
Salehi et al. Plant Methods  (2015) 11:53 
DOI 10.1186/s13007-015-0097-z

SOFTWARE

SensorDB: a virtual laboratory for the 
integration, visualization and analysis of varied 
biological sensor data
Ali Salehi2, Jose Jimenez‑Berni1, David M. Deery1*, Doug Palmer2, Edward Holland3, Pablo Rozas‑Larraondo1, 
Scott C. Chapman3, Dimitrios Georgakopoulos2,4 and Robert T. Furbank1,5

Abstract 

Background:  To our knowledge, there is no software or database solution that supports large volumes of biological 
time series sensor data efficiently and enables data visualization and analysis in real time. Existing solutions for manag‑
ing data typically use unstructured file systems or relational databases. These systems are not designed to provide 
instantaneous response to user queries. Furthermore, they do not support rapid data analysis and visualization to 
enable interactive experiments. In large scale experiments, this behaviour slows research discovery, discourages the 
widespread sharing and reuse of data that could otherwise inform critical decisions in a timely manner and encour‑
age effective collaboration between groups.

Results:  In this paper we present SensorDB, a web based virtual laboratory that can manage large volumes of 
biological time series sensor data while supporting rapid data queries and real-time user interaction. SensorDB is sen‑
sor agnostic and uses web-based, state-of-the-art cloud and storage technologies to efficiently gather, analyse and 
visualize data.

Conclusions:   Collaboration and data sharing between different agencies and groups is thereby facilitated. SensorDB 
is available online at http://sensordb.csiro.au.

Keywords:  Phenomics, High frequency data, Big data, NoSQL, Real-time statistics

© 2015 Salehi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Field based agricultural, forestry and ecology research 
studies are often undertaken in remote locations and 
require the collation of varied data types including: 
time series data from wireless sensor networks; spatial 
data from imaging devices; human observations scored 
and recorded on paper or on a portable tablet device; 
destructive samples and harvests taken from the field and 
analysed in a laboratory. Such data is typically collated 
in unstructured repositories on an individual research-
er’s computer or on a centrally managed networked file 
system. Unstructured repositories enable support for 
varied data types, ease of data modification and analysis 

in an environment familiar to the user. Hence, these 
approaches, commonly spreadsheets, are usually pre-
ferred over specialized data stores.

However, the use of unstructured, private data reposi-
tories does not encourage data sharing and can inhibit 
effective collaboration. These repositories are usually 
not scalable beyond a small project or group. As a pro-
ject becomes larger, the data volume and complexity 
increases and the task of tracking the location, status and 
origin becomes difficult and onerous. The potential for 
data loss, incomplete data recovery and poor reuse of the 
data thereby increases. Such unstructured data reposito-
ries typically do not support data analysis and visualisa-
tion for rapid, initial checks of data integrity and are ill 
suited to large time series data.

SensorDB is a web-based virtual laboratory tool 
designed to overcome these problems and has been 

Open Access

Plant Methods

*Correspondence:  david.deery@csiro.au 
1 CSIRO Agriculture, Clunies Ross St, Canberra 2601, Australia
Full list of author information is available at the end of the article

http://sensordb.csiro.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-015-0097-z&domain=pdf


Page 2 of 14Salehi et al. Plant Methods  (2015) 11:53 

developed through detailed consultation with cross dis-
ciplinary researchers working in field based agricultural, 
forestry and ecology studies. It is designed to receive data 
from real-time data streams, data upload and download 
forms and from any geographical location with Internet 
access. SensorDB is sensor agnostic and supports rapid 
visualisation of a range of data types. The visualisation 
framework is designed to be flexible enough to accom-
modate different types of domain-specific and generic 
visualisations in a single software solution. As a cloud-
based system with a web front-end, it enables data shar-
ing and enhances interaction between different agencies 
located in multiple geographic locations. Collaborations 
are thereby facilitated and the turnaround time reduced 
between data acquisition and data dependent decisions 
for future experiments and activities.

Related work
Historically, relational database systems (e.g. http://www.
mysql.com) were used to store data streams for future 
retrieval by users. However, the performance of these 
systems can be compromised with large time series data 
and recently, alternative technologies have emerged to 
address this performance shortcoming. Such technolo-
gies are often referred to as NoSQL databases to indi-
cate the departure from the SQL programming language 
traditionally used in the relational database model. An 
example of NoSQL database technology used in Sen-
sorDB is MongoDB (http://www.mongodb.org/), a so-
called document-oriented database.

