
Montesinos‑López et al. Plant Methods  (2017) 13:62 
DOI 10.1186/s13007-017-0212-4

METHODOLOGY ARTICLE

Genomic Bayesian functional regression 
models with interactions for predicting wheat 
grain yield using hyper‑spectral image data
Abelardo Montesinos‑López1, Osval A. Montesinos‑López2, Jaime Cuevas3, Walter A. Mata‑López4, 
Juan Burgueño5, Sushismita Mondal5, Julio Huerta5, Ravi Singh5, Enrique Autrique5, Lorena González‑Pérez5 
and José Crossa5* 

Abstract 

Background:  Modern agriculture uses hyperspectral cameras that provide hundreds of reflectance data at discrete 
narrow bands in many environments. These bands often cover the whole visible light spectrum and part of the 
infrared and ultraviolet light spectra. With the bands, vegetation indices are constructed for predicting agronomi‑
cally important traits such as grain yield and biomass. However, since vegetation indices only use some wavelengths 
(referred to as bands), we propose using all bands simultaneously as predictor variables for the primary trait grain 
yield; results of several multi-environment maize (Aguate et al. in Crop Sci 57(5):1–8, 2017) and wheat (Montesinos-
López et al. in Plant Methods 13(4):1–23, 2017) breeding trials indicated that using all bands produced better pre‑
diction accuracy than vegetation indices. However, until now, these prediction models have not accounted for the 
effects of genotype × environment (G × E) and band × environment (B × E) interactions incorporating genomic or 
pedigree information.

Results:  In this study, we propose Bayesian functional regression models that take into account all available bands, 
genomic or pedigree information, the main effects of lines and environments, as well as G × E and B × E interaction 
effects. The data set used is comprised of 976 wheat lines evaluated for grain yield in three environments (Drought, 
Irrigated and Reduced Irrigation). The reflectance data were measured in 250 discrete narrow bands ranging from 392 
to 851 nm (nm). The proposed Bayesian functional regression models were implemented using two types of basis: 
B-splines and Fourier. Results of the proposed Bayesian functional regression models, including all the wavelengths for 
predicting grain yield, were compared with results from conventional models with and without bands.

Conclusions:  We observed that the models with B × E interaction terms were the most accurate models, whereas 
the functional regression models (with B-splines and Fourier basis) and the conventional models performed similarly 
in terms of prediction accuracy. However, the functional regression models are more parsimonious and computa‑
tionally more efficient because the number of beta coefficients to be estimated is 21 (number of basis), rather than 
estimating the 250 regression coefficients for all bands. In this study adding pedigree or genomic information did not 
increase prediction accuracy.
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interaction, Vegetation indices, Prediction accuracy, Bayesian functional regression, Spline regression, Fourier 
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Background
In plant breeding, a branch of agriculture, plant pheno-
typing has become financially expensive when evaluat-
ing complex traits like grain yield in large numbers of 
selection candidates [8, 11]. However, since the cost of 
sensors, aeronautics, high performance computing and 
high-resolution cameras has decreased significantly, 
plant breeders now have greater capacity to measure 
electromagnetic energy at varying wavelengths that inter-
act with different parts of the growing plant. For this 
reason, the use of low-cost, efficient, high-throughput 
plant phenotyping platforms (HTPP) [2] has dramati-
cally increased. By means of HTPP, it is possible to collect 
many low-cost phenotypes on large numbers of breed-
ing individuals at different stages of plant growth under 
different environmental conditions. There is a consensus 
that collecting many phenotypes of primary and second-
ary traits at an early stage of plant growth could be of 
great value for reducing evaluation time and cost, while 
dramatically increasing selection intensity and prediction 
accuracy and, consequently, the response to selection 
[16].

One important characteristic of current HTPP is their 
capability to non-destructively capture plant traits. This 
allows time-series measurements that are necessary to 
follow the progression of growth and stress on individ-
ual plants. Eliminating destructive measurements also 
increases the experimental capacity of genotypes, treat-
ments, and biological replicates by reducing the required 
replicated sampling sets. High-throughput image-based 
phenotyping is defined as a technology that can generate 
images of hundreds of plants per day. With a population 
in the hundreds, it is possible to analyze mutant popula-
tions, detect QTLs, discover gene ×  environment asso-
ciations [6], and increase the prediction accuracy of the 
primary trait (grain yield) by using pedigree or genomic 
information [16].

The main goal of plant imaging is to measure the physi-
ological growth, developmental, and other phenotypic 
properties of plants through automated processes using 
digital camera technology to collect reflectance data of 
electromagnetic energy at different wavelengths. The 
collected reflectance data are then used to predict plant 
physiological or agronomic traits such as grain yield. 
There are two main approaches for using reflectance 
data: (1) use partial reflectance data, summarize them 
in scores called spectral vegetative indices (VI) and then 
use the VI as predictor variables for primary traits; and 
(2) use all reflectance data simultaneously to predict 
the primary trait of interest. Despite some successful 
applications of the first approach, it has been criticized 
because it does not consider all the spectral bands from 
the hyperspectral sensors and because most VI tend to 

be species-specific. This means they are not robust when 
applied across different species that have different canopy 
architectures and leaf structures because they use only 
a fraction of the available information on the measured 
wavelengths. Using all bands is more robust and gives 
better prediction accuracy of primary traits (e.g., grain 
yield) than VI, as already reported [1, 13].

Recently secondary traits have been incorporated into 
vegetative indices (e.g., canopy temperature and normal-
ized difference vegetation index) using multivariate pedi-
gree and genomic prediction models by means of random 
regression models [18]. The authors showed that within 
each environment, the best linear unbiased predictions 
(BLUP) of secondary traits used in the multivariate pre-
diction model substantially improved (by 70%, on aver-
age) the prediction of primary trait grain yield.

However, to the best of our knowledge, until now 
no studies have been conducted on HTPP data analy-
ses that take into account not only all the reflectance 
bands measured in different environments, but also the 
genomic (and pedigree) information and the interactions 
between genotype and environment (genotype  ×  envi-
ronment, G  ×  E) and between the band and environ-
ment (band ×  environment, B ×  E). In plant breeding, 
there is enough evidence that when the genomic (or pedi-
gree) information and the G × E are taken into account, 
the models do better in terms of prediction accuracy. 
Also, it is well documented that if the same genotype is 
exposed to different environments, significant differences 
in the phenotype of plants, animals or any living organ-
ism can be expected even if the original individuals had 
similar genetic composition. One of the first scientists to 
note that the effect of genes (G) on phenotype could be 
modified by the environment (E) was Garrod [9]. For this 
reason, Turesson [19] pointed out that the environment 
often influences plant development and that the presence 
of a particular variety in a specific location is not just a 
chance occurrence; rather, the variety’s peculiar charac-
teristics are attributable to the effect of the environment 
on the expression and function of the genes influencing 
the trait.

To better illustrate the importance of considering 
the G  ×  E interaction term and its effects on predic-
tion accuracy, we provide some examples. Most of the 
time in genomic-enabled prediction, multi-environment 
models with G × E have better prediction accuracy than 
single-environment models. For example, using wheat 
data, Jarquin et  al. [10] found that the prediction accu-
racy of models including interaction terms was sub-
stantially higher (17–34%) than that of models based on 
main effects only. For a maize ordinal data set, Montes-
inos-López et  al. [12] found that compared to models 
based only on main effects, models that included G × E 
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achieved gains of 9–14% in prediction accuracy. Using 
wheat data, Cuevas et  al. [3] found that models with 
the G × E term were up to 60–68% better than the cor-
responding single-environment models. However, in 
the HTPP context, no models have been developed that 
include G × E as well as genomic or pedigree informa-
tion; furthermore, no research has been conducted and 
published on assessing the possible effect of B ×  E on 
predicting the primary trait.

However, taking into account both interaction terms 
also increases the computational cost of implement-
ing this model since the dimensionality of the predictor 
grows in proportion to the number of environments and 
bands. For this reason, Montesinos-López et al. [13] pro-
posed using functional data analysis to help reduce the 
computational cost by reducing the dimensionality of 
the bands. Functional data analysis is a branch of statis-
tics that studies and analyzes information contained in 
curves, surfaces, or any element that varies over a con-
tinuum, usually time. In its most general form, within a 
functional data framework, each sample element is con-
sidered to be a function. In general, any observation that 
varies on a continuum can be taken for functional data, 
from an electrocardiogram to urban temperatures. In 
practice, these events are measured by machines that 
take samples of a certain random variable at different 
moments in time within a certain range (tmin, tmax). The 
physical continuum space over which these functions 
are defined (in addition to time) are wavelength, spatial 
location, age, etc. This mean that the data used for func-
tional data analysis are repeated measures since for each 
individual are measured a sample of points in the range 
of time (tmin, tmax) or wavelength and for each individ-
ual we obtain a curve which is approximated with some 
functions (B-slines, Fourier, etc.) that reduce the dimen-
sionality of the original data point measured for each 
individual.

Therefore, based on the previous results, the main 
objectives of this research are: (1) to propose genomic 
Bayesian functional regression models that take into 
account the main effects of environment and genotype, 
all the available reflectance wavelength data, genomic or 
pedigree information, and the interaction terms (G × E 
and B ×  E) for predicting the primary trait grain yield; 
(2) to compare the prediction accuracy of models that 
include genomic (or pedigree) information versus those 
that do not; (3) to compare the prediction accuracy of 
models that include interaction terms versus those that 
do not; (4) to compare the prediction accuracy and 
implementation time of Bayesian functional regression 
models versus conventional Bayesian models that are not 
in the functional regression category; and (5) to identify 
models that have the best prediction performance and 

identify time-points of plant growth before harvesting 
from which accurate predictions of wheat grain yield can 
be obtained.

To illustrate the use of the proposed genomic Bayesian 
functional regression models and achieve the five objec-
tives of this study, we used part of the data set employed 
by Montesinos-López et  al. [13], which is comprised of 
976 wheat lines from the CIMMYT Global Wheat Pro-
gram that were evaluated for grain yield in three con-
trasting environments in Cd. Obregon, Mexico (Drought, 
Irrigated and Reduced Irrigation). A total of 250 wave-
lengths were measured at nine different time-points of 
crop growth (1–9). The original data set has 5 environ-
ments but the phenotypic information of three environ-
ments were almost identical with a correlation greater 
than 0.97. For this reason we only work with the infor-
mation of three environments, also the original data set 
has 1170 wheat lines, but pedigree (relationship matrix 
A) and genomic relationship matrix (G) information was 
only available for only 976 wheat lines.

