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METHODOLOGY

A real‑time phenotyping framework 
using machine learning for plant stress severity 
rating in soybean
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Abstract 

Background:  Phenotyping is a critical component of plant research. Accurate and precise trait collection, when 
integrated with genetic tools, can greatly accelerate the rate of genetic gain in crop improvement. However, effi-
cient and automatic phenotyping of traits across large populations is a challenge; which is further exacerbated by 
the necessity of sampling multiple environments and growing replicated trials. A promising approach is to leverage 
current advances in imaging technology, data analytics and machine learning to enable automated and fast phe-
notyping and subsequent decision support. In this context, the workflow for phenotyping (image capture → data 
storage and curation → trait extraction → machine learning/classification → models/apps for decision support) has 
to be carefully designed and efficiently executed to minimize resource usage and maximize utility. We illustrate such 
an end-to-end phenotyping workflow for the case of plant stress severity phenotyping in soybean, with a specific 
focus on the rapid and automatic assessment of iron deficiency chlorosis (IDC) severity on thousands of field plots. 
We showcase this analytics framework by extracting IDC features from a set of ~4500 unique canopies representing a 
diverse germplasm base that have different levels of IDC, and subsequently training a variety of classification models 
to predict plant stress severity. The best classifier is then deployed as a smartphone app for rapid and real time sever-
ity rating in the field.

Results:  We investigated 10 different classification approaches, with the best classifier being a hierarchical classifier 
with a mean per-class accuracy of ~96%. We construct a phenotypically meaningful ‘population canopy graph’, con-
necting the automatically extracted canopy trait features with plant stress severity rating. We incorporated this image 
capture → image processing → classification workflow into a smartphone app that enables automated real-time 
evaluation of IDC scores using digital images of the canopy.

Conclusion:  We expect this high-throughput framework to help increase the rate of genetic gain by providing a 
robust extendable framework for other abiotic and biotic stresses. We further envision this workflow embedded onto 
a high throughput phenotyping ground vehicle and unmanned aerial system that will allow real-time, automated 
stress trait detection and quantification for plant research, breeding and stress scouting applications.
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Background
Soybean (Glycine max (L.) Merr.) is a huge source 
of revenue for the United States, with production of 

approximately USD 40 billion in 2014 [1]. There are vari-
ous factors that affect soybean yield, such as nutrient 
availability, weed management, genetics, row configura-
tion, stress (biotic and abiotic) and soil fertility [2]. Iron 
deficiency chlorosis (IDC) is a yield-limiting abiotic stress 
which affects plants that usually grow on calcareous soil 
with high pH. Soybean plants growing in calcareous soils 
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(soils with free calcium carbonate and high pH) are una-
ble to uptake iron from the soil leading to iron deficiency 
in plants. IDC causes reduced plant growth leading to a 
reduction in yield potential and quality of the crop. In 
the mid-west USA, IDC is one of the major problems 
reducing soybean yield, by as much as 20% for each vis-
ual rating point [3]. This causes an estimated economic 
loss of $ 260 million in 2012 alone [4]. IDC symptoms are 
observed at early plant growth stages on newly grown 
leaf tissue where chlorosis (yellowing) occurs in between 
the veins of the leaves, while the veins themselves remain 
green [5]. The extent of the problem varies depending on 
the cultivar, field and the year.

Soybean breeders in the US breed for genotypes with 
improved IDC tolerance by selecting for genes that help 
make the plant more iron uptake efficient [6]. Selection 
for desirable soybean genotype (with IDC tolerance) is 
done either through phenotyping in the field or in green-
houses [7], or genotyping with molecular markers linked 
to genes that improve IDC tolerance. More than 10 genes 
have been reported to be associated with improving IDC 
tolerance [8, 9] making genotyping approaches onerous 
where a breeding program may be working to select for 
several other traits. Phenotyping is most suitable as it 
allows identification of soybean genotypes that have an 
acceptable IDC tolerance. Furthermore, this method is 
cost effective and potentially requires little access to spe-
cialized labs.