The recent technology advances in NoSQL databases 
and HTML5 interactive data visualization techniques 
allowed us to build SensorDB. Recently, cloud services 
have emerged that could potentially support some use 
cases (e.g. Xively - formerly Cosm and Pachube https://
xively.com, and TempoDB https://tempo-db.com), how-
ever their direct utility for field based research has yet to 
be determined.

There has been extensive research on providing effi-
cient data management solutions for sensory data. [1] 
presented a sensor data collection and visualisation 
framework comprising of Global Sensor Networks (GSN) 
middleware and Microsoft SensorMap. SensorMap visu-
alised live sensor data captured by remote sensors on a 
map oriented interface. In SensorMap, users could find 
sensors based on their physical location. In comparison 
with SensorMap, SensorDB’s main focus is providing 
a virtual laboratory platform where the bulk of the data 
visualisation and analysis can be performed online. Sen-
sorMap was expanded by [2] with the addition of a highly 
efficient metadata management solution, called Sensor 
Metadata Repository, which provides an advanced meta-
data search to efficiently discover sensor sources. Using 

this feature, end-users can identify sensors and deploy-
ments based on metadata fields attached to the sensors. 
While [2] focus on metadata data management, our focus 
with SensorDB is on real-time statistics. However, the 
metadata management solution proposed by [2] is com-
plementary to SensorDB and could provide SensorDB 
with an efficient metadata management and querying 
solution.

The objective of this paper is to present SensorDB and 
describe its utility as a web-based virtual laboratory that 
can manage large volumes of biological time series sensor 
data while supporting rapid data queries and real-time 
user interaction.

Implementation
SensorDB data model
The sensor data life cycle in SensorDB consists of five 
stages and they are depicted in Fig. 1a. The capture stage 
involves using sensor hardware to measure physical 
phenomena, for example: air temperature; soil moisture 
and crop canopy temperature. The storage stage high-
lights the need to have all captured data and information 
about the data (metadata), to be stored in a safe location. 
Examples of metadata information include: sensor types; 
serial numbers; mac address of sensing devices; experi-
mental treatment; crop sowing date; genotype and rep-
licate number. At the analysis stage, users can mine their 
data using filtering and grouping by metadata. This pro-
cess usually involves statistical methods combined with 
domain-specific knowledge and model-based data analy-
sis tools. The presentation stage is about visualizing the 
analysis of results. Finally, at the share stage, users can 
share their data analysis and visualizations with other 
groups. To achieve this data life cycle, SensorDB uses a 
hierarchical data model to manage sensor data.

The SensorDB data model consists of the four layers 
depicted in Fig. 1b. In SensorDB, a user is a logical entity 
(e.g. a project or a research group), which owns a group 
of experiments. An experiment has only one owner. Each 
experiment is a group of nodes and each node belongs 
to a single experiment. A node can also have its location 
associated with it, such as latitude and longitude values. 
A node itself is a group of streams and a stream is a series 
of timestamp and real number pairs with a unit of meas-
urement. Metadata can be attached at every hierarchical 
layer in Fig. 1b.

The mapping of a typical field experiment is illustrated 
in Fig.  2. In this example, the experiment is an ordered 
arrangement of ∼2 m wide by ∼6 m length experimental 
units. These experimental units are mapped to the node 
level in SensorDB. On some of these experimental units, 
measurements of soil moisture are made at multiple 
depths. A measurement of soil moisture at a particular 

http://www.mysql.com
http://www.mysql.com
http://www.mongodb.org/
https://xively.com
https://xively.com
https://tempo-db.com


Page 3 of 14Salehi et al. Plant Methods  (2015) 11:53 

depth is mapped to SensorDB at the stream level, asso-
ciated to a node. The metadata associated to each of the 
levels in SensorDB is critical for providing contextual 
information. For the experiment level, metadata could 
include the following: the year when the experiment 

was run; the date the experiment was sown; information 
about the objectives of the experiment and even informa-
tion about the experimental site like soil type for exam-
ple. At the node level the most important metadata fields 
are the treatment (e.g. fertiliser level, genotype, irrigation 

Fig. 1  SensorDB data model and data life cycle

Fig. 2  A typical field experiment mapped to the SensorDB data model at the levels: experiment (long dash); node (short dash) and stream (solid)



Page 4 of 14Salehi et al. Plant Methods  (2015) 11:53 

level) and the relative location of the plot within the 
experiment (in most cases for this application a row/
column notation is used). At the stream level, in this 
example the depth, the sensor type and the sensor serial 
number are the most important metadata fields, while 
sensor information like the date of calibration or settings 
of the sensor can also be critical.

