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METHODOLOGY

TIPS: a system for automated 
image‑based phenotyping of maize tassels
Joseph L. Gage1, Nathan D. Miller2, Edgar P. Spalding2, Shawn M. Kaeppler1 and Natalia de Leon1*

Abstract 

Background:  The maize male inflorescence (tassel) produces pollen necessary for reproduction and commercial 
grain production of maize. The size of the tassel has been linked to factors affecting grain yield, so understanding the 
genetic control of tassel architecture is an important goal. Tassels are fragile and deform easily after removal from the 
plant, necessitating rapid measurement of any shape characteristics that cannot be retained during storage. Some 
morphological characteristics of tassels such as curvature and compactness are difficult to quantify using traditional 
methods, but can be quantified by image-based phenotyping tools. These constraints necessitate the development 
of an efficient method for capturing natural-state tassel morphology and complementary automated analytical meth-
ods that can quickly and reproducibly quantify traits of interest such as height, spread, and branch number.

Results:  This paper presents the Tassel Image-based Phenotyping System (TIPS), which provides a platform for 
imaging tassels in the field immediately following removal from the plant. TIPS consists of custom methods that can 
quantify morphological traits from profile images of freshly harvested tassels acquired with a standard digital camera 
in a field-deployable light shelter. Correlations between manually measured traits (tassel weight, tassel length, spike 
length, and branch number) and image-based measurements ranged from 0.66 to 0.89. Additional tassel characteris-
tics quantified by image analysis included some that cannot be quantified manually, such as curvature, compactness, 
fractal dimension, skeleton length, and perimeter. TIPS was used to measure tassel phenotypes of 3530 individual 
tassels from 749 diverse inbred lines that represent the diversity of tassel morphology found in modern breeding and 
academic research programs. Repeatability ranged from 0.85 to 0.92 for manually measured phenotypes, from 0.77 to 
0.83 for the same traits measured by image-based methods, and from 0.49 to 0.81 for traits that can only be measured 
by image analysis.

Conclusions:  TIPS allows morphological features of maize tassels to be quantified automatically, with minimal 
disturbance, at a scale that supports population-level studies. TIPS is expected to accelerate the discovery of associa-
tions between genetic loci and tassel morphology characteristics, and can be applied to maize breeding programs to 
increase productivity with lower resource commitment.
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Background
The male inflorescence (tassel) of maize (Zea mays L.) is 
a branched structure atop the plant that produces pollen 
and complements the female inflorescence (ear) to enable 
reproduction. Tassel size and morphology have implica-
tions for the amount of pollen produced, which can affect 

maintenance of inbred lines, hybrid production, and sub-
sequent agricultural yields. Though a certain level of pol-
len production is necessary for these reasons, decreased 
tassel size has been correlated with an increase in grain 
yield over the last half century of modern maize breeding 
[1]. Large tassels have been shown to decrease light inter-
ception by the upper leaves of maize plants and have been 
correlated with decreases in grain yield, effects that are 
exacerbated by higher planting densities [2, 3]. Genomic 
regions controlling tassel morphology have been described 
in the literature, but those studies have traditionally 
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focused on simple, quantifiable, hand-measured traits such 
as tassel length, number of branches, and length of the 
zone where branches originate [4–7]. This focus on traits 
that are easy and quick to measure is due to the fact that 
tassels are large and relatively delicate. While ears can be 
dried and still maintain their overall shape, making it pos-
sible to store and analyze them at the convenience of the 
researcher, tassels are fragile and easily deformed within 
hours of removal from the living maize plant. As a result, 
in order to study many of the shape characteristics of tas-
sels they must be measured directly in the field.

Though the studies listed above have investigated tas-
sel morphology, the questions of how tassel shape and 
size affect pollen production and grain yield have yet to 
be answered conclusively. Related genes controlling phe-
notypic variation have also not been fully characterized. 
Additionally, all studies to date have dealt with traits 
that can be measured by hand on dried tassels, so there 
is opportunity to explore tassels more comprehensively 
using new technologies.