Current methods for phenotypically measuring IDC 
are completely visual and labor-intensive. Rodriguez de 
Cianzio et  al. [7] and Froechlich and Fehr [3] reported 
that visual scoring is the simplest, subjective measure-
ment that requires relatively less labor. However, it has 
reduced accuracy if the evaluation is made in diverse 
environments and by different raters [10]. In addition, 
there can be intra-rater repeatability or inter-rater reli-
ability [11] issues leading to incorrect visual scores. It 
also depends on the subjectivity (and its variability) of the 
IDC rater. Specifically, the human eye can get tired after 
long hours of scoring plants for various traits, which can 
produce large intra-rater variability in rating scores, thus 
resulting in diminished accuracy and reproducibility. In 
a breeding program, hundreds or thousands of plots are 
rated in a short time frame. A short time frame is crucial 
because one has to minimize plant stage variability, i.e., 
variability that is introduced if genotypes are rated over 
a longer time frame. It is therefore essential to develop 
methods that allow for unbiased, accurate, cost effective 
and rapid assessment for IDC in particular, and plant 
biotic (e.g., diseases) and abiotic stresses in general. There 
has been recent work in this regard to design, develop and 
deploy high efficiency methods/tools to quantify leaf sur-
face damage [12] as well as plants response to pathogens 

[13]. Additionally, a number of approaches using imaging 
methods for phenotyping, such as fluorescence and spec-
troscopic imaging have been successful for stress-based 
phenotyping [14], high throughput machine vision sys-
tems that use image analysis for phenotyping Arabidop‑
sis thaliana seedlings [15] and barley [16], hyperspectral 
imaging for drought stress identification in cereal [17], 
and a combination of digital and thermal imaging for 
detecting regions in spinach canopies that respond to soil 
moisture deficit [18] which have proven to be successful. 
However, a simple, user friendly framework is unavailable 
for the public to phenotype for IDC in soybean plants. The 
availability of a simple modular approach could poten-
tially be generalized for phenotyping of multiple stresses.

Motivated by these reasons, we developed a simple 
framework (image capture  →  data storage and cura-
tion  →  trait extraction  →  machine learning/classifica-
tion →  models/smartphone apps for decision support) 
that extracts features that are known to quantify the 
extent of IDC (amount of yellowing, amount of brown-
ing) from digital images. To determine a relationship 
between these features and their respective ratings, we 
evaluated a host of machine learning techniques, further 
elaborated in the latter stages of this paper, to perform 
supervised classification. Subsequently, using informa-
tion obtained from these classifiers, a physically mean-
ingful population canopy graph (PCG) connecting the 
features with the visual IDC rating was constructed for 
a diverse soybean germplasm. This complete framework, 
which is based on fast feature extraction and classifica-
tion, can then be used as a high throughput phenotyping 
(HTP) system for real time classification of IDC. We ena-
ble real time phenotyping by implementing the software 
framework as a GUI-based, user-friendly software that 
is also deployed on smartphones. This step successfully 
abstracts the end-user from the mathematical intrica-
cies involved, thus enabling widespread use. We show-
case this software framework by extracting IDC features 
(amount of yellowing, amount of browning) from a set of 
4366 plants that have different IDC resistances.

We envision our classifier based framework as a mod-
ular, extensible and accurate phenotyping platform for 
plant researchers including breeders and biologists.

Methods
Genetic material and field phenotyping
A total of 478 soybean genotypes, including 3 maturity 
checks and 475 soybean plant introduction (PI) lines 
acquired from the USDA soybean germplasm collec-
tion, were planted in the Bruner farm in Ames, IA, 2015, 
where soybean IDC was present in previous years. This 
set of PI lines exhibits a wide diversity in leaf and canopy 
shape [19]. The design for this field experiment follows a 
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randomized complete block design, with a total of four 
replications. Each PI line was planted once per replica-
tion, while the IDC checks (two) and maturity checks 
(three) were repeated at regular intervals in the field 
with four plots per replication. The plants were planted 
in 0.31  m length hill plot of five seeds per plot. At two 
soybean growth stages [20]: the second to third trifoliate 
(V2–V3) and fifth to sixth trifoliate (V5–V6) leaf stages, 
the soil pH was tested in the Soil and Plant Analysis 
Laboratory, Iowa State University. At each stage, eight 
soil samples were randomly collected from each repli-
cation and were mixed as one test sample. The soil pH 
values ranged at 7.80–7.95 and 7.75–7.85 at V2–V3 and 
V5–V6 growth stages, respectively. Field visual ratings 
(FVR) of IDC severity by experts were collected at V2–
V3 and V5–V6 growth stages, as well as two weeks after 
the V5–V6 stage to obtain soybean canopies with a vari-
ety of IDC expression. FVR was done on a scale of 1–5 
described by Lin et al. [21], where 1 indicates no chloro-
sis and plants were normal green; 2 indicates plants with 
modest yellowing of upper leaves; 3 indicates plants with 
interveinal chlorosis in the upper leaves but no stunting 
growth; 4 indicates plants are showing interveinal chlo-
rosis with stunting growth; and 5 indicates plants show 
severe chlorosis plus stunted growth and necrosis in the 
new youngest leaves and growing points.