Methods
Phenotypic field trial data and high‑throughput 
phenotypic data
A detailed description of the data used in this study can 
be found in Montesinos-López et  al. [13], where the 
authors present several functional regression models for 
predicting grain yield using hyperspectral image data in 
each environment. In this study, we only used data from 
three environments—Drought, Irrigated, and Reduced 
Irrigation—and 976 lines of the original 1170 wheat 
lines from the CIMMYT Global Wheat Program [13]. 
The experimental design used was an alpha-lattice with 
three replicates and six incomplete blocks of size five for 
each replicate; two checks were included in each of the 
trails; these checks were part of the first stage analyses 
but not included in the genomic prediction model. This 
design was used in each of the 39 trials implemented in 
each environment, with 30 lines included in each trial. 
Traits grain yield (GY) and days to heading (DH) were 
measured in each line, but only GY was analyzed in this 
study. Planting dates in the three environments were 
December 1–5, 2014. The bands were measured on nine 
different dates (January 10, 2015, January 17, 2015, Janu-
ary 30, 2015, February 7, 2015, February 14, 2015, Feb-
ruary 19, 2015, February 27, 2015, March 11, 2015 and 
March 17, 2015), which we call time-points (1, 2, 3,…, 
9, respectively) using 250 discrete narrow wavelengths. 
In each plot for each line and at each time-point, 250 
wavelengths �1, . . . �250 from 392 to 851 nm were meas-
ured. The k th discretized spectrometric curve is given 
by x1(�1), . . . , x250(�250). We used the notation x(780) 
without subscripts to denote the response of the band 
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measured at 780 wavelength, x(670) to denote the 
response of the band measured at 670 wavelength, and so 
on.

Genotypic and pedigree data
Genotyping-by-sequencing (GBS) was used for genome-
wide genotyping and single nucleotide polymorphisms 
were called across the lines using the TASSEL GBS 
pipeline anchored to the genome assembly of Chinese 
Spring. Single nucleotide polymorphisms were extracted 
and 34,900 GBS markers were filtered so that markers 
with more that 30% missing were deleted. Next, missing 
markers were imputed with the marker mean. Then each 
marker frequency is computed and markers with less 
than 0.05 minor allele frequency were removed. After this 
a total of only 1448 GBS markers remained after marker 
filtering and editing. A pedigree was used to devive the 
additive relationship matrix (A) among the wheat lines 
[16]; the entries of matrix A equal twice the coefficient of 
parentage between pairs of lines.

Statistical models
Since the experiments were performed in three environ-
ments under an alpha-lattice experimental design with 
three replicates, 39 trials and six blocks in each replicate, 
the model proposed is

where yijkl is the response variable (GY or wavelength 
measurements) in the ith environment, jth genotype, 
kth replicate within ith environment, lth trial, and mth 
incomplete block within the lth trial, kth replicate at the 
ith environment, Ei is the fixed effect of the ith environ-
ment, Lj is the fixed main effect of the jth genotype, LEij 
is the random interaction effect between the ith environ-

ment and the jth line assumed to be iid N
(

0, σ 2
gE

)

, rk(l,i) 
is the random effect of the kth replicate within lth trial 
and ith environment assumed to be iid N

(

0, σ 2
r(i)

)

, tl(i) 
is the random effect of the lth trial within ith environ-
ment assumed to be iid N

(

0, σ 2
t(i)

)

, bm(l,k ,i) is the random 
effect of the mth incomplete block within the lth trial, kth 
replicate at the ith environment assumed iid N

(

0, σ 2
b(i)

)

 
and ǫijklm assumed N

(

0, σ 2
e(i)

)

 represents the random 
residual plot error associated with the observation yijklm.  
The variances of replicates, blocks, and error are envi-
ronment-specific, which is often a realistic assumption 
(Piepho et al. [14]) and allows a two-stage analysis to be 
fully equivalent to a single stage analysis (Piepho et  al. 
[14]). Since our data set is very large and we will perform 

(1)
yijklm = Ei + Lj + LEij + rk(l,i) + tl(i) + bm(l,k ,i) + ǫijklm,

cross-validation, we performed a two-stage analysis 
which, according to Piepho et al. [14] and Damesa et al. 
[4], is appropriate if done properly with little difference 
from the corresponding single-stage analysis. Therefore, 
in the first stage of the analysis of individual environ-
ments, we rewrote the model 1 as

where µij = Ei + Lj + LEij is the conditional expected 
value of the jth genotype in the ith environment. 
Here µij was assumed as a fixed effect and defining 
µi =

(

µi1, . . . ,µiJ

)T, we estimated the best linear unbi-
ased estimates (BLUEs) as µ̂i =

(

XT
i �

−1
i X i

)−1

XT
i �

−1
i yi , 

where X i is a full rank treatment design matrix for µi at 
the ith environment, yi is the plot observations in the ith 
environment and �i = var(yi) is the non-singular vari-
ance–covariance matrix of the plot data in the ith envi-
ronment, which depends on the experimental design 
and the variances σ 2

r(i), σ
2
t(i), σ

2
b(i), σ

2
e(i). We estimated 

var(µ̂i) = � i =
(

XT
i �

−1
i X i

)−1

 and then with all the 
information from the first stage, we fitted the second 
stage model as

where γij is the residual of the jth genotype in the ith 
environment and var(γ i) = � i with γ i =

(

γi1 . . . , γiJ
)T . 

Following Smith et al. [17], we decided to fit the second 
stage model assuming that var

(

γij
)

= (ωij)−1 where ωij is 
the jth diagonal element of �−1

i , that is, we used weights 
based on the inverse of the variances of the associated 
data points (Smith et al. [17]; Welham et al. [22]; Piepho  
et al. [14]). This approach of using only the diagonal ele-
ments of �−1

i  is documented by various authors (Smith 
et al. [17]; Welham et al. [22]; Piepho et al. [14]) and pro-
duces almost identical results as when using all the infor-
mation of �−1

i . It is important to point out that in this 
second stage the term Lj that corresponds to the jth gen-
otype is assumed now as a random effect identical and  
independently distributed (iid) Lj ∼ N

(

0, σ 2
L

)

, LEij is 
exactly as described above, with iid LEij ∼ N

(

0, σ 2
LE

)

.
Markers can be introduced in the baseline model 

(3) such that the effect of line (Lj) can be replaced by 
gj , which is expressed as a linear regression on marker 
covariates that approximates the genetic value of  
the jth line such that the vector of genetic random  
effects g =

[

g1, . . . , gJ
]T is assumed g ∼ N

(

0,Gσ 2
g

)

,  
where σ 2

g  is the genetic variance, and G is a genomic  
relationship matrix that is computed using marker data 
W   as G = WW ′

m  [20, 21]. Furthermore, the effect of line 
(Lj) can also be replaced by pedigree information aj with 
the random vector of additive effects a =

[

a1, . . . , aJ
]T 

(2)yijklm = µij + rk(l,i) + tl(i) + bm(l,k ,i) + ǫijklm,

(3)µ̂ij = Ei + Lj + LEij + γij
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assumed as a ∼ N
(

0,Aσ 2
a

)

, where A is the numerical 
additive relationship matrix derived from pedigree, and 
σ 2
a  is the additive variance.
Similarly for the interaction terms, when genomic 

information is used, the line ×  environment interaction 
LEij is replaced by gEij the random effect of the interac-
tion term of the ith environment and the jth genotype 
and gE =

[

gE11, . . . , gEIJ
]T

∼ N
(

0, (G⊗ I I )σ
2
gE

)

,  where 
σ 2
gE is the variance component associated with the 

genetic  ×  environment interaction. When pedigree is 
used, aE =

[

aE11, . . . , aEIJ
]T

∼ N
(

0, (A ⊗ I I )σ
2
aE

)

, 
where σ 2

aE is the variance component of the addi-
tive ×  environment interaction. I I is an identity matrix 
for environments, and ⊗ denotes the Kronecker product.

Therefore, using genomic information, the baseline 
model becomes

or when using pedigree, the baseline model is defined as

Also, it is important to point out that we obtained the 
BLUEs with Eq. (2) not only for GY but also for each of 
the 250 wavelengths (referred to as the spectrometric 
data xi(�i), i = 1, . . . , 250 mentioned above) with the 
intention of removing the design effect of each wave-
length and using these wavelengths as covariates in the 
second stage of the analysis in the appropriate way. This 
process of removing the design effect of each wavelength 
with Eq. (2) was done on each of the nine different dates 
on which the wavelengths were measured. This means 
that BLUEs of each genotype were obtained for GY and 
for each wavelength in each of the nine time-points under 
study. We then created a database of 976× 3 = 2928 
rows and 2253 columns where the first column contains 
environments, the second the names of genotypes, the 
third the BLUEs of GY and the remaining 2250 columns 
contain the 250 × 9 covariates (wavelengths that are the 
spectrometric data) resulting from the combinations of 
the 250 wavelengths and the nine time-points.

Proposed statistical models including genomic, pedigree, 
functional regression
Table 1 describes 14 proposed statistical models that will 
be used on the previously adjusted data for each time-
point. Models M1, M2, M3, M4, M9 and M10 are called 
conventional models, whereas the others (M5, M6, M7, 
M8, and M11–M14) are newly proposed models that dis-
play wavelengths as functional covariates and are called 
functional regression models. Each of the 14 proposed 
models was implemented directly using the genotypes, 

µ̂ij = Ei + gj + gEij + γij

µ̂ij = Ei + aj + aEij + γij

or replacing the genotypes with the pedigree relationship 
matrix (A) or replacing the genotypes with the genomic 
relationship matrix (G). When the 14 models were imple-
mented using the genomic relationship matrix (G), we 
denoted these models as WG; when these models were 
implemented using the pedigree relationship matrix, we 
denoted these models as WA; and when these models 
were implemented using the lines without genomic or 
pedigree information, the models were denoted as WO.