Increasing availability of computational resources 
has enabled large scale studies utilizing image analysis, 
and there has been growing interest in high-throughput 
phenotyping in crops in general. Therefore, we chose to 
study tassel architecture by image analysis. A few solu-
tions already exist that can be utilized to process images 
of maize tassels. PANorama and P-Trap [8, 9] were devel-
oped for image analysis of rice panicles using images 
obtained by flatbed scanner or by arranging the panicle on 
a flat board. Furthermore, PANorama can process images 
of organs from other plant species, including maize 
tassels. Software built for measuring similar features 
(branching structure, lengths, curvature, etc.) have been 
developed for analyzing images of plant roots. Tassels, 
when inverted, bear morphological similarity to root sys-
tems therefore software such as GiA Roots and DIRT [10, 
11] might represent an alternative for the analysis of tas-
sels. This study compared results from GiA Roots, DIRT, 
and PANorama to our novel Tassel Image-based Pheno-
typing System (TIPS) for the analysis of maize tassels.

The main objectives behind creating TIPS were to 
develop a platform for rapidly imaging large numbers of 
tassels in a field setting, to develop image analysis meth-
ods to corroborate hand-measured traits, and to dem-
onstrate examples of image-based phenotyping tools to 
quantify traits that otherwise would be difficult, impos-
sible, or time-consuming to measure by hand.

Methods
Genetic material, plant growth conditions, and sample 
collection
A set of 749 inbred lines from an expanded version of the 
Wisconsin Diverse Panel (WiDiv) [12] were grown at the 

West Madison Agricultural Research Station in the sum-
mer of 2015. Lines were planted in a randomized complete 
block design with two field replications. The experiment 
was planted in 4.57  m long single row plots with 0.76 
meters between rows at a density of 72,000 plants per 
hectare. Tassels were collected from three representative 
plants per plot by cutting them 10.8 cm below the lowest 
tassel branch. Tassels were collected from a plot for imag-
ing when half of the plants in the plot had extruded anthers, 
but whenever possible the sampled tassels were taken from 
plants that had not yet themselves extruded any anthers. 
This ensured that the collected tassels were as develop-
mentally close to flowering as possible, but avoided having 
exposed anthers in the images. Samples were carried to the 
margin of the field, where they were subsequently imaged.

Sample imaging
Tassels were imaged using portable photography boxes 
made from PVC frames with white floors and back-
grounds. Interior dimensions of the photography boxes 
were 91.5 cm wide, 122 cm tall and 61 cm deep. Tassels 
were mounted upright in the center of the photography 
box floor. Images were captured using a Nikon D3300 
DSLR camera with an 18–55  mm lens set to 18  mm. 
The camera was mounted to a fixed boom that was part 
of the PVC framework, ensuring a consistent angle and 
distance (76 cm) relative to the samples. The camera was 
attached to a laptop computer and controlled by custom 
gphoto2 scripts that captured images and wrote them 
directly to the hard drive. For each sample, a background 
image was taken of the empty photography box, followed 
by an image with the sample present, resulting in two 
images per sample. Tassels were always oriented such 
that any curvature along the main spike was in the plane 
perpendicular to the camera’s optical axis. Image dimen-
sions were 4000 × 6000 pixels.

Manual measurements
Immediately following image acquisition, tassels were 
measured manually for four traits: tassel length, spike 
length, branch number, and tassel weight (Fig. 1). Tassel 
length was measured as the distance (mm) from the low-
est branch point to the tip of the tassel. Spike length was 
measured as the distance (mm) from the highest branch 
point to the tip of the tassel. Branch number is a count 
of the number of primary tassel branches. All three sam-
ple replicates from a single plot were dried and weighed 
together to obtain a plot mean tassel weight in grams.

Repeatability, correlations, and coefficient of variation 
of root mean squared error
Repeatability was calculated for each trait by fitting a lin-
ear model of y = u + G + B + e, where y represents the 
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trait values for individual plants, u represents an overall 
mean, G represents a genotype effect, B represents a field 
replication effect, and e represents residual effects. G was 
modeled as random, while B was fixed. Repeatability was 
calculated as σG

2/(σG
2 +  [σe

2/b]), where σG
2 is the genotype 

variance, σe
2 is the residual variance and b is the number 

of field replications (two in this case).
Pearson correlations 

(

r =
cov(x,y)
σxσy

)

 between traits 
were calculated using genotype means for each trait 
across replications. Coefficient of variation of root mean 
squared error [CV(RMSE)] was calculated for each hand 
measured trait as the square root of the mean squared 
error of the regression of hand-measured values on 
image-based values, divided by the mean of the hand-
measured values. Image-based measurements of tassel 
length were converted from pixels to millimeters using 
the base of the tassel holder for scale.