Image acquisition
We utilized a Canon EOS REBEL T5i camera for image 
acquisition. Images were stored in the native RAW for-
mat. Substantial effort was put in to develop a standard 
imaging protocol (SIP) (Additional file 1) to ensure imag-
ing consistency and quality. The flash function was kept 
off and an umbrella was always used to shade the area 
under the camera view in order to minimize illumina-
tion discrepancies between images. A light/color cali-
bration protocol was also followed. An image of a color 
calibration chart (X-Rite ColorChecker Color Rendition 
Chart) was taken at the beginning of imaging operations, 
and every 20 min thereafter or whenever light condition 
changes (cloud cover, etc.). When taking pictures, the 
whole canopy was fit in the field of view of the camera. 
Weed control was practiced consistent with research plots 
and commercial farms; however, due to the small size of 
the field weed removal was done manually. Weeds in the 
view of camera were removed for enhanced efficiency of 
subsequent image processing. Images were taken across 
several days (at several times of the day) under various 
illumination conditions. Finally, the imaging protocol was 
chosen so that the imaging window and the camera reso-
lution resulted in images with at least 6 pixels/mm, ensur-
ing that the approach is transferable to other cameras that 
use an appropriate imaging window to get this resolution.

Dataset description
A total of 5916 RGB (493 plots including PI accessions 
and checks × 4 replications × 3 time points) images were 
acquired, along with subsequent FVR. Each time point 
consists of four repetitions for a total of 1972 (493 × 4) 
images, with 493 images per repetition. Image acquisition 
at each of these time points was vital to obtain a large 
variety of IDC symptoms, as IDC symptoms progress in 
time. The idea was to develop a dataset with similar num-
ber of observations per IDC rating. This was, however, 
not possible simply due to the fact that a large fraction of 
plants remained healthy (FVR = 1) throughout the image 
acquisition period. Following image acquisition, for qual-
ity control, each image was inspected visually, and those 
that did not adhere to the Standard Imaging Protocol 
(SIP) were removed, which resulted in 4366 images in the 
remaining image set.

Preprocessing and feature extraction
Preprocessing
White balance and color calibration  As the appearance 
of color is affected by lighting conditions, using a calibra-
tion chart enables color correction to be applied to ensure 
that colors are uniform throughout all the plant canopy 
images collected. We primarily used the grey squares to 
identify the white balance, while the green, brown and yel-
low squares were used to calibrate the hue values of green, 
brown and yellow. Hue is defined as the color or tint of 
an object. Hue quantifies color in terms of angle around 
a circle (or more precisely around a color hexagon) with 
values ranging from 0° to 359° [22]. The red color axis is 
usually set as 0°. The hue of brown ranges from 21° to 50°, 
whereas yellow hue ranges from 51° to 80° [23]. Calibration 
is done by identifying how much the hue value of the green, 
brown and yellow squares on the color calibration chart has 
drifted from the defined hue values. This drift correction 
is then applied to the canopy images. This preprocessing 
resulted in an analysis pipeline that was robust to changes 
in illumination.

Segmentation  Each image was converted from native Red, 
Green, Blue (RGB) format to HSV (Hue, Saturation, Value) 
format [22] to efficiently perform background removal, leav-
ing only the plant canopy (foreground). The background of 
an image (soil, debris) contains more gray pixels compared 
to the foreground (plant), and lacks green and yellow hue 
values; therefore, most of the background was removed by 
excluding pixels that had saturation value below a predefined 
threshold and hue values outside of a predefined range. The 
saturation threshold value was obtained by identifying the 
saturation values of the background in 148 diverse images. 
The hue range was simply obtained from the hue color 
wheel, removing pixels that were neither green nor brown. 
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This combined thresholding based on incorporating hue 
thresholding with saturation thresholding ensured a reliable 
and robust segmentation process.

