 
accuracy of the enzyme activity estimated by the model 
comes from an estimation error and is typically 1.77% 
but is not affected by the user’s choice of time interval 
and the fitness of the assumption of linearity.

Insights given by the model
Figure 8a shows the data simulated by the model for the 
ADH assay. Once NADH is depleted, the reaction stops 
and ethanol is no longer produced. In the case of the 
coupled PDC reaction, the reaction mechanism is more 
complex.
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Fig. 6  Results of the kinetic model describing the spectro‑
photometric data of the enzymatic assay to measure pyruvate 
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Since two reactions are involved in the PDC assay, 
it takes a while before the formation and conversion of 
the intermediate becomes constant, causing an initial lag 
phase before reaching the linear phase. As can be seen 
from the simulated model data (Fig. 8b), only once an ini-
tial amount of acetaldehyde is formed the conversion to 
ethanol by ADH becomes more or less constant, causing 

the initial lag phase of 5–10  min. While the progress 
curve seems to be quite linear from 10  min onwards, 
the slowly increasing level of acetaldehyde is indicating 
the contrary. With depleting levels of NADH the indica-
tor reaction slows down further, resulting in an ongoing 
faster accumulation of the intermediate acetaldehyde. 
The moment NADH is completely finished, the indicator 
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reaction stops and acetaldehyde is no longer converted 
to ethanol, causing an increase in the concentration of 
acetaldehyde as the PDC reaction will continue regard-
less (Fig. 8b).

Of course, one should be aware of the limitations of the 
kinetic model related to the assumptions applied. As the 
model was focused towards the reaction period where 
NADH would still be present, the eventual depletion of 
pyruvate was not incorporated resulting in an everlast-
ing increase of acetaldehyde. In reality, if the reaction 
would be allowed to continue, pyruvate would effectively 
be depleted after 100 h or more. From this it can be con-
cluded that the assumption made was acceptable for the 
current application.

Furthermore, the models can help to optimize the 
assays by systematically studying the effect of the vari-
ous design parameters like extract volume, substrate con-
centration and indicator enzyme amount. For instance, 

it was hypothesized that the initial lag phase in the PDC 
assay could be prevented by increasing the amount 
of ADH, in which case the initial amount of acetalde-
hyde that needs to accumulate before the conversion to 
ethanol starts would be less. As shown in Fig. 9a, when 
the total enzyme activity of ADH is increased by add-
ing more enzyme, the second reaction is no longer rate 
limiting resulting in a clear initial linear decrease with 
time as acetaldehyde is converted to ethanol much faster 
(Fig. 9b). When the amount of ADH added to the reac-
tion mixture is decreased, the opposite effect is observed 
and the nonlinearity of the curve becomes more pro-
nounced (Fig. 9a). In this case the ADH reaction becomes 
rate limiting, as indicated by the increasing time needed 
for acetaldehyde to accumulate before being converted to 
ethanol.

While the accuracy of the linear regression approach 
will benefit from an increased ADH level, the kinetic 
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(b) or low amounts (c) of alcohol dehydrogenase (ADH) are added (ACA acetaldehyde)



Page 11 of 12Boeckx et al. Plant Methods  (2017) 13:69 

modelling approach can deal with nonlinear results, not 
necessarily requiring an increased ADH level. As an addi-
tional advantage, costs of the assay can be reduced.

Conclusion
Existing enzyme assays to measure the in  vitro specific 
enzyme activity of PDC and ADH were optimized in 
order to increase the signal to noise ratio. An elaborated 
kinetic model based method was proposed to estimate 
the in vitro specific enzyme activity from the spectropho-
tometric assay data. The kinetic models developed in this 
study can accurately estimate the enzyme activity of PDC 
and ADH in the given assays. In contrast to the linear 
regression approach, the models can be used to estimate 
the enzyme activity whether or not linearity is achieved 
since they take into account the complete progress curve. 
Using the kinetic modelling approach the maximum 
activity of the enzyme can be estimated through extrapo-
lation even if the saturating substrate conditions were not 
fully realized in the enzyme assay, making it possible to 
compare the obtained results between different experi-
ments and between different labs and publications. The 
developed models can be applied to routinely analyze 
continuous spectrophotometric enzyme activity data, but 
like shown in this paper, they can also be used as a tool 
to optimize the enzyme assays by systematically study-
ing the effect of the various design parameters. Finally, 
the use of kinetic models to estimate the in vitro specific 
enzyme activity can be extended to other enzymes as 
long as the underlying reaction mechanism is known and 
the reaction dynamics can be monitored in a continuous 
way. Furthermore, the differential equations of the devel-
oped models can be implemented in any software envi-
ronment that supports estimation of kinetic parameters 
on ODE based models, e.g. Matlab (The MathWorks, 
Inc., Natick, MA, USA), Mathematica (Wolframe, Inc., 
Boston, MA, USA), Maple (Maplesoft, Inc., Japan) and R 
(R Foundation for statistical computing, Vienna, Austria), 
or in online web tools such as ENZO (enzyme kinetics 
[17].
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