SensorDB is completely agnostic to the technology 
used for the data collection. The data model is flexible 
and supports casting different modalities of data collec-
tion from wireless sensor network system to manually 
taken measurements.

The information is presented to users as a set of time 
series data. Each time series data corresponds to a physi-
cal phenomena measured using sensor networks or man-
ually at an experimental location.

In some cases, sensor information such as battery sta-
tus, system temperature, data packet loss or radio sig-
nal intensity, can become critical for rapidly identifying 
faulty and potentially faulty sensors and monitoring the 
system performance over time to maximise data recov-
ery. This information may not be relevant to the scientific 
investigator, so in our normal operation the informa-
tion is available as a different diagnostic user or experi-
ment that is separated from the main field experiment. 
Through separating the system diagnostics from the 
biological data relevant to the experiment, the end user 
is thereby presented with a level of abstraction that is 
focused on deriving meaning from their experiment. This 
also allows easier maintenance of the automatic data log-
ging systems based on sensor networks where users can 
get alert email notifications based on a number of criteria 
like off-nominal values, low battery, missing nodes and 
time gaps between measurements.

Software implementation
SensorDB is implemented using the Scala programming 
language. Scala is an object-functional programming 
language built on top of the Java virtual machine. Scala 
provides key constructs that are important for building 
SensorDB, namely support for lock free multi-threading 
using actors, to improve performance, and an advanced 
typing system which can identify a large number of 
potential system bugs during compile time. Scala also has 
access to all programming libraries written in the Java 
language.

SensorDB is designed to be scalable and to achieve 
this, it uses a cloud-based architecture combined with 
asynchronous data processing using persistent queues, 
stateless worker threads and NoSQL data stores. The 
high level architecture of SensorDB is depicted in Fig. 3. 
SensorDB uses NoSQL data stores to manage user data, 

sensor data, aggregated data and caching of commonly 
used information. To ensure SensorDB is scalable and 
can store and serve hundreds of millions of data points, 
SensorDB internally uses time aggregation windows. 
There are several fixed time aggregation windows defined 
in SensorDB; 1-min, 15-min, 1-h, 1-day, 1-month, 1-year 
and overall. Each time aggregation window maintains 
critical information about the data points it holds. This 
information includes the number of data points in a win-
dow, minimum and maximum values and the time they 
occurred, and the mean and standard deviation of the 
data points inside the window.

The storage layer behind each aggregation window is 
allocated based on the user and application’s access pat-
terns. Using this approach, one can optimize SensorDB 
for different application domains. For instance, if a data 
item at a 1-h aggregation window is accessed more fre-
quently than the 1-min aggregation window, SensorDB 
can be configured to store and cache data in that aggre-
gation window in a faster storage technology, such as in 
memory storage or SSD (solid state disk) drive. In the 
current implementation, the data (and the aggregation 
window) for 1-min would be stored in the disk level stor-
age layer, such as HBase storage system.

In SensorDB we store three types of information.

Fig. 3  High level architecture of SensorDB



Page 5 of 14Salehi et al. Plant Methods  (2015) 11:53 

1.	 Structural information including; usernames, pass-
words, experiment names, node names, node loca-
tion, stream names, measurement units and meta-
data information. This information is required to 
provide context to the sensor data stored in Sen-
sorDB.

2.	 Sensor Data Store containing both raw and aggre-
gated sensor data. This layer is usually backed by a 
hybrid of storage systems, as described above.

3.	 Queues, Caching and User Session information. The 
information includes data that are transient and not 
critical if lost. This information is calculated using 
the structural information combined with Sensor 
data store. Therefore, if it is required, it can be recal-
culated again, making it suitable for a transient stor-
age layer.