Pre‑existing image analysis software
An arbitrary sample of 200 images, each representing a 
different genotype, were selected to be tested with two 
popular root-analysis programs (GiA Roots and DIRT) 
[10, 11] and an existing inflorescence analysis program 
(PANorama) [8] to evaluate the need for a specially writ-
ten tassel analysis program. For DIRT and GiA Roots, 
images were flipped vertically and the grayscale color 
profile inverted to resemble light roots on a dark back-
ground. Both original RGB images as well as RGB images 
with the background removed were used as input for 
PANorama. The output from DIRT, GiA Roots and TIPS 

were tested for correlations to hand-measured pheno-
types to determine the need for tassel-specific image 
analysis methods. Differences between the correlations 
were tested with a two-sided test for equivalence of 
dependent correlations as implemented in the R package 
‘psych’ [13].

Computational methods and tools
TIPS was written in the MATLAB programming lan-
guage and returns fully automated image-based meas-
urements of tassel length, branch number, tassel area, 
tortuosity, compactness, fractal dimension, skeleton 
length, and perimeter length. It also returns a binary 
image of each tassel with some of the above traits illus-
trated in color, which can be used for quality control or 
illustration. All downstream analysis of results was per-
formed in R [14].

Scripts for image and analysis can be found on Github 
at http://github.com/joegage/TIPS.git and a set of 200 
sample images can be found at http://phytomorph.wisc.
edu/download/TIPS.

Results
A collection of 3530 maize tassels representing 749 
diverse inbred lines was imaged and processed using 
TIPS. Tassels were manually removed from plants, photo-
graphed immediately, and the images were subsequently 
analyzed by TIPS. In short, the process of image analy-
sis involved removing background noise and binarizing 
the image; smoothing, skeletonizing, and fitting splines 
to the binary image; and identifying the start point of the 
lowest tassel branch. Figure 2 presents a flowchart show-
ing these steps and the output from each. Since a major 
goal of this project was to maximize throughput, a single 
2D image was taken of each tassel.

Substantial variability was observed for all hand and 
image based measurements (Table  1). TIPS can meas-
ure branch number, tassel length, and tassel weight with 
moderate or high correlations to hand measurements, 
and has high enough throughput to image tassels at a rate 
of approximately 20 tassels per person per hour, includ-
ing collection from the field, image acquisition, and hand 
measurement of tassel length, spike length, and branch 
number. A number of parameters can be passed in vector 
form to TIPS. Default values were chosen heuristically 
for these analyses but are accepted as optional arguments 
by TIPS to enable parameter sweeps for individual popu-
lations or images (Additional file 1: Table S1).

Pre‑processing of tassel images
Immediately before each tassel was imaged, a back-
ground image was taken to capture ambient light and 
background debris in the photo booth. Figure  3 shows 

Fig. 1  Manually measured traits. An example of manually measured 
tassel traits. Tassel length is the distance from the lowermost branch 
to the spike tip. Spike length is the distance from the uppermost 
branch to the spike tip. Branch number is a count of primary 
branches, i.e., those that intersect the central axis of the tassel, and 
not those that originate on another branch. Not pictured is tassel 
weight, which was measured as the average weight of three dried 
tassels per plot

http://github.com/joegage/TIPS.git
http://phytomorph.wisc.edu/download/TIPS
http://phytomorph.wisc.edu/download/TIPS
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the effects of subtracting the background image from 
the image containing the tassel, then converting it to a 
binary form by a standard threshold method [15]. Only 

the largest continuous object in the binary image was 
retained. This filtering step removed any small artifacts 
not removed by background subtraction (e.g., debris, 
reflections, dirt). Images were excluded from further 
analysis if the automatically chosen threshold value was 
lower than an empirically determined minimum, which 
would be the case if there was no tassel in the image, or 
if poor contrast in the original image prevented a faith-
ful threshold operation. Images were also removed from 
further analysis if any portion of the final binary image 
contacted the border (indicating the tassel extends out-
side the frame of the image).