Noise and outlier removal  Once segmentation was done, 
the connected components method [24] was used on the 
processed image to remove spurious outliers and noise 
from the image, (for example, plant debris on soil). This 
was accomplished by identifying clusters of pixels which 
are connected to one another, labelling them, and identi-
fying the largest connected component. Since the imag-
ing protocol was designed to ensure that the plant was 
centered in the imaging window and in the foreground, 
it follows that the largest connected component is invari-
ably the plant. Cleaning was done by removing any other 
connected components that contain fewer pixels than 
the largest connected component. Then, a mask of the 
isolated plant was applied onto the original RGB image 
in order to display the isolated plant in color. No signifi-
cant pixel loss was observed which is common in other 
thresholding methods [25]. The use of the connected 
components approach to isolate plants from background 
is extremely fast and accurate. In conjunction with a SIP, 
using connected components for preprocessing is very 

promising, especially for near real time phenotyping 
applications. The preprocessing sequence is illustrated in 
Fig. 1.

Feature extraction from expert elicitation
Field visual ratings are assigned based on the extent of 
chlorosis (yellowing) and necrosis (browning) expressed 
on the canopy, as described earlier and illustrated in Fig. 2. 
Elicitation from domain knowledge experts (i.e., raters) 
suggested that color signatures (green to yellow to brown), 
specifically extent of (dis)coloration (chlorosis →  yellow-
ing, and necrosis  →  browning) were viable predictors 
to quantify IDC expression. Each pixel of the processed 
image belonging to the canopy was identified as either 
green, yellow, or brown through evaluating their respective 
hue values to identify which hue ranges they belong to, and 
the extent of discoloration from green was represented in 
the form of the percentage of canopy area that experience 
these visual changes (Y and B%), as seen in Fig. 3.

(1)

Areayellow

Areatotal
× 100% = Percentageyellow ,

Areabrown

Areatotal
× 100% = Percentagebrown

Fig. 1  Image preprocessing sequence from original image of canopy to completed automated pre-processed field soybean canopies



Page 5 of 12Naik et al. Plant Methods  (2017) 13:23 

This expert elicitation informed processes resulted in each 
image being represented by a quantitative measure of yel-
lowing (Y%) and browning (B%), as shown in Eq. 1. 

Classification
In order to map these quantitative variables to the visu-
ally rated IDC ratings, we utilize several state of the art 

Fig. 2  Iron deficiency chlorosis severity description using a field visual rating scale of 1–5

Fig. 3  Feature extraction from plant canopies (top image) for iron deficiency chlorosis. The bottom left figure represents those regions in the canopy 
that are yellow in color, and the bottom right figure represents those regions in the canopy that are brown in color. The percentage spread of yellow 
and brown color are then taken as the two features
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machine learning algorithms to construct classification 
models. The field visual rating served as the categori-
cal output variable (classes) while the inputs were the 
2-tuple (Y, B%). The classification models are then even-
tually used to generate IDC ratings given different input 
variables.

The total dataset consisted of 4366 images following 
quality control as detailed in the “Dataset description” 
section. The images were sorted into 5 groups which 
correspond to their respective FVR, with majority of 
the observations falling into group 1 (FVR  =  1). The 
remaining groups (FVR  =  2/3/4/5) meanwhile con-
tained a balanced distribution of observations amongst 
themselves.

Due to the imbalanced nature of the dataset with a 
preponderance of images belonging to FVR 1, two vari-
ations of the dataset were used to develop classification 
models: (a) Using observations from time point 2 and (b) 
for a combination of time point 1, 2, and 3. Time point 
2 served as a standalone dataset due to the fact that it 
has the largest distribution of observations containing 
each of the FVRs. We utilized several classification algo-
rithms, namely classification trees (CT), random for-
ests (RF), Naïve Bayes (NB), linear discriminant analysis 
(LDA), quadratic discriminant analysis (QDA), multi-
class support vector machines (SVM), k-nearest neigh-
bors (KNN), and Gaussian mixture models (GMM). 
Building upon the results, we subsequently utilized the 
concept of hierarchical classification to develop two 
additional models using a combination of LDA and SVM 
algorithms.