SensorDB is designed so that all the sensor data and 
information access is done through a RESTful HTTP 
API using standard HTTP requests and JSON objects. 
Our choice of using Restful/JSON is based on the ease 
of use and availability of libraries in different languages 
such as Python, Java,R to access Restful/JSON based data 
sources. As such, this architecture allows SensorDB to be 
a generic system when seen from other platforms. The 
SensorDB web interface is using the same RESTful/JSON 
API and illustrates how an application can be built on top 
of SensorDB’s API. In this model, one can easily swap the 
existing SensorDB web interface with another solution as 
long as the new solution adheres to the API defined by 
SensorDB.

Data upload
In order to upload sensor data or metadata values to Sen-
sorDB, we provide three upload mechanisms:

1.	 GSN virtual sensor GSN [3] is a sensor data process-
ing engine, designed to capture and process real-
time data streams. GSN supports more than a dozen 
classes of sensor hardware and does not require any 
programming skills to be used, although more inter-
mediate and advanced use cases require knowledge 
of the Java programming language. Our GSN virtual 
sensor uses SensorDB’s restful API to push the cap-
tured sensor data directly into SensorDB.

2.	 Web-based upload for sensor data stored in CSV or 
MS Excel files This is the most convenient way of 
uploading sensor data or metadata, as most of the 
manual sensor measurements and historical data 
are normally available in this format. SensorDB’s 
web interface has a specialized text editor, which 
parses the CSV and MS Excel file formats. Using this 
approach, users can simply copy and paste their data 

files into SensorDB’s web interface and the rest is 
handled by SensorDB’s web interface.

3.	 Script-based upload of streaming or historical data 
This is an efficient and scalable way of uploading sen-
sor data or metadata into SensorDB. This approach 
can be used to upload large quantities of sensor 
data in batches. It can also be used to capture real-
time data streams from sensor hardware for which 
there is no GSN driver or if the sensor hardware is 
not directly accessible. Once this approach is com-
bined with task schedules, one can automate the data 
upload process significantly.

Real‑time statistics on sensor data
A key design requirement of SensorDB was to pro-
vide real-time or close to real-time statistical informa-
tion about the incoming sensor data. As a typical sensor 
measures thousands to millions of data points during an 
experiment, from our experience, the patterns and cor-
relations in time resolved data streams are more impor-
tant than individual data points. This statistical feature is 
designed to help users to quickly capture the big picture 
of a data stream. SensorDB provides continuous calcula-
tion of standard deviation, mean, number of elements, 
minimum, maximum, last value and last timestamp. This 
information is calculated at each individual aggregation 
window and updated with each incoming data point. 
Moreover, this information at any aggregation window is 
accessible using SensorDB’s Restful/JSON API.

In order to achieve this feature, SensorDB is using 
a cloud-based elastic data processing model. This 
approach is depicted in Fig.  4. The unique feature of 
this architecture is its elasticity, whereby the data pro-
cessing in SensorDB can be distributed across multiple 
networked computers. In order to provide high perfor-
mance throughput, stateless worker threads are used in 
SensorDB, whereby individual worker threads are not 
required to access any shared memory space to process 
their tasks, therefore each calculation is self-contained 
and performed independently. Using this approach, Sen-
sorDB can achieve high levels of parallelism and hence 
efficiently utilise available computational resources.

With this architecture, each processing node can be 
deployed on separate computer hardware. If a particular 
application domain is facing a large burst of sensor data 
input, one can simply distribute the work across a larger 
pool of computers to ensure that the system scales well 
and the system performance is maintained.

Preliminary analysis, visualization and download features
Screenshots of the SensorDB web interface are presented 
in Fig. 5 (available at http://sensordb.csiro.au). The Sen-
sorDB web interface is designed to provide the user 

http://sensordb.csiro.au


Page 6 of 14Salehi et al. Plant Methods  (2015) 11:53 

with an informed view of the data base for preliminary 
analysis and visualization. A customizable shopping cart 
approach is used for visualization and download that 
is user friendly, as it requires no prior software coding 
skills. A typical SensorDB workflow for preliminary anal-
ysis, visualization and download of the data is described 
as follows. Firstly, the user arrives at the front page and 
selects their user account (Fig.  5a) which opens a data 
explorer page containing all of the experiments belonging 
to that particular user. At this point, it is possible to filter 
by experiment and/or node and/or stream and/or meas-
urement and/or metadata (Fig. 5b, e).