In the 14 proposed models given in Table 1, when pedi-
gree is used instead of markers, the random genetic gj 
term is replaced by the random additive effect aj. While 
the interaction term gEij is replaced by the random inter-
action term aEij. In models M3, M4, M9 and M10 xijk 
represent the kth discretized spectrometric data meas-
ured on the jth genotype in the ith environment with 
k = 1, 2, . . . , 250 and we need to remember that xijk are 
predicted means obtained in the first stage analysis. βk 
is the beta regression coefficient for the kth band that 
will be estimated. The functional regression models M5 
and M6 add the 250 wavelengths to M1 as a functional 
covariate constructed over the interval between 392 and 
851 nm, which are the minimum and maximum values at 
which the 250 wavelength bands of the reflectance data 
were measured. Therefore, xij(k) is the functional predic-
tor and represents the value of a continuous underlying 
process evaluated at wavelength k, β1(k) is the functional 
regression beta coefficient for the functional part of mod-
els M5, M6, M7, M8, M11, M12, M3 and M14, which is a 
function of the wavelength k. In this context, the integral 
of the product replaces the sum of products (

∑p
k=1

xijkβk) 
in the conventional linear regression model given in M3. 
Models M5, M7, M11, M13 should be called Bayesian 
B-splines since they will be implemented under a Bayes-
ian approach using the B-splines as basis expansion and 
models M6, M8, M12, M14 will be called the Bayesian 
Fourier models since they use the Fourier basis. Model 
M9 adds to M3 the band by environment (B × E) inter-
action between the ith environment and the kth band 
and βki represents the beta regression coefficient corre-
sponding to the kth band measured in the ith environ-
ment. Model M11 adds to M5 and Model M12 adds to 
M6 the interaction between environment and the func-
tional regression predictor that represents the reflectance 
data and β2i(k) is the coefficient function correspond-
ing to the functional part that represents the interaction 
between the ith environment and the kth band. Model 
M13 adds to M7 and model M14 adds to M8 the interac-
tion between environment and the functional regression 
predictor.

The proposed functional regression models M5, M6, 
M7, M8, M11, M12, M13, and M14 are among the 
most popular functional regression models, where the 
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responses are scalars and some of the covariates are 
functions. For this reason, the response variable (µ̂ij) is 
scalar in all the proposed models and represents grain 
yield (GY). Apart from the general subdivision of the 14 
models in conventional versus functional regression, it is 
useful to point out that the 14 models also differ in vari-
ous other aspects based on their conventional and func-
tional regression components, for example, models that 
do not include the gEij interaction term (M1, M3, M5, 
M6, M9, M11, and M12) versus models that do include 
the gEij interaction term (M2, M4, M7, M8, M10, M13, 
and M14). Regarding the functional regression models, 
models M5, M7, M11, and M13 had the B-spline basis, 
whereas models M6, M8, M12, and M4 had the Fourier 
basis. Models M9–M14 include the B  ×  E interaction 
between the ith environment and the kth band, but mod-
els M9 and M10 assessed this interaction using the con-
ventional approach, whereas models M11–M14 fitted the 
B × E interaction by means of the functional regression 

model. Additional details about functional regression 
models can be found in Ramsay and Silverman [15].

Preprocessing the functional regression models (M5–M8 
and M11–M14)
For the estimation of the parameters of the functional 
regression models M5, M6, M7, M8, M11, M12, M13, 
and M14, first we need to know the exact form of the 
functional covariate [x(k)], but this only was observed in 
discrete points. A traditional approach is to assume that 
the functional covariate (x(k)) and the functional regres-
sion beta coefficients (β1(k)) can be represented by the 
linear combination of a truncated basis. With this the 
high dimensional problem is reduced to standard linear 
model, as we will describe next. First, we represent covar-
iable curves as

(4)xij(k) =

L
∑

l=1

cijlφl(k)

Table 1  Proposed models

Method Model Type

M1 µ̂ij = Ei + gj + γij Conventional

M2 µ̂ij = Ei + gj + gEij + γij Conventional

M3
µ̂ij = Ei + gj +

p
∑

k=1

xijkβk + γij
Conventional

M4
µ̂ij = Ei + gj + gEij +

p
∑

k=1

xijkβk + γij
Conventional

M5
µ̂ij = Ei + gj +

851
∫

392

xij(k)β1(k)dk + γij
Functional Bayesian B-splines

M6
µ̂ij = Ei + gj +

851
∫

392

xij(k)β1(k)dk + γij
Functional Bayesian Fourier

M7
µ̂ij = Ei + gj + gEij +

851
∫

392

xij(k)β1(k)dk + γij
Functional Bayesian B-splines basis

M8
µ̂ij = Ei + gj + gEij +

851
∫

392

xij(k)β1(k)dk + γij
Functional Bayesian Fourier basis

M9
µ̂ij = Ei + gj +

p
∑

k=1

xijkβk +
p
∑

k=1

xijkβki + γij
Conventional

M10
µ̂ij = Ei + gj + gEij +

p
∑

k=1

xijkβk +
p
∑

k=1

xijkβki + γij
Conventional

M11
µ̂ij = Ei + gj +

851
∫

392

xij(k)β1(k)dk +
851
∫

392

xij(k)β2i(k)dk + γij
Functional Bayesian B-splines basis

M12
µ̂ij = Ei + gj +

851
∫

392

xij(k)β1(k)dk +
851
∫

392

xij(k)β2i(k)dk + γij
Functional Bayesian Fourier basis

M13
µ̂ij = Ei + gj + gEij +

851
∫

392

xij(k)β1(k)dk +
851
∫

392

xij(k)β2i(k)dk + γij
Functional Bayesian B-splines basis

M14
µ̂ij = Ei + gj + gEij +

851
∫

392

xij(k)β1(k)dk +
851
∫

392

xij(k)β2i(k)dk + γij
Functional Bayesian Fourier basis
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where φ1(k), . . . ,φL(k) is a truncate basis (B-splines, Fou-
rier basis) and cijl is the coefficient corresponding to the 
ijth individual (environment-line combination) of the 
function φl(k). Assuming that each curve was observed 
in k = [k1, . . . , km]

T, then in vector form

where cTij =
[

cij1, . . . , cijL
]

. Therefore, the values of 
cij that best represent xij(k) in terms of minimizing 
[

xij(k)−�cij
]T [

xij(k)−�cij
]

 are given by

If β1(k) =
∑S

s=1 dsψs(k) is the representation of β1(k) 
in terms of another truncated basis, ψ1(k), . . . ,ψS(k), the 
model M5 can be rewritten as

where xijs =
∫

xij(k)ψs(k)dk, xTij =
[

xij1, . . . , xijS
]

, and 
dT = [d1, . . . , dS] is an unknown vector of coefficients 
related to the effect of the functional covariate. The ele-
ments of xTij  can be obtained from the covariate represen-
tation given previously

where ĉijl, l = 1, . . . , L, are the elements of ĉij obtained in 
Eq. (5). Substituting (7) in xijs =

∫

xij(k)ψs(k)dk, the ele-
ments of xTij  explicitly can be computed as

where the coefficients ĉijl are given in Eq.  (5). Then by 
making Jls =

∫

φl(k)ψs(k)dk, we have that the required 
xij can be approximated as

xij(k) =

















L
�

l=1

cijlφl(k1)

.

.

.

L
�

l=1

cijlφl(km)

















=









φ1(k1) · · · φL(k1)

.

.

.
.
.
.

.

.

.

φ1(km) · · · φL(km)









cij = �cij

(5)ĉij =
[

�T�

]−1

�Txij(k)

(6)

µ̂ij = Ei + gj +

S
∑

s=1

ds

∫

xij(k)ψs(k)dk + γij

= Ei + gj +

S
∑

s=1

dsxijs + γij

= Ei + gj + xTij d + γij ,

(7)xij(k) =

L
∑

l=1

ĉijlφl(k)

xijs =

∫

xij(k)ψs(k)dk =

L
∑

l=1

ĉijl

∫

φl(k)ψs(k)dk ,

(8)

xij =

















L
�

l=1

ĉijl Jl1

.

.

.

L
�

l=1

ĉijl JlS

















=









ĉij1J11 · · · ĉijLJL1
.
.
.

.
.
.

.

.

.

ĉij1J1S · · · ĉijLJLS









=









JT
1

.

.

.

JTS









ĉij = J ĉij

where JTs = [J1s, . . . , JLs] and ĉTij =
[

ĉij1, . . . , ĉijL
]

. There-
fore, since we obtained xij, we can implement M5 given 
in Eq. (6) using conventional Bayesian or classical mode-
ling. See Ramsay and Silverman [15] for more details and 
considerations.

It is important to point out that the same logic was used 
for the rest of the models that have a functional compo-
nent (M6, M7, M8, M11, M12, M13, M14) in order to 
obtain their corresponding xij components. However, 
calculating xTij  using Eq. (8) can seem somewhat complex 
to those not familiar with functional regression or with 
matrices; for this reason, “Appendix 1” gives the imple-
mentation of each of the 14 proposed models. Also, for 
models that include a functional component (M5, M6, 
M7, M8, M11, M12, M13, M14), the corresponding code 
for building the xTij  component using S = L = 21 basis 
expansion is provided. Implementation of the proposed 
models was carried out under the Bayesian paradigm; for 
this reason, in the next section we provide information 
about the prior distributions we used.

Assumptions on priors
For the beta coefficient of the ith environment, we 
assumed a N (0, 10000), for σ 2

g , a scaled inverse Chi 
square distribution χ−2(σ 2

g |Sg , dfg) with scale factor Sg 
and degrees of freedom dfg > 0; and for σ 2

e , also a scaled 
inverse Chi square distribution χ−2(σ 2

e |Se, dfe) with scale 
factor Se = 2E10 and degrees of freedom dfe = 2E10. 
This scale and degrees of freedom of the variance com-
ponent of the error were choosen in this way to be able to 
implement the proposed two stage analysis in the BGLR 
package because these values warranty a prior distribu-
tion highly concentrated about 1, with very small vari-
ability. For σ 2

gE, we assumed a scaled inverse Chi square 
distribution χ−2(σ 2

gE |SgE , dfgE) with scale factor SgE and 
degrees of freedom dfgE > 0.