The dataset was randomly sampled into two sub-
sets in a 75–25% ratio. The larger subset (75%) served 
as the training set, while the remaining subset served 
as the testing dataset (25%). We additionally evaluated 
the performance of the classifier across additional data-
sets. One dataset consisted of images from completely 
different genetic material. Additionally, we repeated 
the field experiment in 2016 and used the trained clas-
sifier on images from this experiment [26]. The training 
dataset is used to train the classifier, by learning a map-
ping of the Y and B% with their expected IDC ratings. 
Subsequently, the testing dataset is used to estimate the 
performance of the classification model, by applying it 
on the testing dataset to classify each observation. The 
performance of the classifier can be interpreted from the 
confusion matrix (Table  1). The diagonals on a confu-
sion matrix show the number of observations where, the 
predicted rating is equal to the actual rating, whereas the 
off-diagonal elements are observations that have been 
misclassified.

 An example confusion matrix for a binary classifica-
tion problem is shown below:

(a)	Accuracy which quantifies the fraction of the training 
dataset that is correctly predicted.

	  

(b)	Per-class accuracy is a more refined metric which 
calculates how the classifier performs for each of 
the classes. This is useful when the instances in each 
class vary a lot, i.e., when the classes are imbalanced 
(as is the case in this work), since accuracy is usually 
overestimated due to the impact of the class with the 
most instances dominating the accuracy statistic.

	  

where n number of classes, row row on the confusion 
matrix

c)	 Mean per-class accuracy (MPCA) is the mean per-
class accuracy over these classes.

	  

In addition, we compute the misclassification costs 
in order to quantify the cost of the misclassification 
errors—i.e., if an observation in rating 1 were to be clas-
sified as rating 5, it would have a higher misclassification 
cost than if it were to be classified as rating 2. Essentially, 
calculating the misclassification cost enables us to know, 
if errors are made, how bad the errors are. To do so, we 
defined a misclassification cost matrix, as detailed in 
Table 2. The off-diagonals of the matrix are the misclassi-
fication cost for each of the ratings, which are finite, real 
values [27]. For example, if the actual rating of an obser-
vation is rating 1, the error of misclassifying the observa-
tion to rating 5 is 4 times as costly as misclassifying the 
observation to rating 2, and so on. Then, misclassification 
cost is computed using Eq. 5.

(2)Accuracy =
TP + TN

TP + TN + FP + FN
× 100

(3)

Per class accuracy

=

i−th observation of row i

Sum of observations of row i
,

i = 1, . . . , n,

(4)

Mean Per Class Accuracy =
1

n

n∑

i=1

Per class accuracy

(5)
cost =

1

N

∑

i

∑

j

CMij ∗ wij ,

Table 1  Confusion matrix

Three measures of accuracy of the classifier are reported from the confusion 
matrix

Predicted positive 
(class 1)

Predicted negative 
(class 2)

Actual positive (class 1) True positive (TP) False negative (FN)

Actual negative (class 2) False positive (FP) True negative (TN)
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CMij confusion matrix, wij cost matrix, N number of 
observations

Next, we employ cross-validation to estimate the aver-
age generalization error for each classifier. Cross-valida-
tion essentially is a method of assessing the accuracy and 
validity of a statistical model for generalization on future 
datasets. From a generalizability standpoint, the absolute 
accuracy of a classifier is less important as it could be 
subject to bias and overfitting. Hence, cross-validation is 
a method of performance estimation based on the vari-
ance. The ideal estimation method would have low bias 
and low variance [28]. We used k-fold cross-validation, 
with k = 10 which is a good compromise between vari-
ance and bias [28]. K-fold CV was repeated 10 times to 
compute the mean cross-validation misclassification 
error for each model. While accuracy and MPCA detail 
the performance of a classifier on essentially the same 
dataset, mean cross-validation misclassification error 
provides information on how well the classifier performs 
on other datasets.

A brief description of classification algorithms deployed
We briefly describe each of the classification algorithms 
[29]. We refer the interested reader to a more detailed 
description of these methods in [30–32].

Decision trees  It is based on the construction of pre-
dictive models with a tree-like structure that correlates 
observations to their corresponding categories such as 
classes (for classification) and rewards (for decision-
making problems). These observations are sorted down 
the tree from the root to a leaf node, which in turn classi-
fies the observation. Decision trees [33] perform well on 
lower dimensional classification problems, but tend to fal-
ter when the dimension of the classes increases.

Random forests  An ensemble method employed to reg-
ularize the greedy, heuristics nature of the decision tree 
training which sometimes causes overfitting. This method 
[34] combines results and structures from a number of 
trees prior to coming to a conclusion. Multiple trees are 
grown from random sampling of the data. Nodes and 
branch choices of a tree are also determined through a 

non-deterministic manner. These models are more robust 
to uncertainties.