The user can select an individual experiment and arrive 
at the experiment page (Fig. 5c) where a summary of the 
data available for each entire stream can be viewed. Note 
that for each aggregation level (raw, 1-min, 15-min, 1-h, 
1-day, 1-month, 1-year) the following statistics are calcu-
lated and updated in real-time: standard deviation; mean; 
number of elements; minimum; maximum; last value; 
last time-stamp. At the experiment page the user can also 
view metadata at the experiment level and filter nodes by 
stream and/or metadata.

To inspect data from an individual stream, the user can 
select a stream of interest and arrive at the stream page 
(Fig.  5d). The stream page comprises the following: the 
latest summary data and statistics at the selected data 
aggregation level (raw, 15-min, hourly, daily, monthly or 
yearly); a zoomable plot at the selected aggregation level; 
the individual stream metadata. Every stream in Sen-
sorDB has a unique stream page.

The user can select multiple streams for visualization 
and/or download at the data explorer and experiment 
pages. This is shown in Fig. 5e where selected streams are 
indicated with a tick symbol and the number of streams 

selected is indicated at the top of the page. The user then 
selects “Analysis”, shown at the top of the page in Fig. 5e, 
and arrives at the analysis page. At this point the user can 
build a zoomable graph comprising multiple data streams 
at an aggregation level of interest for data visualization 
(Fig. 5f ). Similarly, a download page is provided whereby 
the user selects the date range and aggregation level to 
download selected data streams in CSV file format for 
customized analysis.

Results and discussion
Evaluation of data retrieval latency
The objective of this evaluation was to assess the data 
retrieval latency of the pre-calculated statistics used in 
SensorDB and compare it against traditional database 
solutions where real time calculations are required. For 
this purpose, a dataset was generated from simulated 
solar irradiance data with one second frequency using the 
PySolar Python library (http://pysolar.org/, [4]). Twelve 
data files were created for one month, two months and 
sequentially up to twelve months. One month consists 
of approximately 2.6 million data points, therefore the 
total amount of data created was 200 million data points. 
The simulated data was uploaded to SensorDB as well as 
imported into MySQL and PostgreSQL databases. In the 
case of SensorDB, one stream was created for each of the 
simulated files resulting in 12 streams with the different 
duration of the simulations. In the SQL databases, one 
table was created for each duration, resulting in 12 differ-
ent tables.

A SQL query was created for each of the time aggre-
gation levels available in SensorDB, to thereby enable 
comparison of the data retrieval latency between Sen-
sorDB, MySQL and PostgreSQL databases. The SQL 

Fig. 4  SensorDB data processing model at the stream level

http://pysolar.org/


Page 7 of 14Salehi et al. Plant Methods  (2015) 11:53 

Fig. 5  Screenshots of the SensorDB web interface (available at http://sensordb.csiro.au) highlighting key features

http://sensordb.csiro.au


Page 8 of 14Salehi et al. Plant Methods  (2015) 11:53 

queries were implemented using a GROUP BY clause 
with the difference in time between the data timestamp 
and a fixed date. Given the differences in the SQL syntax 
for the different engines, each query was slightly different 
while using the same logic (Table 1). The same statistics 
that are available in SensorDB for the aggregated data 
where calculated in the SQL queries: average; min; max; 
count; standard deviation.

In order to time the results consistently, the same 
server was used for the three tests (Dell T7600, 128 Gb 
RAM, 2x Intel Xeon CPUs with a total of 16 cores). For 
each time aggregation level and data size, the mean time 
for three repetitions of the query was calculated. The 
results (Fig.  6) show that the query times for SensorDB 
were faster, by one to two orders of magnitude, than 
the other databases for each data size at all the aggrega-
tion levels. Moreover, for a given aggregation level, the 
query time increased linearly with data size for MySQL 
and PostgreSQL. In contrast for SensorDB, aside from 
the 1-min aggregation level, the query time was approxi-
mately constant and close to one second for all the aggre-
gation levels and data sizes. In the case of PostgreSQL 
it was approximately 20 times slower than MySQL for 
all the aggregation levels except for the 1-min level. At 
the 1-min aggregation level, the performance of MySQL 
degraded in comparison to PostgreSQL.