For the beta coefficients of each of the bands 
(βk , k = 1, . . . , p), we used N

(

0, σ 2
β1

)

 for 
σ 2
β1

∼ χ−2(σ 2
β1
|Sβ1 , dfβ1). For the beta coefficients of 

each component of the interaction terms between envi-
ronments and bands (βik , i = 1, . . . , 3; k = 1, . . . , p) , we 
used N

(

0, σ 2
β2

)

 for σ 2
β2

∼ χ−2(σ 2
β2
|Sβ2 , dfβ2). To con-

trol the smoothness of the parameter functions, we 
use a multivariate normal distribution as prior distri-
bution for d with mean the vector 0 and covariance 
matrix σ 2

dP
−1, where P =

{

Pij
}

 is a penalty matrix, 
Pij =

∫ b
a ψ ′′

i (t)ψ
′′
j (t)dt, i, j = 1, . . . , S, ψ ′′

i (t) is the sec-
ond derivate of the ψi(t), and 1/σ 2

d  is a smoothing 
parameter, and the prior for σ 2

d  was χ−2(σ 2
d |Sd , dfd). In 

a similar way, for the beta coefficients of the basis (d2) 
corresponding to the interaction terms between environ-
ments and the functional covariates (β2i(·)), we assume 
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d2 ∼ N
(

0, σ 2
dIP

−1
d

)

, where Pd =
{

P∗
ij

}

 is a penalty 
matrix, P∗

ij =
∫ b
a ψ ′′

i (t)ψ
′′
j (t)dt, i, j = 1, . . . , SdI , ψ

′′
i (t) is 

the second derivate of the ψi(t), and 1/σ 2
dI is a smooth-

ing parameter and for σ 2
dI ∼ χ−2(σ 2

dI |SdI , dfdI). Here we 
are representing β2i(t) as 

∑SdI
i=1 dIiψi(t). When used the 

Fourier basis we set P∗
11 = P11 = 1, to avoid a degener-

ate prior distribution concentrated in 0 for the the first 
elements of d and d∗. For using the BGLR package, the 
corresponding desing matrix is post-multiplicaed by the 
square root matrix of P−1 (P−1

d ), P−1/2 (P−1/2

d ). All the 
priors used were weakly informative with the exception 
of the variance component of error (σ 2

e ) which was totally 
informative and concentrated at 1 in order to be able to 
correctly implement the two stage analysis. Note that 
when the number of basis (L) used is small (less than 30), 
P−1
d  can be assumed an identity matrix.
The 14 proposed models were implemented in the 

BGLR R-package (de los Campos and Pérez-Rodríguez 
[5]) using the hyper-parameters as set, using the rules of 
this package with 30,000 iterations and a burn-in period 
of 20,000. First, models were fitted to the entire data 
set to evaluate goodness-of-fit to the training data; they 
were then implemented through the cross-validation 
described in the next section.

Assessing the models’ prediction accuracy
We used two schemes for assessing the prediction accu-
racy of the 14 models; one consists of ten training (trn)–
testing (tst) random partitions with 50% of the lines 
assigned to the training data set and the remaining 50% 
to the testing data set. The other scheme is also a ten 
trn–tst random partition, but with 10% of the lines in 
one environment assigned to training and 90% to testing; 
under this scenario, the two environments maintained 
the complete number of lines.

The first cross-validation scheme was used to exam-
ine the prediction accuracies of the 14 proposed models 
given in the previous section; for each random partition 
in each environment, we used 488 (50%) lines for training 
and 488 (50%) for testing (50CV). This means that from 
the whole data set comprising the three environments, 
the training data set that we used consisted of 1464 
observations (50%) and the validation data set we used, 
the remaining 1464 observations (50%). This type of 
cross-validation mimics a situation where the researcher 
wants to predict 50% of the lines in some environments; 
however, the lines whose phenotypes we wanted to pre-
dict were measured in at least one of the environments 
(that is, they were not missing in all the environments).

The second cross-validation scheme was only used 
for evaluating models M13 and M14 and consisted of 

removing 90% of the lines in one environment and pre-
dicting them using all the lines in the other two environ-
ments (90CV). This cross-validation (leaving 90% of the 
lines unobserved in one environment) mimics the situa-
tion where all the information of the lines is available in 
all environments except one, where only 10% of the lines 
have phenotypic data.

For both random cross-validation schemes, we used 
the Pearson correlation between the predicted values 
of the model and the observed BLUP value for GY as a 
measure of prediction accuracy calculated for each envi-
ronment. We reported the average and the standard error 
(SE) of the 10 Pearson correlations resulting from the ten 
trn–tst random partitions implemented. It is also impor-
tant to point out that we used the same split (of the ten 
trn–tst random partitions) in the 14 models to ensure 
fair comparisons.

Results
In this section, we present the main results of the imple-
mentation of the proposed models. The results are given 
in seven sections. The first section provides a descrip-
tive summary of how similar the environments, time 
points and bands are. The second section compares the 
proposed models with genomic data (WG), with pedi-
gree information (WA) and without marker or pedigree 
data (WO). The third section compares the models in 
each environment for the 9 time-points. The fourth sec-
tion compares the prediction accuracies of the proposed 
models between environments at each of the 9 time-
points. The fifth section compares the 9 time-points in 
each environment for models M5, M7, M11, and M13. 
The sixth section compares the computing time needed 
to implement each of the proposed models; the ran-
dom cross-validation shown in these four sections is the 
50CV. Finally, the seventh section presents the prediction 
accuracy of models M11 and M13 for the 9 time-points 
and for each environment when in one environment, 90% 
of the lines were missing and are predicted using all the 
data in the other two environments; the random cross-
validation in this section is the 90CV.

Descriptive summary of how similar the environments, 
time points and bands are
We found that the genetic correlation in yield between 
the Drought and Irrigated environments was nega-
tive and low (−0.1418), while the correlation between 
the Drought and Reduced Irrigated environments was 
positive and moderately high (0.508) and the correlation 
between the Irrigated and the Reduced Irrigated environ-
ments was also negative and low (−0.034). On the other 
hand, Table  2 provides the correlations between the 9 
time-points (for each time-point we used as response, 
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the average of the 250 bands); in the Drought environ-
ment, only 7 correlations out of 36 were larger than 0.4, 
in the Irrigated environment, we found 10 out of 36 cor-
relations were larger than 0.4, while in the Reduced Irri-
gated environment, we found 11 out of 36 correlations 
were larger than 0.4. Note that the the highest correlation 
is not with the nearest neighbor time point.

In Figs. 8, 9 and 10, we can see that most of the bands 
are highly correlated with the correlation between bands 
being stronger in the Irrigated and Reduced Irrigated 
environment and a weaker in the Drought environment. 
Also, it is very important to point out that the patterns of 
similarity in the correlations are very similar between the 
Irrigated and Reduced Irrigated environments. On the 
other hand, since the bands are very highly correlated, 
one can opt to omit some bands from the analysis with-
out significant loss of information. This option was taken 

into account by Montesinos-López et  al. [13] (reducing 
the dimension of the bands using principal component 
analysis and working only some bands that showed high 
heritability) but although the results were a little faster 
in terms of computational implementation, no gain was 
observed in terms of predicción accuracy. For this rea-
son, in this paper we used all the available bands and we 
reduced the dimension of the bands by functional data 
analysis.

Comparing the models with genomic (WG), pedigree (WA) 
information and without genomic and without pedigree 
(WO) information
Results show that there were no differences in the predic-
tion accuracy of the proposed models when the genomic 
relationship matrix was taken into account (WG) com-
pared to when the genomic relationship matrix was 

Table 2  Pearson correlations of the time-points for each environment

Italic values indicate the Pearson correlation larger than 0.4 for each time point