Naïve Bayes  A supervised classification technique for 
constructing classifiers of a probabilistic graphical model. 
It is based on the assumption that each feature is inde-
pendent of each other. Naïve Bayes [35] have been used 
in a variety of fields, and is a popular method for text cat-
egorization.

Linear discriminant analysis (LDA)  A linear classifica-
tion technique [36] based on the idea of Fisher’s Metric, 
with an aim to maximize between class variance, while 
minimizing within-class variance. This allows the linear 
combination of features to improve separability among 
two or more classes. This requires an assumption of equal 
variance–covariance matrices of the classes.

Quadratic discriminant analysis (QDA)  A modification 
of linear discriminant analysis, except a covariance matrix 
must be estimated for each class. This allows overcoming 
the problem where the variance–covariance differs sub-
stantially [36], where LDA will not perform well.

Support vector machine (SVM)  The most popular among 
supervised, discriminative kernel-based methods for clas-
sification. SVM [37] uses kernel functions to project data 
into a higher dimensional space in order to separate data 
from different classes which cannot be linearly separated. 
A hyperplane is constructed to determine the bounds in 
which each class is separated, to maximize class separabil-
ity.

K‑nearest neighbors (KNN)  A non-parametric classifica-
tion method [38]. This algorithm assigns the same class 
label to data samples as its k nearest neighbors based on 
a similarity metric defined on the feature space, where k 
is an integer. This nonlinear algorithm works reasonably 
well for multi-class classification problems.

Gaussian mixture model (GMM)  A generative, unsu-
pervised data model that aims to identify a set of Gauss-
ian distributions mixtures which best describe the data. 
GMM [39] is a probabilistic technique where every data 
example is expressed as a sample of the distribution which 
is a weighted sum of k Gaussian distribution. Once this 
model is created, a Bayes classifier is applied in attempt to 
solve classification problems.

Hierarchical classification
We subsequently pursued a hierarchical classification 
strategy that is motivated by expert elicitation of informa-
tion about IDC susceptibility. Hierarchical classification 

Table 2  Cost matrix, wij

Predicted ratings

Actual ratings 0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0
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is known to work well on datasets with a larger number 
of classes but with fewer observations. The IDC data set 
fell into this category. Also, the task of designing the hier-
archy in this classification strategy enables the inclusion 
of expert knowledge. Here, the hierarchical structure is 
predefined, based on insight and existing knowledge of 
class hierarchies, which then contributes to improving 
classification accuracy.

In this case, the hierarchies were identified based on 
the susceptibility of the genotypes to IDC. Specifically, 
rating 1 and 2 are usually taken together as low suscep-
tibility genotypes, while rating 4 and 5 are taken together 
as high susceptibility genotypes. We thus designed a 
two-step classification strategy: In Step A, a classifier is 
learnt that can separate the data into low, medium and 
high susceptibility groups. Step B then further classifies 
these groups into rating 1 or 2 (for the low susceptibil-
ity group), and rating 4 or 5 (for the high susceptibility 
group).

For Step A, we deploy both LDA and multi-class SVMs. 
The learnt classifier is called Model 0, and seeks to clas-
sify the dataset into three groups (low, medium and high 
susceptibility) based on their yellow and brown percent-
age. For Step B, we deploy Support Vector Machine as 
the classification is binary. Figure 4 displays a flowchart 
of this hierarchical classifier.

Results and discussion
A number of classification algorithms were capable of 
achieving high mean per class accuracy, more than 90%, 
for classification on the time point 2 data set. Hierarchi-
cal models performed relatively well, with a mean per 
class accuracy at 95.9%. More importantly, when the 
classifier made incorrect predictions, the results were 

predominantly within the same susceptibility class—i.e., 
an error in rating 1 typically falls to rating 2, and not into 
rating 5 etc. This is illustrated in the misclassification cost 
metric for each classifier, as detailed in Eq.  5. The best 
performing classifier, classification trees, were able to 
correctly predict new observations 100% of the time.

When data from all time points were used to train and 
test a classifier, the hierarchical model performed the 
best, with 91% accuracy. Other classifiers fell short of the 
90% mark. The decrease in accuracy was expected simply 
because combining all three time points caused the data 
set to be more imbalanced that before.

While being able to have high classification accuracy 
is important, the capability of a classifier to produce an 
interpretable PCG was extremely vital. This is quanti-
fied by the interpretability of the PCG, and is further dis-
cussed in the “PCG” and “Model selection” sections.