Evaluation of SensorDB scalability
SensorDB has been designed with scalability in mind. A 
benchmarker was developed to test the performance of 
SensorDB when accessed by several clients simultane-
ously. The benchmarker acted as a client to the SensorDB 
RESTful interface, via the Java API. A suite of bench-
marks consisted of collection of configurations for read 
and write testing. Individual configurations contained 
specifications for the number of experiments, nodes, 
streams, data size and client threads, along with a num-
ber of other parameters, that a test run would use.

The benchmarker would then use the configuration to 
generate a series of requests—simultaneous requests in 
the case of multiple threads—for the server to process. A 
request consists of the following: the API being invoked 
with some parameters; converting the parameters into a 
JSON document suitable for transmission to the server 
(“marshalling”); making a HTTP request to the SensorDB 
server; waiting for the server to process the request; 
receiving the response from the server in the form of a 
JSON document and converting the response document 
from JSON back into a Java object (“unmarshalling”).

The time spent making the request to the server and 
processing within the API—marshalling and unmar-
shalling—were both recorded and statistics collected. 
In all cases, the time spent by the API marshalling and 

Table 1  SQL queries for calculating the different levels of time aggregation
Database SQL Query
MySQL

SELECT
SUM( i r r a d ) ,
AVG( i r r a d ) ,
STD( i r r a d ) ,
COUNT( i r r a d ) ,
MIN( t imestamp1 )

FROM
I r r a d i a n c e 12m

GROUP BY (TIMESTAMPDIFF(minute , ’ 20000101 ’ , t imestamp1 )
DIV ( 5 ) )

PostgreSQL

S E L ECT
SUM( i r r a d ) ,
AVG( i r r a d ) ,
STDDEV( i r r a d ) ,
COUNT( i r r a d ) ,
MIN( t imestamp1 )

FROM
” I r r a d i a n c e 12m ”

GROUP BY DIV(
ABS(EXTRACT( epoch from ’ 2000−01−01 00 : 00 : 00 ’ : : timestamp

− t imestamp1 ) ) : : i n t ege r , 5∗60)

Example of SQL queries used for calculating time aggregation in MySQL and PostgreSQL. This example shows the aggregation of 5 minutes over the 12 months table 
Irradiance_12m. Different levels of aggregation can be obtained by changing the value of the minutes used in the DIV operation



Page 9 of 14Salehi et al. Plant Methods  (2015) 11:53 

unmarshalling requests and data was less than 2  % of 
the total request time and has been ignored. The request 
time, therefore, is the time from the start to the end of 
communication with the server. In cases where the 
majority of time is spent waiting for the server to finish 
processing and return a result, the term response time is 
occasionally used to emphasise that the client is waiting 
on the server—and thus free to perform other processing 
in other threads. Request time and response time both 
refer to the same measurement.

The total run time is the time spent running an entire 
benchmark, from the time the first client thread starts to 
the completion of all client threads. In the case of mul-
tiple, parallel threads, the total run time simply refers to 
the elapsed (clock) time, not the sum of the run times of 
each thread.

The benchmark server was the Dell T7600 described 
in the previous section. The client machine was a Dell 
M4800 workstation (16 Gb RAM, 1x Intel i7 2.80 GHz 
CPUs with a total of 4 cores). The client and server were 
connected by the 1GBs CSIRO internal network.

Write scalability
In the write tests, each stream had a fixed number of data 
points written in blocks of 100 points. Generally, each 
stream received 10,000 points. Since the benchmarks 
vary in the number of streams, a normalised total run 
time per 10,000 points is shown. The results of the write 
benchmarking tests are shown in Fig. 7.