Tassel length
Tassel length is typically measured from the lowermost 
tassel branch to the tip of the central tassel spike. In order 
to calculate tassel length from the acquired images, the 
tassel was skeletonized and distances along the skeleton 
were calculated from the base of the tassel to all other 
endpoints of the skeleton. The longest identified path was 
assumed to be that from the base to the tip of the spike. 
Along this path, the lowest tassel branch was identified, 
and the distance from that branch point to the tip of the 
spike was measured, representing tassel length (Fig. 4).

Fig. 2  TIPS Flowchart. Tassels were collected from replicated field plots (1) and imaged in a PVC photography booth (2) using automated gphoto2 
scripts. Image analysis by TIPS software (3) removed background noise, then binarized, smoothed, and skeletonized the tassel. Each analysis step is 
listed in black type, while the trait measurements resulting from that step are displayed in red type. The trait measurements were returned in a .csv 
file along with a figure visually showing some of the measurements (4)

Table 1  Minimum, maximum, and  repeatability of  all 
measurements

Range of phenotypic values and repeatability for all manual and image-based 
trait measurements. Traits noted by a were measured by hand, traits noted by b 
were measured by image-based method. Minimums and maximums represent 
genotype means across two replications

Trait Minimum Maximum Repeatability

Weighta (g) 3.31 51.13 0.85

Tassel lengtha (mm) 211.17 538.33 0.88

Spike lengtha (mm) 111.5 369.33 0.89

Branch numbera 0 40.83 0.92

Areab (mm2) 2225.01 16,507.89 0.83

Branch numberb 1.50 17.33 0.77

Tassel lengthb (mm) 166.28 469.48 0.77

Tortuosityb 0.75 1.00 0.49

Compactnessb 0.07 0.76 0.77

Fractal dimensionb 1.26 1.53 0.81

Skeleton lengthb (mm) 260.38 2261.98 0.78

Perimeter lengthb (mm) 567.72 3034.39 0.71
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The binary mask of the tassel was first smoothed by 
convolving it with an isometric two-dimensional Gauss-
ian kernel in order to create a smooth contour and assist 
the process of isolating a faithful skeleton without spurs. 
The Gaussian kernel used was 31 pixels by 31 pixels with 
a standard deviation of 55 pixels, though these parame-
ters are adjustable in the code. The smoothed image was 

thresholded again to produce a new binary mask with a 
smooth contour, which was thinned to produce a skel-
eton. The endpoint of the line network closest to the bot-
tom and center of the image was automatically identified 
as the base of the tassel, and the graphical distance from 
the base to each different endpoint was calculated using 
Dijkstra’s algorithm [16, 17]. Because small protrusions 

Fig. 3  Image background removal and binarization. The original image (a) has the background subtracted and any remaining artifacts removed, 
resulting in (b), which is then thresholded to produce the binary image in (c)

Fig. 4  Illustration and scatter plot of tassel length calculation. a Example of branch and spike identification for four different tassels. Cubic smooth-
ing splines fit to branches shown in green, with the cubic smoothing spline along the main spike shown in red. Tassel length is calculated as the line 
integral of the red spline. b Plot of genotype means as obtained by manual and image-based measurement methods. Red line represents the fit of 
the manual onto the image-based measurements, and the gray shaded region represents the 95% confidence interval of the fit. The black dashed line 
represents a one-to-one relationship between manual and image-based measurements



Page 6 of 12Gage et al. Plant Methods           (2017) 13:21 

from the tassel can cause the appearance of a short 
branch, any endpoints closer than 75 pixels to a branch 
point were excluded from further analysis. The endpoint 
farthest from the base was assumed to be the tip of the 
spike. Because tassel length is traditionally measured 
from the first tassel branch node to the tip of the spike, 
the lowest tassel branch was identified. Single-row sums 
of the pixel values in the unsmoothed binary mask were 
taken within a window of 301 pixels centered on the path 
from base to spike tip. The sums were smoothed by a 
Gaussian kernel of width 41 with a standard deviation of 
5. The lowest branch was identified as the point along the 
path where the first derivative of the smoothed sums ver-
sus path position was greater than 0.2. Tassel length was 
calculated as the line integral of a cubic spline fit along 
the skeleton from the lowest branch to the spike tip. The 
parameters for the smoothing kernels, minimum skel-
eton branch length, width of the row-sum window, and 
threshold for the derivative of the smoothed sums were 
chosen heuristically and are user-definable.