Time 1 2 3 4 5 6 7 8 9

Drought

 1 1.000 0.754 0.257 0.319 −0.066 −0.069 0.213 −0.020 −0.065

 2 0.754 1.000 0.201 0.504 0.096 0.248 −0.010 0.364 0.031

 3 0.257 0.201 1.000 0.341 0.256 0.185 0.216 −0.118 0.138

 4 0.319 0.504 0.341 1.000 0.505 0.349 0.205 0.420 0.160

 5 −0.066 0.096 0.256 0.505 1.000 0.323 −0.009 0.596 0.063

 6 −0.069 0.248 0.185 0.349 0.323 1.000 −0.277 0.631 0.221

 7 0.213 −0.010 0.216 0.205 −0.009 −0.277 1.000 −0.401 0.489

 8 −0.020 0.364 −0.118 0.420 0.596 0.631 −0.401 1.000 0.090

 9 −0.065 0.031 0.138 0.160 0.063 0.221 0.489 0.090 1.000

Irrigated

 1 1.000 0.309 0.659 0.474 0.401 −0.097 −0.099 0.065 −0.031

 2 0.309 1.000 0.168 0.406 −0.416 0.832 0.062 0.876 0.008

 3 0.659 0.168 1.000 0.743 0.460 −0.115 0.123 0.062 0.179

 4 0.474 0.406 0.743 1.000 0.298 0.208 0.140 0.428 0.097

 5 0.401 −0.416 0.460 0.298 1.000 −0.491 −0.072 −0.329 −0.003

 6 −0.097 0.832 −0.115 0.208 −0.491 1.000 0.137 0.908 0.039

 7 −0.099 0.062 0.123 0.140 −0.072 0.137 1.000 0.084 0.882

 8 0.065 0.876 0.062 0.428 −0.329 0.908 0.084 1.000 0.002

 9 −0.031 0.008 0.179 0.097 −0.003 0.039 0.882 0.002 1.000

Reduced Irrigated

 1 1.000 0.623 0.741 0.531 0.465 −0.007 −0.190 0.012 −0.053

 2 0.623 1.000 0.485 0.538 0.252 0.248 −0.136 0.183 −0.049

 3 0.741 0.485 1.000 0.640 0.434 0.090 −0.102 0.149 0.025

 4 0.531 0.538 0.640 1.000 0.600 0.044 0.023 0.081 0.117

 5 0.465 0.252 0.434 0.600 1.000 −0.263 −0.109 −0.426 0.037

 6 −0.007 0.248 0.090 0.044 −0.263 1.000 0.038 0.804 0.128

 7 −0.190 −0.136 −0.102 0.023 −0.109 0.038 1.000 0.080 0.841

 8 0.012 0.183 0.149 0.081 −0.426 0.804 0.080 1.000 0.050

 9 −0.053 −0.049 0.025 0.117 0.037 0.128 0.841 0.050 1.000
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ignored (WO) (Fig.  1). Some models without genomic 
information produced predictions that were a little bet-
ter, for example, at time-point 2: in the Drought environ-
ment, the predictions are a little better for models M4, 
M7, M8, M10, M13 and M14, in the Irrigated environ-
ment they are a little better for models M4, M7, M8, 
M13, and M14, and in the Reduced Irrigated environ-
ment, the predictions are better for models M2, M8 and 
M14. At time-point 4, the predictions in the Irrigated 
environment are a little better for models M4, M7, M8, 
M10, M13 and M14, while in the Reduced Irrigated 
environment, the predictions are a little better for mod-
els M4, M7, M8, M10 and M13. At time-point 6, in the 
Drought environment, the predictions in favor of the 
models without genomic information are given in model 
M8; in the Irrigated environment, the models with a little 
better predictions are M8, M10, M13 and M14, while in 
the Reduced Irrigation environment, the models without 
genomic information were slightly better in all models 
except in models M1, M3, M5, M6, M7, M8, M9, M10, 
M11 and M12. Also in Fig. 2 we can see that there are no 
relevant differences in terms of prediction accuracy using 
genomic information, pedigree information and without 
pedigree and genomic information. However, in gen-
eral, using pedigree information produced predictions 

that were a little better than when using the genomic 
information, or ignoring both the genomic and pedigree 
information. Also in Fig. 2, we can see that in general, the 
later the time-point, the better the predictions; however, 
this trend is clearer in the Drought environment. In the 
Drought and Irrigated environments, the best predic-
tions were observed at time-point 7, but in general, at 
time-point 6, the predictions are comparable to those of 
the latter points. It is important to point out that all the 
standard errors (SE) of each APC resulting of all the pro-
posed models are given in “Appendix 3”.  

Comparing models in each environment for each 
time‑point
All results given in Figs.  3, 4, 5, and 6 were obtained 
taking into account the genomic relationship matrix 
(WG), but similar results were observed with the pedi-
gree relationship matrix (WA) and without pedigree and 
genomic data (WO). Figure  3 shows that there are dif-
ferences in prediction accuracy among the 14 proposed 
models. It is clear that the worst models in terms of 
prediction accuracy were models M1 and M2 (without 
information of bands) and the best models were M9–
M14. However, there are no strong differences in terms 
of prediction accuracies between environments, but it is 

(See figure on previous page.) 
Fig. 1  Prediction accuracy of the proposed models for the time-environment combination, with the genomic relationship matrix (WG) and with‑
out the genomic relationship matrix (WO). The reported prediction accuracy resulted from the average of the ten trn–tst random partitions of the 
Pearson correlation between observed and predicted values (APC) (50CV random cross-validation)

Fig. 2  Prediction accuracy for each time-point in the three environments and models M7, M11 and M13 with the genomic relationship matrix 
(WG), with the pedigree relationship matrix (WA) and without the genomic (and pedigree) relationship matrix (WO). The reported prediction accu‑
racy resulted from the average of the ten trn–tst random partitions of the Pearson correlation between observed and predicted values (APC) (50CV 
random cross-validation)



Page 12 of 29Montesinos‑López et al. Plant Methods  (2017) 13:62 

interesting to point out that in the three environments, 
the worst predictions were observed at time-points 1 
and 2 and the second worst were observed at time-point 
4. The best predictions were observed at time-point 9 for 
models M13 to M14 in the Drought environment, and 
for models M9, M11 and M12 in the Irrigated environ-
ment. However, in the Reduced Irrigation environment, 

the best predictions for models M13 to M14 were 
observed at time-point 6. In the Reduced Irrigated 
(Fig.  3) environment, we observed few differences in 
prediction accuracy between the 9 time-points, while in 
the Drought and Irrigated environments, we observed 
larger differences between time-points in terms of pre-
diction accuracy.

Fig. 3  Prediction accuracy of the proposed models in the three environments for the 9 time-points versus the average of the ten trn–tst random 
partitions of the Pearson correlation between observed and predicted values (APC) (50CV random cross-validation)

Fig. 4  Comparison of prediction accuracy between environments of the proposed models for time-points 2–5 versus the average of the ten trn–tst 
random partitions of the Pearson correlation between observed and predicted values (APC) (50CV random cross-validation)
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Comparison between environments for each of the 9 
time‑points
Figures  4 and 5 show that there are differences in pre-
diction accuracies between environments at time-points 
1–9. At time-point 2, 3, 4 and 5, the best predictions 
are in the Reduced Irrigation environment, and at time-
points 7 and 9, the best predictions are in the Drought 

environment, while at the remaining time-points (6 and 
8), the predictions in the three environments are more 
similar. However, it is important to point out that the 
prediction accuracies for time-points 2, 3, 4 and 5 are 
around 0.2–0.5 for the Drought and Reduced Irrigated 
environments. On the other hand, most of the predic-
tions for time-points 6, 7, 8 and 9 are higher than 0.35. 

Fig. 5  Comparison of the prediction accuracy between environments of the proposed models for time-points 6–9 versus the average of the ten 
trn–tst random partitions of the Pearson correlation between observed and predicted values (APC) (50CV random cross-validation)

Fig. 6  Comparison of time-points (1–9) versus the average of the ten trn–tst random partitions of the Pearson correlation between observed and 
predicted values (APC) (50CV random cross-validation) in the Drought, Irrigated and Reduced Irrigation environments for models M5, M7, M11, M13
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Furthermore, at time-points 7 and 9, the worst predic-
tions were observed in the Reduced Irrigation environ-
ment and the second worst in the Irrigated environment.

Comparing time‑points in each environment for models 
M5, M7, M11, and M13
Figure  6 shows that the prediction accuracies of mod-
els M5, M7, M11 and M13 are different; in general, the 
earlier the time point, the worse the predictions. This 
is expected because in two environments (Drought and 
Irrigated), the worst predictions were observed at time-
points 1 and 2. At each time-point, the prediction accu-
racies of models M5 and M7 are similar and consistently 
lower than the prediction accuracies of models M11 and 
M13 (which gave similar predictions).

It is important to note that the main difference between 
M5 and M7 is the interaction term (gEij), which is 
ignored in M5 but present in M7. Since these two models 
have similar prediction accuracies, this result indicates 
that the interaction term did not help increase prediction 
accuracy. The same argument applies for M11 and M13. 
Model M5 has the main effects of environments and lines 
as a predictor plus the information on the bands as func-
tional covariates, whereas model M11 takes into account 
the interaction between environments and bands (func-
tional covariate) in addition to these terms. Therefore, 
the differences between M5 and M11 can be attributed 
to the interaction between environments and bands as a 
functional covariate. Also, since the difference between 
M7 and M11 is the interaction between environments 
and bands, the differences in prediction accuracy can also 
be attributed to this interaction.

The differences between models M5, M7, M11 and 
M13 were larger in the Reduced Irrigation environment 

(Fig. 6) at time-point 7. Also, it is important to point out 
that in the Drought environment, the best predictions 
belong to time-points 7 and 9 for the four models (M5, 
M7, M11 and M13), while in the Irrigated environment, 
the best predictions were observed at time-points 7 only 
for models M11 and M13. In the Reduced Irrigation envi-
ronment, the best predictions for the two models (M11 
and M13) were observed at time-point 6. Similar behav-
ior was observed at all time-points for the other models 
(see Figs. 11 and 12 in “Appendix 2”).

Comparing the models’ computational speed 
for implementation
For this comparison, we ran each of the proposed models 
using the whole available data set, once for each model 
in the BGLR package, and for each model we computed 
the time needed to complete 30,000 iterations. The time 
(in minutes) needed to run each of the models is given 
in Fig. 7. The times for running the proposed models are 
different because the implemented models have differ-
ent levels of complexity. For this reason, when comparing 
the models in terms of computational speed measured in 
minutes, we compared only models with similar levels of 
complexity.

For example, models M1, M3, M5, M6, M9, M11, and 
M12 without the GEij interaction term were, on aver-
age, 3.81 times faster than models M2, M4, M7, M8, 
M10, M13, and M14, which do include this interaction 
term. Next we compared models M3, M5 and M6 that 
have the same level of complexity and we observed that 
functional regression models M5 (254.87  min) and M6 
(247.12  min) were faster than model M3 (282.14  min), 
which is a conventional model. Comparing model M4 
versus M7 and M8, we observed that functional models 

Fig. 7  Computational speed (in minutes) required for implementing each proposed model
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M7 (778.94 min) and M8 (705.63 min) were also faster 
than conventional model M4 (980.49  min). The same 
behavior was observed when comparing conventional 
model M9 (365.69  min) versus functional regression 
models M11 (274.79  min) and M12 (278.83  min), and 
conventional model M10 (980.09  min) versus func-
tional regression models M13 (759.70  min) and M14 
(712.85 min) (Fig. 7).

Prediction accuracy of 90% of the lines in one environment 
using models M13 and M14
Table  3 shows the prediction accuracy of models M11 
and M13 for the three environments and all 9 time-
points for the 90% of lines that are missing in one envi-
ronment and predicted using the data in the other two 
environments (90CV). For time-points 1–5 and 8, the 
best predictions were for the Irrigated environment, the 
second best for the Drought environment and the worst 
for the Reduced Irrigation environment. For time-points 
6, 7 and 9, the best predictions were observed in the 
Drought environment and the worst in the Reduced Irri-
gation environment.

It is interesting to point out that for time-point 3, 
the models had relatively high prediction accuracy of 
the unobserved 90% of the phenotypes of lines in one 

environment (90CV). When the predictions of M11 and 
M13 are compared, the predictions are very similar under 
both models (M11 and M13). The results of Table 3 for 
models M11 and M13 take into account the genomic 
information (WG), but similar results were obtained 
with pedigree information (WA) and without pedigree or 
genomic information (WO).