The results for varying stream numbers for differ-
ent numbers of client threads are shown in Fig.  7a, b. 
With the exception of a single stream, similar request 
times and run times occur across increasing numbers of 
streams. Increasing client numbers increases the request 
time, due to contention at the server; the data store has 
a single write lock and requests need to be queued until 
processed. A single stream is consistently slower than 
multiple streams, since the server may need to lock over-
lapping data segments. The unusually slow throughput 
for a single thread is caused by the thread waiting for a 
response before proceeding with the next request; with 
two or more threads, a new request is already queued for 
the server to process when the response to a request has 

Fig. 6  Benchmark of SensorDB, MySQL and PostgreSQL. Query times for different data sizes and aggregation levels using; a MySQL, b PostgreSQL 
and c SensorDB. Note that for the 1-year and 1-day aggregation levels, the query time for SensorDB was less than one second



Page 10 of 14Salehi et al. Plant Methods  (2015) 11:53 

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18

Re
qu

es
t T

im
e 

(m
s)

Threads

1 Stream 2 Streams 4 Streams 8 Streams 16 Streams

(a) Request time — one experiment and
one node

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 2 4 6 8 10 12 14 16 18

To
ta

l R
un

 T
im

e 
pe

r 1
00

00
 p

oi
nt

s (
m

s)

Threads

1 Stream 2 Streams 4 Streams 8 Streams 16 Streams

(b) Total run time — one experiment
and one node

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18

Re
qu

es
t T

im
e 

(m
s)

Threads

2 Nodes 4 Nodes 8 Nodes

(c) Request time — one experiment and
10 streams

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18

To
ta

l R
un

 T
im

e 
pe

r 1
00

00
 p

oi
nt

s (
m

s)

Threads

2 Nodes 4 Nodes 8 Nodes

(d) Total run time — one experiment
and 10 streams

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18

Re
qu

es
t T

im
e 

(m
s)

Threads

1 Experiment 2 Experiments 4 Experiments

(e) Request time — 8 nodes and 10
streams

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18

To
ta

l R
un

 T
im

e 
pe

r 1
00

00
 p

oi
nt

s (
m

s)

Threads

1 Experiment 2 Experiments 4 Experiments

(f) Total run time — 8 nodes and 10
streams

0

50

100

150

200

250

0 500000 1000000 1500000 2000000 2500000 3000000

Re
qu

es
t T

im
e 

(m
s)

Points

(g) Request time — one thread, experi-
ment, node and stream

0

5000

10000

15000

20000

25000

0 500000 1000000 1500000 2000000 2500000 3000000

To
ta

l R
un

 T
im

e 
pe

r 1
00

00
 p

oi
nt

s (
m

s)

Points

(h) Total run time — one thread, exper-
iment, node and stream

Fig. 7  Write benchmarks for varying numbers of client threads, experiments, nodes, streams and points inserted



Page 11 of 14Salehi et al. Plant Methods  (2015) 11:53 

been sent. Otherwise, total throughput remains essen-
tially constant.

The results for varying node and experiment num-
bers are shown in Fig.  7c–f. Altering the number of 
nodes or experiments shows no significant variation in 
performance.

The result for inserting growing numbers of points into 
a stream are shown in Fig. 7g, h. In this test, large num-
bers of points were inserted as quickly as the server per-
mitted. SensorDB performs well when inserting relatively 
small numbers of points. After about 160,000 points, 
the server becomes saturated and throughput becomes 
constant.

Read scalability
The read tests started by populating a SensorDB experi-
ment with 10 streams across 5 nodes, with each stream 
containing 1,000,000 values at one second intervals. 
The results of the read benchmarking tests are shown in 
Figs. 8 and 9.

SensorDB allows read queries across several aggrega-
tion types. Fig.  8 shows the request time and total run 
time for raw data, as well as data aggregated over hourly, 
daily and monthly intervals. There is little difference 
between the different aggregation intervals. Since there 
are 3600 raw points for every hourly summary, the server 
takes longer to assemble the result. The subsequent 
benchmarks show results for both raw data and hourly 
aggregated data.

Figure  9a shows the effect of multiple clients simul-
taneously requesting data spread across 10 streams. 

Figure 9b shows the effect of multiple clients simultane-
ously requesting data from a single stream. The total run 
time drops as the number of threads increases, showing 
that the server is handling simultaneous requests with 
a high degree of parallelism. For raw data, request time 
rises after eight threads. Since there seems to be no major 
overhead in unmarshalling the received data, total run 
time remains constant beyond this point and the client 
machine became CPU-limited beyond 8 threads, this 
result appears to be largely the result of client machine 
limitations.

Figure  9c shows the effect of multiple simultaneous 
reads over varying numbers of streams. With the excep-
tion of a small amount of contention for a single stream, 
there is little difference between results.