The correlation between hand and image-based meas-
urements of tassel length was 0.89. This correlation may 
be driven down by inaccuracy of hand measurements, 
inability of the image processing algorithms to correctly 
identify the lowest branch, or by the tilt of the tassels out 
of the focal plane. Hand-measured tassel length varied 
more than twofold from 211 to 538 mm, demonstrating 

large morphological variation which can be quantified by 
the image-analysis method presented above.

Branch number
Another characteristic affecting tassel size is the number 
of primary branches. Branch number was estimated by 
centering a circle with a radius of 100 pixels at the lowest 
branch node, then extending the radius in 50 pixel incre-
ments to create a series of circular arcs that intersected 
the binary object at least once. The number of intersec-
tions along each circle was determined and the greatest 
value was taken as branch number (Fig. 5).

The correlation between hand and image-based meas-
urements of branch number was 0.66, and genotype 
averages for manually measured branch number ranged 
from zero to 41. Because manually counting the number 
of branches on a tassel is likely to be accurate, this low 
correlation is probably due to overlapped branches being 
hidden in the image. Such unresolvable occlusions are a 
limitation inherent to 2D images. A reasonable assess-
ment of the computational method would be to com-
pare branch number values determined automatically 
from the image by TIPS with the number a human can 
discern by eye in the same image. This was done with an 
arbitrary subset of 97 images, each representing a differ-
ent genotype. The correlation between these two results 
was 0.83, setting an estimate of the theoretical maximum 

Fig. 5  Illustration and scatter plot of branch counting method. a Example of branch counting method. Blue circle shows the location of automati-
cally identified lowest branch point. The solid yellow line shows the circle with the highest number of intersections with the binary tassel, while 
dashed yellow lines show an example of circles with varying radii for which intersections were counted. b Plot of genotype means as obtained by 
manual and image-based measurement methods. Red line represents the fit of the manual onto the image-based measurements, and the gray 
shaded region represents the 95% confidence interval of the fit. The black dashed line represents a one-to-one relationship between manual and 
image-based measurements
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accuracy for branch number measurement in this con-
text. The automated, image-based circle method in TIPS 
was unable to count more than 15 branches per tassel in 
the subset of 97 images, while the maximum number of 
branches counted by a human in the same subset was 28. 
These results show that the TIPS has difficulty identifying 
unique branches when they overlap in the images. Even 
with the decrease in ability to measure branch number 
from 2D images, the circle-based automated counting 
technique implemented by TIPS still yields a correlation 
of 0.66 with manual measurements, which approaches 
the theoretical maximum accuracy of 0.83.

Spike length
The spike is the segment of the tassel above the topmost 
branch. In conjunction with tassel length, spike length 
indicates what proportion of the total tassel is not occu-
pied by branches. A short spike relative to the overall 
length indicates a correspondingly larger region bearing 
branches, while a long spike indicates a shorter branch-
ing zone. Image analysis methods designed specifically 
for spike length prove difficult to develop, largely because 
the highest branch point is more difficult to identify 
automatically than the lowest branch point used to meas-
ure tassel length. Manual measurements of spike length 
varied threefold across genotypes in the population, 
ranging from 112 to 369 mm. Although a robust method 
of directly measuring spike length was not devised, 
spike length measured manually was found to have a 

correlation of 0.74 with tassel length measured automati-
cally (Fig.  6). Therefore, automated tassel length meas-
urements can predict spike length reasonably well.

Tassel size and shape
In addition to the measurements described in preceding 
sections, the software presented here also returns meas-
urements of tassel area, compactness, tortuosity, fractal 
dimension, skeleton length, and perimeter.

Tassel dry weight is another measure related to overall 
tassel size. This is a time consuming measurement to take 
by hand as it requires drying the samples for a period of 
time and weighting individual samples. Tassel dry weight 
was automatically estimated by the image-based method 
of calculating tassel area as the sum of pixels in the binary 
tassel mask (Fig. 6). This measure of mass had a correla-
tion of 0.85 with manually measured dry tassel weight.