The results of each of the classification models are dis-
played in Tables  3 and 4. Table  3 consists of the results 
from a classification model developed using a sub-set of 
the IDC data (which consists of 3 time points). Instead 
of developing a model using 3 time points, this model 
was developed using data from time point 2 as it has the 
largest distribution of observations containing each of 
the FVRs. Table 4 consists of results from a model devel-
oped using the data spanning across all 3 time points (the 
whole dataset). 

Population canopy graph
It was interesting to note that the learnt classifier revealed 
insightful phenotypic intuition. Specifically, we queried 
the classifier to predict ratings for a uniform sampling of 
the Y and B% range. This information is used to construct 
a 2D plot that depicts decision boundaries that separate 

Feature vector 
(Brown %, 
Yellow %) 

ML 
Model 0 

Group 1 
Ratings 1,2 

Group 3 
Rating 3 

Group 2 
Ratings 4,5 

First stage of classification Second stage of classification 

ML 
Model 1 

ML 
Model 2 

Predicted 
Rating 1 

Predicted 
Rating 2 

Predicted 
Rating 3 

Predicted 
Rating 4 

Predicted 
Rating 5 

Fig. 4  Hierarchical classifier workflow



Page 9 of 12Naik et al. Plant Methods  (2017) 13:23 

various IDC classes (as a function of Y and B%), which we 
refer to as a population canopy graph (PCG). This graph, 
shown in Fig.  5 which displays the PCG output from 
Hierarchy2 classification results on the test set, correlates 
very well with expert intuition. Expert intuition suggests 
that ratings 1–3 exhibit low brown values (corresponding 
to minimal to no necrosis), which is clearly seen in the 
PCG in Fig. 5. Similarly, beyond a certain stage of necro-
sis, a plant is automatically rated as 5 irrespective of the 
amount of chlorosis. This trend is also exhibited by the 
nearly horizontal line marking the Rating 5 class in Fig. 5. 
Finally, the linear boundaries that allow a graceful transi-
tion from rating 1 through to 2 and 3, which is similar to 
how experts rate the transition of chlorosis.

Model selection
Several of the trained models exhibit good accuracy. We 
choose one of them as our best model based on a com-
bination of a set of two objective measures and one sub-
jective measure. The ideal model would have high MPCA 
and cross-validated MPCA as it illustrates the capability of 
the model to predict the IDC ratings of soybean through 
features extracted from images. We use MPCA instead of 
just accuracy due to the imbalanced nature of the data-
set, as accuracy alone gives a distorted picture as the class 
with more examples will dominate the statistic. These two 
constitute the set of objective measures. Our subjective 
measure is based on a notion of interpretability—which 
we define as the ability of the end-user (plant research-
ers, breeders, and/or farmer) to interpret the PCG created 

Table 3  Results for machine learning algorithm model accuracies developed using a sub-set of iron deficiency chlorosis 
data on a diverse set of soybean accessions

a  Mean per class accuracy
b  SVM and SVM
c  LDA and SVM

Algorithm Accuracy MPCAa Cross validated MPCA Interpretability Cost metric

CT 100.0 100.0 96.0 Medium 0.0000

KNN 99.7 96.7 95.0 Low 0.0031

RF 99.7 96.0 85.0 Low 0.0031

Hierarchyb 99.4 95.9 79.8 High 0.0062

QDA 99.4 92.0 98.9 Medium 0.0620

Hierarchyc 98.5 86.6 70.8 High 0.0155

GMMB 99.1 82.0 87.0 Medium 0.0093

NB 99.1 82.0 93.8 Medium 0.0093

LDA 98.8 79.3 84.3 High 0.0124

SVM 93.8 39.8 50.0 Low 0.1084

Table 4  Results for  machine learning algorithm model accuracies developed using the complete set of  iron deficiency 
chlorosis data on a diverse set of soybean accessions