Discussion
In this paper, we propose models with main and interaction 
terms for analyzing HTPP in wheat trial data that take into 
account genomic and pedigree information. Some of the 
proposed models take into account G × E or B × E, or both. 
We found that the models that take into account genomic 
or pedigree information are similar to the models that 
ignore this information. For this reason, in this particular 
study adding pedigree or genomic information did not help 
to increase prediction accuracy. However, we are aware 
that in other sets of data the gain by including this infor-
mation can be very helpful. But the most important issue 
here is that our proposed method is able to jointly model 
pedigree or genomic information with hyper-spectral 
information and we provide R code that is very easy for the 
implementation. Also, we found that including G × E inter-
action did not increase prediction accuracy, since not all 

Table 3  Prediction accuracy (average of  the ten trn–tst random partitions of  the Pearson correlation, APC) of  models 
M11 and M13 for time-points 1–9 for each environment for 90CV when 90% of lines are missing in only one environment 
(standard error, SE)

Time-point Drought Irrigated Reduced irrigation

APC SE APC SE APC SE

M11

 1 0.142 0.017 0.244 0.019 0.175 0.013

 2 0.197 0.016 0.231 0.027 0.145 0.019

 3 0.307 0.018 0.422 0.013 0.315 0.022

 4 0.248 0.014 0.347 0.020 0.238 0.019

 5 0.298 0.016 0.394 0.016 0.259 0.015

 6 0.415 0.006 0.459 0.011 0.310 0.022

 7 0.589 0.008 0.528 0.010 0.257 0.020

 8 0.422 0.009 0.411 0.014 0.198 0.024

 9 0.604 0.009 0.422 0.007 0.313 0.020

M13

 1 0.166 0.015 0.262 0.016 0.216 0.014

 2 0.202 0.016 0.234 0.027 0.163 0.017

 3 0.307 0.015 0.416 0.017 0.328 0.020

 4 0.245 0.015 0.339 0.021 0.238 0.013

 5 0.314 0.015 0.409 0.011 0.277 0.016

 6 0.427 0.008 0.456 0.013 0.347 0.013

 7 0.598 0.011 0.531 0.011 0.280 0.025

 8 0.416 0.010 0.402 0.018 0.171 0.021

 9 0.613 0.015 0.416 0.006 0.354 0.018
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the models that take this term into account were better in 
terms of prediction accuracy than those that do not include 
it. This result might be because the variability among the 
three environments, Drought, Irrigated and Reduced Irri-
gation, was only due to the level of irrigation. However, all 
the models that include B × E interaction had better pre-
diction accuracy than models that do not. Therefore, our 
results support our initial hypothesis that when HTPP data 
are collected in multiple environments, it is important to 
take into account the interaction terms because they can 
help increase prediction accuracy. However, the magnitude 
of the increase in prediction accuracy depends on the mag-
nitude of the interaction terms, that is, on the strength of 
the variation in the phenotype of the same lines between 
environments. We also found that in the three environ-
ments, the lower the time-point, the worse the predictions. 
However, in the Reduced Irrigation environment, the best 
predictions were observed at time-point 6, while in the 
Drought and Irrigated environment, the best predictions 
were observed at time-point 7. On the other hand, when we 
wanted to predict 90% of the lines that were unobserved in 
only one environment, the best predictions were observed 
at time-points 7 and 9 in two environments (Drought and 
Irrigated), but even at time-point 6, reasonable predictions 
were observed for these two environments. In general, 
there is an optimum time-point that has the best prediction 
ability. In this study the three environments were consid-
ered as specific ecological conditions (represeting target 
populations of environments) with one environment per 
ecological condition, therefore further studies including 
sample of more environments per ecological conditions 
will be necessary for further investigation.

It is important to point out that models M3, M5 and 
M6 are equivalent to the single-environment models with 
bands proposed by Montesinos-López et al. [13], and com-
paring these models with the rest of the models we see that 
models M3, M5 and M6 are only superior to models M1, 
M2 which ignore the information of the bands. But in gen-
eral these models (M3, M5 and M6) produce lower predic-
tion accuracies than the rest of the models proposed here 
(M7–M14). This provides empirical evidence that taking 
into account mainly the band x environment interaction 
term helps to improve prediction accuracy.

Bayesian functional regression models
Another important result of this study is that in addition 
to conventional models (M1, M2, M3, M4, M9, and M10), 
we proposed functional regression models (M5, M6, M7, 
M8, M11, M12, M13, and M14). The Bayesian functional 
regression is an emerging statistical approach that is use-
ful when hundreds of variables are repeatedly measured 
in each experimental unit, yielding a large number of 
observations. The primary observation unit is viewed as 

a curve or, usually, a function (such as in the context of 
HTPP data, where hundreds of data points are measured 
at different wavelengths for each unit). This characteristic 
of the data complicates the use of standard longitudinal 
modeling strategies, such as random effect models and 
marginal models, where rigorous assumptions of intra-
subject correlation structure are required. Functional 
regression analysis is increasing in popularity because 
few assumptions are required for the mean structures 
and no assumptions are needed for the intra-unit corre-
lation structure of the data. Under this approach, obser-
vations of the same unit are viewed as a sample from a 
functional space, that is, the discrete samples measured 
are assumed to come from an underlying curve with con-
tinuous function forms.

The proposed functional regression models (with 
B-spline and Fourier basis) turned out to be as competi-
tive as conventional regression models, but the functional 
regression models, as compared to conventional models, 
have the advantage of being parsimonious because fewer 
beta coefficients are needed. For example, in our study, 
instead of 250 beta coefficients needed for modeling the 
250 bands, only 21 of them (that correspond to 21 basis) 
were used to represent each curve. In terms of imple-
mentation speed, the functional regression models only 
reduced the required time around 22%, on average, when 
compared to the conventional models. However, as the 
number of bands increases (>1000), the speed of the func-
tional regression models should be considerably faster 
than that of the conventional models, since we should be 
able to model hundreds of bands with only a few bases. 
It can be hypothetized that the 250 functional predictors 
could be treated in the same way as usually SNP mark-
ers are treated in GBLUP method, that is, to build a band 
relationship matrix with the 250 wavelengths. In this case 
the model will include another kernel (the band kernel) 
and it will be essentially equivalent in terms of complexity 
to that used in GBLUP even if the number of bands is very 
large. Further research should be performed to compare 
the prediction accuracy of a band relationship model ver-
sus that achieved using the functional regression models.

Implementation of the Bayesian functional regression 
models
Our study’s third significant contribution is that the pro-
posed functional regression models can be implemented 
with the existing software. We implemented these models 
using the Bayesian Generalized Linear Regression (BGLR) 
R-package [5]. Details of the implementation of the pro-
posed models (conventional and functional regression) are 
given in “Appendix 1”. Implementing the functional regres-
sion models in the standard software is possible because 
a two-step process is needed to model a functional 
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regression model. In the first stage, the corresponding 
design matrix for the functional covariate is computed; in 
the second stage, this design matrix is assumed known, so 
the required parameters that include the parameters for 
the functional covariate are estimated. The steps required 
to implement and use the design matrix in all functional 
regressions models are given in “Appendix 1”. First, the 
design matrix for the functional covariate(s) is created; 
then this design matrix is used to estimate the parameters 
of the functional beta coefficients.

Advantages of the Bayesian functional regression models
The proposed approach for implementing functional 
regression models is flexible, as it can be implemented 
with complex models and large data sets. This is not 
possible with the ‘fda.usc’ library of Febrero Bande and 
Oviedo de la Fuente [7], which was created for imple-
menting functional data analysis (exploratory, descrip-
tive, regression analysis of functional data) and recently 
used by Montesinos-López et al. [13] for single-environ-
ment models. Another advantage of implementing our 
proposed functional regression models in BGLR is that 
we can change the priors for the random or fixed effects 
of the functional covariates, which makes it possible 
to implement variable selection ideas and the Bayesian 
alphabet (Bayesian ridge regression, Bayes A, Bayes B, 
Bayes C, Bayes Lasso and GBLUP) in a straightforward 
manner. As already mentioned, Bayesian Functional 
regression models are parsimonious, so that as the num-
ber of bands increases, the computing time of these mod-
els provides an important advantage over conventional 
models.

Conclusions
In this paper, we propose conventional Bayesian regres-
sion models and Bayesian functional regression mod-
els for jointly modelling HTPP data with pedigree or 
genomic information that take into account interaction 
terms (G × E and B × E). We found that, in this case, tak-
ing into account genomic (or pedigree) information did 
not improve prediction accuracy in comparison to those 
models that ignore this information, but the proposed 
method are easy to implement in R under a Bayesian 
framework. We also found that G ×  E did not improve 
the models’ prediction accuracy, but B ×  E interaction 
did. We also found that in general, in the three environ-
ments, the lower the time-point, the worse the predic-
tions, while in the Reduced Irrigation environment, the 
best predictions were observed at time-point 6. In the 
90CV, when 90% of the lines in one environment are pre-
dicted using information from the other environments, 

the best predictions were for time-points 7 and 9 in the 
three environments. The proposed Bayesian functional 
regression models (with B-splines and Fourier basis) were 
implemented in R-software BGLR, which is very popular 
in genomic selection for whole-genome prediction.