Compactness was calculated as the tassel area divided 
by the area contained within a convex hull around the 
tassel. Compactness represents how densely the tassel’s 
biomass is arranged. Highly compact tassels would be 
expected to shade the maize canopy less. Compactness 
varied greatly across the population (Fig. 7), ranging from 
0.07 to 0.76. The ability to quantify compactness precisely 
may enable tests of the hypothesis that tassel shading 
affects plant performance by decreasing light intercep-
tion [18]. The ability to measure compactness automati-
cally could be useful for breeding improved genotypes 
with reduced tassel shading.

Fig. 6  Estimation of spike length and tassel weight from image-based measurements. Plots of genotype means for spike length and tassel weight 
on image-based tassel length and area, respectively. Red line represents the fit of the manual onto the image-based measurements, and the gray 
shaded region represents the 95% confidence interval of the fit
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Tortuosity of the main axis was measured as the Euclid-
ean distance between the first tassel branch and the spike 
tip divided by the tassel length, which produces a meas-
urement between 0 and 1 and gives an indication of the 
spike’s curvature. Tortuosity is similar to compactness in 
that it affects the dimensions of the total space occupied 
by the tassel. Often tassels with curved spikes also have 
curved branches, and the degree of curvature may be 
related to structural composition. This type of measure-
ment is difficult to obtain objectively by hand. Tortuosity 
was the parameter that varied least across the population 
(Fig. 7).

Fractal dimension is a measure of the complexity of 
the tassel shape. It was estimated using the box-counting 
method [19]. Its biological significance is not obvious, yet 
it was highly correlated with tassel weight and branch 
number (Fig. 8) and varied widely across the population 
(Table 1).

Skeleton length was measured as the sum of the pix-
els in the skeleton created during tassel length compu-
tations. The perimeter was measured as the sum of the 
pixels in the outline of the tassel, which was obtained by 
setting pixels to zero if all their adjacent pixels were equal 
to one. Both these measurements are indicative of over-
all tassel size, and were correlated with hand measured 
weight (Fig. 8).

TIPS provides an accurate method for image‑based 
phenotyping of tassels
Traits measured by TIPS show moderate to strong cor-
relations with the traits measured by hand, ranging from 
0.66 to 0.89 (Table 2). Manually measured traits were tas-
sel length, spike length, branch number, and tassel weight 
(Fig. 1). Substantial variation was observed for all meas-
ured traits in this set of 749 diverse inbreds (Fig. 7). Trait 
repeatability ranged from 0.85 to 0.92 for hand measured 
traits; from 0.77 to 0.83 for image-based measurements 
of area, tassel length, and branch count; and from 0.49 
to 0.81 for other image-based measurements for which 
no hand measurements were available (Table  1). These 
results suggest that TIPS is capable of accurately measur-
ing morphologically diverse materials.

In some cases, traits that were only computed on 
images show higher correlations to related hand meas-
ured traits than the image-based methods for those 
traits. For example, fractal dimension has a higher corre-
lation than image-based branch count to hand-measured 
branch number. However, the reported correlations in 
Table 2 are between hand-measured traits and the image-
based methods that were designed specifically to quantify 
them. This was done because the image-based meth-
ods were designed to have tractable biological meaning 
with relation to their hand-measured counterparts. High 
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correlations between manual and image-based meas-
urements of tassel length and tassel weight, along with 
relatively strong correlations with traits that are hard to 
quantify in two-dimensional images (spike length, branch 
number), support the claim of TIPS as an accurate 
method for morphological evaluation of diverse geno-
types (Fig. 8). Thus, these results demonstrate TIPS can 
be used to accurately quantify other traits that are diffi-
cult to measure manually. Computer-generated pheno-
types and immortal images allow future detailed genetic 
dissection of tassel morphology at the convenience of the 
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Fig. 8  Heatmap of correlations between hand- and image-based measurements. This heatmap shows Pearson correlations between all hand- and 
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Table 2  Correlations and  coefficients of  variation of  root 
mean squared error for measured traits

Correlations (r) and coefficient of variation of root mean squared error 
[CV(RMSE)] between hand-measured and image-based phenotypic values for 
four traits in the WiDiv, calculated based on genotype means across two field 
replications

Trait r CV(RMSE)

Tassel weight 0.85 0.24

Tassel length 0.89 0.06

Spike length 0.74 0.13

Branch number 0.66 0.38
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researcher, as opposed to manual measurements which 
may need to be performed during a narrow time window 
while the plants are alive.