a  Mean per class accuracy
b  SVM: using SVM for both classifiers
c  LDA and SVM

Algorithm Accuracy MPCAa Cross validated MPCA Interpretability Cost metric

CT 99.7 91.7 78.4 Low 0.0027

Hierarchyb 99.2 90.7 79.2 High 0.0082

Hierarchyc 98.3 84.0 79.0 High 0.0201

QDA 98.5 83.2 77.9 Medium 0.0201

NB 98.4 79.0 78.5 Medium 0.0284

KNN 99.5 75.8 84.3 Low 0.0073

RF 99.1 75.0 81.1 Low 0.0092

GMMB 99.4 74.2 82.7 Low 0.0064

LDA 98.5 71.7 76.9 High 0.0156

SVM 97.3 45.8 45.3 Low 0.0458
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and link it to the visible rating characteristics that are cur-
rently used. Specifically, we check to see if the shape of the 
decision boundaries produced by the model makes physi-
cal sense—that the decision boundaries correlated with 
the physical aspect of IDC, e.g.: plants with IDC rating 4 
and above display significantly more browning compared 
to ratings 3 and below. Interpretability was scored either 
‘Low’, ‘Medium’, or ‘High’; ‘Low’ for models that did not 
correlate with expert intuition (e.g.: individual islands, 
quadratic boundaries that appear to be biased), ‘Medium’ 
for models that partially correlates with expert intuition, 
and ‘High’ for models that correlated well with expert 
intuition. The hierarchical model Hierarchy2 had the best 
trade-offs amongst these criterions, as shown in Tables 3 
and 4, and was chosen as the best model.

Smartphone and PC software
To enable high throughput phenotyping using the devel-
oped classifier, we embed the preprocessing stage as well 
as the classifier into an easy to use GUI that is deploy-
able as a smartphone app. This app is supported on all 
Android-based devices, such as tablets and smartphones 
and has the full functionality of the desktop-based ver-
sion. The Android-based app allows users to take pic-
tures with their devices and extract the IDC rating in 
real time. This allows for portability and instant acqui-
sition of data. Figure  6 shows a flowchart of illustrating 
the app. When the app is launched, the user has a choice 
between taking a new picture, and analyzing a picture 
already contained in the device. The picture should be 
taken in the native RAW format (usually in the.dng for-
mat), and not using standard JPEG formats which use 
lossy compression that may cause color changes. Once 
a picture has been selected, it is processed and the IDC 

score evaluated and displayed on the screen. The user can 
export single or multiple images in tabular form through 
various methods, such as Dropbox, Bluetooth, Google 
Drive, and through email. This app allows untrained per-
sonnel and/or unmanned ground vehicles to extract and 
transmit IDC ratings without the need for a trained plant 
researcher/phenotyper looking at every plant. This is a 
tremendous enabler in terms of dramatically increasing 
the number of plants that can be accessed. In addition to 
the smartphone based app, a desktop based GUI will also 
be released to enable batch processing of a large num-
ber of images. This allows offline (or off site) analysis of 
images that are either captured manually or in an auto-
mated fashion.

Conclusion
We designed, developed and deployed an end-to-end 
integrated phenotyping work-flow that enables fast, 
accurate and efficient plant stress phenotyping. We 
show how image processing and machine learning 
can be deployed to construct classifiers that can auto-
matically evaluate stress severity from image data. We 
emphasize that expert knowledge is crucial in design-
ing appropriate classifiers. This is clearly seen in the 
markedly superior performance of the hierarchical clas-
sifier over single stage classifiers. The classifier is addi-
tionally used to produce a phenotypically meaningful 
population canopy graph. Subsequently, we deploy the 
developed classifier onto smartphones that serves as a 
high-throughput framework that can be utilized cross-
platform for evaluating IDC ratings of soybean using 
only digital images. It is clear that image based analy-
sis is more reliable and consistent than visual scor-
ing as it removes the human error aspect involved in 
visual rating when repeated IDC measurements are 
needed at different growth stages. We compared the 
computed IDC ratings with provided visual scores from 
domain experts, and observed a close similarity, sup-
porting accurate measurements and the accuracy of 
this HTP framework. We envision that such systems 
will help the plant researchers and breeders increase 
the efficiency and accuracy of selecting genotypes com-
pared to visual scoring to enable fast phenotyping and 
reduce researcher bias. It is also relatively low cost and 
has the potential to speed up and improve crop devel-
opment. The newly developed software framework is 
being embedded onto a high throughput phenotyping 
ground vehicle and unmanned aerial system (UAS) that 
will allow real-time, automated stress trait detection 
and quantification for plant breeding and stress scout-
ing applications. This framework is also currently under 
further development by our group for numerous biotic 
stresses in soybean.

Fig. 5  Population canopy graph of predicted data using a testing set 
with images and visual rating for IDC in soybean
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