We also provide details for implementing the proposed 
models and those familiar with the BGLR package will 
realize that implementing the two Bayesian functional 
regressions models with B-spline and Fourier basis is 
straightforward. In terms of prediction accuracy, the pro-
posed functional regression models (with B-splines and 
Fourier basis) were not better than the conventional regres-
sion models; however, the functional regression models 
were slightly better than the conventional models in terms 
of computational speed since the functional regression 
models were slightly faster than the conventional models. 
This was due to the reduced number of beta coefficients 
that need to be estimated for the functional regression 
models compared to those needed in the conventional 
models. We found that the best models in terms of pre-
diction accuracy were those that take into account B × E 
interaction.
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###Preliminaries for implementing the 14 proposed models######################### 

rm(list=ls())  # remove everything from memory in the working environment 

setwd("C:\\Osval") 

library(fda) 

library("fda.usc") 

library(BGLR) 

load("HTP_Data_976_Blues.RData") 

ls() 

####################Getting the name of Wavelengths######################### 

Wavelengths=c(Wavelengths) 

Wavelengths 

LG=t(chol(G976)) 

########################Selecting the phenotype response-Yield######################### 

y1=c(Y976[,2]) 

X=X976[,-c(1,2,3)] 

All.Bands1=X 

All.Bands=All.Bands1 

X=X 

############Specifying the number of iterations and burning number############# 

NIter=20000 

Nburn=10000 

#####Creating the design matrix of environment ################################# 

Z.E=model.matrix(~0+as.factor(X976$Env)) 

#####Creating the desing matriz of Lines ########################## 
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Z.G=model.matrix(~0+as.factor(X976$Gids)) 

Z.G=Z.G%*%LG 

#####Creating the desing matrix of GenotypexEnviornment interaction############# 

Z.GE=model.matrix(~0+Z.G:as.factor(X976$Env)) 

######################### Model 1-for time point 2################################# 

ETA1=list(Env=list(X=Z.E,model="FIXED"), Line=list(X=Z.G,model="BRR")) 

FM1=BGLR(y=y1,ETA=ETA1,nIter=NIter,burnIn=Nburn , weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 2-for time point 2################################## 

ETA2=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 
LinexEnv=list(X=Z.GE,model="BRR")) 

FM2=BGLR(y=y1,ETA=ETA2,nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

################################Model 3-for time point 2########################### 

#########Selecting the bands corresponding to point time 2###################### 

Data.T=All.Bands[,251:500] 

X11= as.data.frame(Data.T) 

ETA3=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 
Bands=list(X=X11,model="BRR")) 

FM3=BGLR(y=y1,ETA=ETA3, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 4-for time point 2################################### 

ETA4=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 
LinexEnv=list(X=Z.GE,model="BRR"), Bands=list(X=X11,model="BRR")) 

FM4=BGLR(y=y1,ETA=ETA4, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 5-for time point 2################################### 

##Creating the design matrix for the functional regression part using bspline basis ############## 

n.basis=21 

bspl = create.bspline.basis(range(c(Wavelengths)),nbasis=n.basis,breaks = NULL ,norder=4) 
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n.ind=dim(All.Bands)[1] 

X.FDA=matrix(NA, nrow=n.ind,ncol=n.basis) 

for (h in 1:n.ind){ 

smf=smooth.basisPar(argvals=c(Wavelengths),y=as.numeric(Data.T[h,]),lambda=0.1,fdobj=bspl,Lfd
obj=2) 

cv_sp_pn = smf$fd$coefs 

I_KL = inprod(bspl, bspl) 

xt_h=t(I_KL%*%cv_sp_pn) 

X.FDA[h,]=xt_h 

} 

Pbspl = eval.penalty (bspl, Lfdobj=0) 

EV_bs = eigen(Pbspl) 

Pbspl_sq_inv = EV_bs$vectors%*%sqrt(diag(1/abs(EV_bs$values)))%*%t(EV_bs$vectors) 

X.FDA = X.FDA%*% Pbspl_sq_inv 

ETA5=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), Bands=list(X= 
X.FDA, model="BRR")) 

FM5=BGLR(y=y1,ETA=ETA5, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 6-for time point 2################################### 

#######Creating the design matrix for the functional regression part using Fourier basis######### 

bspF=create.fourier.basis(range(c(Wavelengths)),nbasis=n.basis,period=diff(range(c(Wavelengths)))
) 

X.Fu=matrix(NA, nrow=n.ind,ncol=n.basis) 

for (h in 1:n.ind){ 

smf=smooth.basisPar(argvals=c(Wavelengths),y=as.numeric(Data.T[h,]),lambda=0.1,fdobj=bspF,Lf
dobj=2) 

cv_sp_pn = smf$fd$coefs 

I_KL = inprod(bspl, bspl) 

xt_h=t(I_KL%*%cv_sp_pn) 

X.Fu[h,]=xt_h 

} 
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PF = eval.penalty (bspF, Lfdobj=0) 

PF[1,1]=1 

EV_F = eigen(PF) 

PF_sq_inv = EV_F$vectors%*%sqrt(diag( 1/(EV_F$values)))%*%t(EV_F$vectors) 

X.Fu = X.Fu%*% PF_sq_inv 

ETA6=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), Bands=list(X= 
X.Fu, model="BRR")) 

FM6=BGLR(y=y1,ETA=ETA6, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 7-for time point 2################################## 

ETA7=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 
LinexEnv=list(X=Z.GE,model="BRR"),Bands=list(X= X.FDA, model="BRR")) 

FM7=BGLR(y=y1,ETA=ETA7, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 8-for time point 2################################## 

ETA8=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 
LinexEnv=list(X=Z.GE,model="BRR"),Bands=list(X= X.Fu, model="BRR")) 

FM8=BGLR(y=y1,ETA=ETA8, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

##########################Model 9-for time point 2################################## 

#######Creating the design matrix for the interaction between Environments and Bands######## 

Z.IT=model.matrix(~0+Z.E:as.matrix(X11)) 

ETA9=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), Bands=list(X=X11, 
model="BRR"), EnvxBands= list(X= Z.IT,model="BRR")) 

FM9=BGLR(y=y1,ETA=ETA9, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 10-for time point 2################################# 

ETA10=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 
LinexEnv=list(X=Z.GE,model="BRR"),Bands=list(X=X11, model="BRR"), EnvxBands= list(X= 
Z.IT,model="BRR")) 

FM10=BGLR(y=y1,ETA=ETA10, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 
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#########################Model 11-for time point 2################################# 

Z.IF=model.matrix(~0+Z.E:X.FDA) 

ETA11=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"),Bands=list(X=X.F
DA, model="BRR"), EnvxBands= list(X= Z.IF,model="BRR")) 

FM11=BGLR(y=y1,ETA=ETA11, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 12-for time point 2################################# 

Z.IFu=model.matrix(~0+Z.E:X.Fu) 

ETA12=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 
Bands=list(X=X.Fu, model="BRR"), EnvxBands= list(X= Z.IFu,model="BRR")) 

FM12=BGLR(y=y1,ETA=ETA12, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 13-for time point 2################################# 

ETA13=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 
LinexEnv=list(X=Z.GE,model="BRR"),Bands=list(X=X.FDA, model="BRR"), EnvxBands= 
list(X= Z.IF,model="BRR")) 

FM13=BGLR(y=y1,ETA=ETA13, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 14-for time point 2################################# 

ETA14=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 
LinexEnv=list(X=Z.GE,model="BRR"),Bands=list(X=X.Fu, model="BRR"), EnvxBands= list(X= 
Z.IFu,model="BRR")) 

FM14=BGLR(y=y1,ETA=ETA14, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 
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Fig. 8  Heatmap for the 250 bands in environment Drought. In the 
x-axis the bands are presented from the lowest to largest wavelength 
measured (392–851 nm), while in the y-axis the wavelengths are 
clustered
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Fig. 9  Heatmap for the 250 bands in environment Irrigated. In the 
x-axis the bands are presented from the lowest to largest wavelength 
measured (392–851 nm), while in the y-axis the wavelengths are 
clustered

Appendix 2: Additional plots
See Figs. 8, 9, 10, 11, and 12.
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Fig. 10  Heatmap for the 250 bands in environment Reduced 
Irrigated. In the x-axis the bands are presented from the lowest to 
largest wavelength measured (392–851 nm), while in the y-axis the 
wavelengths are clustered
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Fig. 11  Comparison of time-points in the Drought, Irrigated and Reduced Irrigation environments for models M1, M2, M3, and M4

Fig. 12  Comparison of time-points in the Drought, Irrigated and Reduced Irrigation environments for models M6, M8, M9, M10, M12, and M14
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Model Time WO WA WG

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

SE SE SE SE SE SE SE SE SE

M1 1 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 2 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 3 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 4 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 5 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 6 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 7 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 8 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 9 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M2 1 0.011 0.011 0.02 0.023 0.027 0.019 0.013 0.015 0.019

M2 2 0.011 0.011 0.021 0.012 0.023 0.017 0.012 0.013 0.017

M2 3 0.011 0.011 0.021 0.021 0.018 0.017 0.008 0.01 0.015

M2 4 0.012 0.011 0.021 0.022 0.026 0.018 0.008 0.009 0.016

M2 5 0.011 0.011 0.022 0.008 0.014 0.016 0.006 0.013 0.015

M2 6 0.012 0.011 0.021 0.012 0.015 0.018 0.009 0.01 0.013

M2 7 0.012 0.012 0.02 0.016 0.02 0.017 0.008 0.011 0.009

M2 8 0.011 0.011 0.02 0.011 0.016 0.017 0.011 0.012 0.012

M2 9 0.011 0.011 0.02 0.012 0.019 0.015 0.009 0.011 0.011

M3 1 0.014 0.016 0.019 0.011 0.016 0.019 0.013 0.014 0.018

M3 2 0.014 0.013 0.017 0.014 0.012 0.018 0.014 0.012 0.016

M3 3 0.012 0.011 0.016 0.01 0.012 0.016 0.011 0.008 0.014

M3 4 0.013 0.014 0.013 0.011 0.013 0.013 0.012 0.011 0.012

M3 5 0.013 0.011 0.016 0.011 0.01 0.017 0.012 0.009 0.015

M3 6 0.015 0.015 0.019 0.014 0.016 0.017 0.013 0.014 0.018

M3 7 0.011 0.015 0.013 0.009 0.016 0.014 0.009 0.013 0.011

M3 8 0.008 0.012 0.017 0.007 0.01 0.018 0.009 0.009 0.015

M3 9 0.011 0.009 0.014 0.009 0.009 0.015 0.009 0.008 0.013

M4 1 0.013 0.018 0.02 0.008 0.018 0.017 0.01 0.017 0.013

M4 2 0.013 0.015 0.016 0.017 0.015 0.013 0.01 0.01 0.01

M4 3 0.01 0.014 0.013 0.009 0.019 0.017 0.011 0.012 0.017

M4 4 0.013 0.015 0.015 0.005 0.019 0.013 0.01 0.004 0.015

M4 5 0.011 0.013 0.013 0.007 0.014 0.015 0.015 0.008 0.017

M4 6 0.017 0.015 0.018 0.011 0.014 0.016 0.013 0.008 0.015

M4 7 0.007 0.013 0.009 0.013 0.014 0.009 0.007 0.016 0.01

M4 8 0.008 0.011 0.013 0.01 0.012 0.016 0.007 0.01 0.01

M4 9 0.011 0.009 0.01 0.007 0.009 0.012 0.008 0.01 0.013

M5 1 0.014 0.012 0.018 0.012 0.013 0.019 0.014 0.012 0.017

M5 2 0.013 0.011 0.021 0.012 0.012 0.021 0.012 0.011 0.019

M5 3 0.012 0.011 0.018 0.01 0.012 0.019 0.01 0.01 0.016

Appendix 3
Standard errors (SE) fof the average Pearson correla-
tions (APC) for each proposed model, time point, envi-
ronment, without genomic and pedigree information 
(WO), only with pedigree information (A), and only with 
genomic information (WG).
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Model Time WO WA WG