Comparison with other image‑analysis software
GiA Roots [10] was unable to process all of the images, 
successfully returning image-based phenotypes for 197 
of 200 images submitted. Traits measured by GiA Roots 
include traits similar to those measured by TIPS, such 
as maximum and median number of roots (similar to 
branch number), network area (similar to area), network 
perimeter (similar to perimeter length), network solid-
ity (similar to compactness), and network length (similar 
to skeleton length). Of the traits returned by GiA Roots 
the highest correlation to any of the manually meas-
ured traits was 0.40, indicating poor adaptability to tas-
sel images. Though GiA Roots was able to threshold and 
binarize the tassel images, we hypothesize the width of 
tassel branches and variability due to spikelets contribute 
to inaccurately complex skeletonization, which causes 
imprecise trait measurements.

DIRT [11] computes a large number of traits corre-
sponding to root length and width, lateral branch fre-
quency and length, angles between central and lateral 
roots, root density, spatial distribution, and biomass 
accumulation. DIRT thresholded and processed the 
images appropriately, but produced measurements that 
had lower correlations to tassel weight, tassel length, and 
spike length compared to the results of TIPS. DIRT was 
better able to predict branch number in this subset of 
images than our methods (Table 3). None of the best-cor-
related DIRT traits have any clear biological relationship 
with the tassel traits to which they are correlated.

PANorama [8] was unable to consistently construct 
faithful skeletons from the tassel images. Because back-
ground artifacts caused problems with skeleton pro-
duction, tassel images with the background removed 
from the image were also used as inputs for PANorama, 
but skeleton construction still failed. We speculate 
that because it was created for use with flattened and 
arranged samples, the images of tassels in their natural 
orientation were not suitable for PANorama.

Discussion
Advances in high-precision, high-throughput, image-
based phenotyping in combination with currently 
available genomic tools are expected to increase our 
understanding of the genetic underpinnings of complex 
traits and accelerate breeding outcomes. This paper pre-
sents a novel system that applies fundamental and robust 
image analysis methods to provide reliable image-based 
measurement of maize tassels, for which there are cur-
rently no dedicated image analysis tools. TIPS was 

developed to increase the rate of measurement and infor-
mation content relative to traditionally hand-measured 
traits, and to calculate other relevant traits (tortuosity, 
compactness, fractal dimension, skeleton and perim-
eter length) that are difficult to reliably measure manu-
ally. As such, this system needed to be able to faithfully 
compute traits that are usually hand measured and have 
fast enough image acquisition to enable imaging of rep-
licated, field-grown populations with thousands of indi-
viduals that reach maturity within a relatively narrow 
window of time. Manual measurements were the most 
time-consuming step, and without them the throughput 
could likely be doubled. Compared to other inflorescence 
imaging software [8, 9], TIPS has a distinct advantage for 
experiments that need to image tassels without deform-
ing or preserving them.

Accuracy of image-based tassel length measurements 
could likely be increased by small changes to the posi-
tioning of the tassels. Figure  4b shows that the image-
based measurements are slightly biased low. If a tassel 
is not placed perfectly with curvature perpendicular to 
the camera, the tassel length will be underestimated. In 
some cases, as shown in Fig. 4a, the tassel length splines 
(shown in red) are wavier than they should be due to the 
skeleton being pulled off center by branches or irregular 
binary image thickness. This can result in overestima-
tion of the tassel length but has a negligible effect, as evi-
denced by the fact that estimates of overall length tend 
to be biased low. Minute differences in the angle of the 
tassel with respect to the camera add noise to the image-
based measurements. Because images were captured 
from a single angle (for the sake of throughput), accu-
racy of branch number was reduced by occlusion of some 
branches by other parts of the tassel. This is also apparent 
in Fig. 5, which shows that the image-based branch num-
ber is also biased low. This could potentially be improved 
by capturing images from more than one angle.

Table 3  Comparison of  an existing image-analysis soft-
ware DIRT to TIPS

Correlations between hand-measured and image-based phenotypes for 
a random subset of 200 tassel images. ‘DIRT’ column represents highest 
correlation with traits output by DIRT (trait name as output by DIRT in 
parentheses). ‘TIPS’ column represents the correlation with the TIPS method 
designed for each trait. The higher correlation is Italicized. The p value column 
represents the result of a two-sided test for equivalence of dependent 
correlations [13]. p values that are significant at a Bonferroni-corrected threshold 
corresponding to α = 0.05 for four tests (1.25 × 10−2) are noted with an asterisk

Trait DIRT TIPS p value

Tassel weight 0.89 (soil tissue angle 90% 1) 0.95 1.0 × 10−8*

Tassel length 0.71 (roots seg 2) 0.91 1.5 × 10−12*

Spike length 0.52 (soil tissue angle 50% 2) 0.85 1.3 × 10−6*

Branch number 0.86 (root top angle) 0.81 2.4 × 10−2
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Spike length is determined by the growth of the inflo-
rescence meristem (IM), which produces a set of lateral 
branch meristems (BMs) that develop into the tassel 
branches [20]. Overall tassel length is a result of the num-
ber and spacing of BMs plus the length of the IM above 
the final BM. Variation in the relative lengths of the spike 
and tassel may be important for studying tassel architec-
ture and pollen production. However, TIPS cannot con-
sistently identify the uppermost branch point, necessary 
for precise calculation of spike length, so spike length is 
estimated based on overall tassel length alone. Identifica-
tion of the spike is complicated by tassel branches occlud-
ing the uppermost branch point, and is even difficult for a 
human to perform accurately given only the available 2D 
images. We have made a subset of 200 tassel images and 
their associated background images available at http://
phytomorph.wisc.edu/download/TIPS for testing, expan-
sion, and improvement of the methods presented here.

Throughput could be increased even farther by devel-
oping methods to image tassels without removing them 
from the plants, though physical hurdles (e.g., tassel 
orientation) and technical problems (e.g., background 
removal) may complicate measurements like tassel 
length and branch number. However, the ability to image 
a larger number of tassels may counteract some such 
issues.

There is no other dedicated tool for image-based phe-
notyping of maize tassels, and no software that can 
perform measurements of tassels without imposed posi-
tioning on a flat surface. TIPS fills a niche in image-based 
phenotyping of maize, for which current tools can char-
acterize stalk cross-sections, roots, growth stage, ears, 
and kernels [9, 11, 21–24]. The ability to quantify tassel 
shape and size beyond simple hand measurements may 
be helpful in further unraveling the relationships between 
tassel and ear morphology and between tassel architec-
ture and pollen production. While simple measurements 
like tassel length and branch number form an important 
beginning for descriptions of tassel size and shape, the 
advent of image analysis methods allows description of 
more complex or nuanced phenotypes (e.g., compact-
ness, tortuosity) that can be used for germplasm descrip-
tion and characterization, as well as mapping studies. The 
addition of traits that cannot be measured by hand pro-
vides data that can be used along with a training set of 
ground truth measurements from a representative sam-
ple of a population of interest to construct models (e.g., 
using partial least squares) that may increase the accu-
racy of tassel length, branch number, or spike length esti-
mates. Once tassels have been imaged, those files can be 
made available for future studies of novel traits, eliminat-
ing the need for repeated field experiments that require 
large resource commitments.

This study presents results that demonstrate image-
based analysis can produce faithful measurements of 
traits that are normally measured by hand and quantify 
traits that would otherwise be difficult or impossible to 
measure. We demonstrate the ability of TIPS to meas-
ure tassel morphological traits on 3530 individual tassels 
from 749 unique inbred lines in the context of a diverse 
population representing the range of tassel shapes and 
sizes that would be encountered in a modern breeding 
or academic research program. As plant genetics experi-
ments continue to increase in size, image-based pheno-
typing tools such as this have the potential to continue 
to improve phenotype acquisition with the goals of 
increased throughput and accuracy. The image acqui-
sition system described here will serve as a basis for 
expansions on the traits described, and provides proof-
of-concept that image-based phenotyping can accelerate 
measurements of maize tassels.
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