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

SE SE SE SE SE SE SE SE SE

M5 4 0.013 0.014 0.016 0.011 0.014 0.016 0.012 0.012 0.014

M5 5 0.014 0.013 0.016 0.011 0.014 0.018 0.012 0.013 0.015

M5 6 0.014 0.015 0.02 0.01 0.018 0.02 0.012 0.016 0.018

M5 7 0.012 0.017 0.012 0.009 0.016 0.012 0.01 0.016 0.011

M5 8 0.011 0.014 0.017 0.009 0.013 0.017 0.011 0.01 0.015

M5 9 0.012 0.008 0.015 0.008 0.01 0.016 0.008 0.011 0.014

M6 1 0.014 0.013 0.018 0.012 0.015 0.018 0.013 0.013 0.016

M6 2 0.014 0.011 0.021 0.012 0.012 0.021 0.013 0.01 0.018

M6 3 0.012 0.012 0.018 0.009 0.013 0.018 0.011 0.012 0.016

M6 4 0.013 0.013 0.016 0.011 0.014 0.015 0.012 0.01 0.013

M6 5 0.013 0.013 0.015 0.01 0.014 0.017 0.012 0.013 0.015

M6 6 0.012 0.012 0.019 0.01 0.011 0.019 0.012 0.01 0.017

M6 7 0.01 0.015 0.011 0.008 0.016 0.013 0.009 0.015 0.01

M6 8 0.011 0.011 0.016 0.009 0.011 0.017 0.009 0.009 0.015

M6 9 0.011 0.008 0.015 0.008 0.009 0.016 0.01 0.008 0.013

M7 1 0.014 0.018 0.02 0.018 0.026 0.02 0.012 0.016 0.018

M7 2 0.01 0.013 0.019 0.008 0.019 0.018 0.008 0.016 0.015

M7 3 0.011 0.016 0.014 0.009 0.02 0.014 0.011 0.012 0.015

M7 4 0.013 0.022 0.015 0.013 0.02 0.015 0.009 0.008 0.012

M7 5 0.013 0.014 0.015 0.01 0.014 0.016 0.009 0.009 0.014

M7 6 0.017 0.015 0.019 0.013 0.017 0.016 0.009 0.011 0.012

M7 7 0.008 0.013 0.012 0.017 0.011 0.016 0.009 0.011 0.023

M7 8 0.01 0.009 0.014 0.008 0.012 0.015 0.011 0.008 0.015

M7 9 0.01 0.007 0.011 0.01 0.008 0.012 0.01 0.011 0.013

M8 1 0.015 0.017 0.02 0.014 0.026 0.017 0.009 0.016 0.016

M8 2 0.012 0.013 0.019 0.016 0.015 0.021 0.008 0.011 0.013

M8 3 0.012 0.015 0.014 0.007 0.018 0.015 0.01 0.014 0.016

M8 4 0.011 0.014 0.013 0.008 0.014 0.014 0.011 0.011 0.01

M8 5 0.011 0.01 0.012 0.005 0.01 0.016 0.012 0.009 0.014

M8 6 0.013 0.007 0.014 0.018 0.012 0.016 0.012 0.008 0.013

M8 7 0.007 0.011 0.009 0.011 0.011 0.015 0.009 0.014 0.02

M8 8 0.008 0.009 0.013 0.007 0.011 0.017 0.01 0.01 0.014

M8 9 0.01 0.008 0.011 0.01 0.01 0.012 0.009 0.011 0.012

M9 1 0.011 0.011 0.02 0.009 0.011 0.021 0.01 0.01 0.019

M9 2 0.01 0.01 0.014 0.01 0.011 0.015 0.01 0.01 0.012

M9 3 0.008 0.01 0.013 0.005 0.011 0.013 0.008 0.01 0.011

M9 4 0.01 0.009 0.012 0.008 0.007 0.013 0.01 0.006 0.009

M9 5 0.008 0.007 0.013 0.006 0.005 0.013 0.008 0.004 0.011

M9 6 0.007 0.007 0.015 0.006 0.007 0.015 0.007 0.008 0.011

M9 7 0.007 0.008 0.011 0.006 0.008 0.013 0.006 0.008 0.007

M9 8 0.006 0.008 0.014 0.005 0.008 0.012 0.004 0.007 0.01

M9 9 0.008 0.011 0.012 0.005 0.011 0.013 0.006 0.012 0.01

M10 1 0.011 0.007 0.012 0.011 0.008 0.017 0.013 0.01 0.015

M10 2 0.009 0.006 0.012 0.013 0.013 0.014 0.01 0.007 0.012

M10 3 0.008 0.009 0.01 0.008 0.009 0.013 0.007 0.009 0.012

M10 4 0.009 0.008 0.011 0.006 0.006 0.014 0.008 0.008 0.009

M10 5 0.008 0.008 0.014 0.006 0.007 0.013 0.011 0.005 0.008
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Model Time WO WA WG

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

SE SE SE SE SE SE SE SE SE

M10 6 0.006 0.009 0.01 0.004 0.006 0.015 0.008 0.007 0.011

M10 7 0.007 0.01 0.008 0.006 0.01 0.013 0.007 0.009 0.009

M10 8 0.007 0.008 0.017 0.006 0.006 0.013 0.004 0.006 0.007

M10 9 0.008 0.013 0.007 0.009 0.009 0.013 0.007 0.015 0.009

M11 1 0.01 0.012 0.018 0.008 0.014 0.019 0.01 0.012 0.016

M11 2 0.01 0.01 0.018 0.009 0.011 0.017 0.01 0.008 0.015

M11 3 0.009 0.009 0.015 0.007 0.009 0.015 0.009 0.008 0.014

M11 4 0.011 0.008 0.015 0.008 0.008 0.016 0.011 0.008 0.013

M11 5 0.009 0.01 0.015 0.007 0.008 0.014 0.007 0.008 0.012

M11 6 0.007 0.009 0.017 0.006 0.009 0.017 0.006 0.009 0.014

M11 7 0.006 0.008 0.009 0.006 0.009 0.013 0.005 0.009 0.009

M11 8 0.006 0.007 0.013 0.005 0.007 0.014 0.004 0.006 0.011

M11 9 0.007 0.013 0.013 0.006 0.012 0.013 0.007 0.014 0.01

M12 1 0.01 0.012 0.019 0.008 0.014 0.02 0.009 0.012 0.017

M12 2 0.012 0.01 0.018 0.009 0.011 0.017 0.01 0.01 0.015

M12 3 0.011 0.012 0.015 0.01 0.011 0.016 0.011 0.01 0.015

M12 4 0.011 0.011 0.014 0.009 0.01 0.015 0.012 0.011 0.013

M12 5 0.011 0.011 0.017 0.009 0.009 0.018 0.007 0.008 0.013

M12 6 0.008 0.008 0.016 0.005 0.009 0.016 0.006 0.009 0.015

M12 7 0.006 0.008 0.009 0.005 0.009 0.011 0.007 0.009 0.008

M12 8 0.007 0.008 0.014 0.005 0.008 0.013 0.006 0.008 0.012

M12 9 0.007 0.013 0.012 0.006 0.013 0.014 0.007 0.014 0.01

M13 1 0.012 0.009 0.013 0.012 0.018 0.017 0.008 0.01 0.014

M13 2 0.008 0.008 0.014 0.007 0.018 0.015 0.007 0.007 0.015

M13 3 0.009 0.008 0.01 0.006 0.01 0.013 0.007 0.007 0.008

M13 4 0.009 0.008 0.012 0.006 0.007 0.013 0.007 0.006 0.01

M13 5 0.008 0.007 0.014 0.006 0.01 0.013 0.008 0.006 0.008

M13 6 0.006 0.009 0.01 0.006 0.008 0.012 0.012 0.008 0.007

M13 7 0.006 0.01 0.007 0.006 0.008 0.013 0.009 0.012 0.009

M13 8 0.006 0.007 0.015 0.007 0.006 0.014 0.007 0.005 0.013

M13 9 0.006 0.015 0.008 0.01 0.013 0.014 0.006 0.013 0.01

M14 1 0.009 0.008 0.013 0.012 0.015 0.016 0.01 0.007 0.014

M14 2 0.009 0.008 0.014 0.008 0.015 0.016 0.008 0.009 0.011

M14 3 0.011 0.009 0.011 0.009 0.008 0.015 0.01 0.009 0.012

M14 4 0.011 0.01 0.014 0.009 0.013 0.012 0.011 0.009 0.009

M14 5 0.008 0.009 0.014 0.01 0.008 0.016 0.009 0.007 0.011

M14 6 0.006 0.009 0.011 0.004 0.005 0.014 0.01 0.009 0.009

M14 7 0.008 0.008 0.006 0.006 0.009 0.01 0.009 0.013 0.012

M14 8 0.006 0.007 0.012 0.005 0.01 0.014 0.005 0.01 0.009

M14 9 0.008 0.014 0.008 0.009 0.012 0.012 0.007 0.012 0.006
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