Figure  9d shows the effect of increasing request size. 
Requests are made over a time interval; the x-axis shows 

0

20000

40000

60000

80000

100000

120000

140000

0

5

10

15

20

25

30

35

40

45

raw 1-hour 1-day 1-month

Ru
n 

Ti
m

e 
(m

s)

Re
qu

es
t T

im
e 

(m
s)

Aggrega�on

Mean Request Time Total Run Time

Fig. 8  Read benchmark for varying aggregation types—one thread

0

20000

40000

60000

80000

100000

120000

140000

0

20

40

60

80

100

120

0 5 10 15 20 25

Ru
n 

Ti
m

e 
(m

s)

Re
qu

es
t T

im
e 

(m
s)

Threads

Mean Request Time (raw) Mean Request Time (1-hr)

Total Run Time (raw) Total Run Time (1-hr)

(a) Client threads — 10 streams

0

2000

4000

6000

8000

10000

12000

14000

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

Ru
n 

Ti
m

e 
(m

s)

Re
qu

es
t T

im
e 

(m
s)

Threads

Mean Request Time (raw) Mean Request Time (1-hr)

Total Run Time (raw) Total Run Time (1-hr)

(b) Client threads — one stream

0

5000

10000

15000

20000

25000

30000

35000

40000

0

10

20

30

40

50

60

0 2 4 6 8 10 12

Ru
n 

Ti
m

e 
(m

s)

Re
qu

es
t T

im
e 

(m
s)

Streams

Mean Request Time (raw) Mean Request Time (1-hr)

Total Run Time (raw) Total Run Time (1-hr)

(c) Streams — four threads

0

1000

2000

3000

4000

5000

6000

0

10

20

30

40

50

60

0 50000 100000 150000 200000 250000

Ru
n 

Ti
m

e 
(m

s)

Re
qu

es
t T

im
e 

(m
s)

Request Interval (s)

Mean Request Time (raw) Mean Request Time (1-hr)

Total Run Time (raw) Total Run Time (1-hr)

(d) Requests — four threads, 10 streams
Fig. 9  Read benchmarks for varying number of client threads, streams and request sizes



Page 12 of 14Salehi et al. Plant Methods  (2015) 11:53 

the interval size in seconds. There is a slight rise in the 
time taken to assemble increasing amounts of raw data. 
Otherwise, SensorDB is insensitive to request size.

Large numbers of streams
Two benchmark suites were run to investigate the effect 
of large numbers of streams on SensorDB. In both cases, 
a varying number of streams were spread across a single 
experiment and 10 nodes, with each stream containing 
10,000 values. The results for writing and reading vary-
ing numbers of streams is shown in Fig. 10. The request 
time plots show error bars for a single standard devia-
tion (Fig. 10a, c); as can be seen, response time is quite 
variable. Altering stream numbers shows little effect on 
performance.

Case studies
A design objective of SensorDB is to empower its users 
by providing common tools combined with a flex-
ible yet powerful API. To achieve this goal, SensorDB’s 
team maintains an expanding list of official SensorDB 
API implementation in commonly used languages. As 
of today, APIs exist for Python and Java languages. As a 
demonstration of the utility of the tool and user empow-
erment, we present case study applications built by Sen-
sorDB users independently and in parallel of SensorDB’s 
core development agenda. These case studies are avail-
able at http://www.sensordb.csiro.au.

Case study 1: Diagnostic user (SensorDB mapped with respect 
to the sensor hardware)
This application utilised SensorDB as a diagnostic 
tool for a wireless sensor network deployed on a field 
experiment. The deployment comprised of 170 ther-
mopile based infra-red temperature sensors to measure 
crop canopy temperature [5]. Each sensor reported a 
measurement of battery voltage, sensor body temper-
ature and object temperature every 15-min. Each day, 
the data was uploaded to SensorDB and an email error 
report sent to the staff responsible for maintaining the 
deployment. The email error report contained the fol-
lowing information: gap error (a list of sensors where 
the time between successive readings exceeded a prede-
fined time); min and max error (a list of sensors where 
the minimum and maximum object temperature was 
below or above a predefined temperature) and missing 
sensor error (a list of sensors that failed to report data 
during the previous day). This approach minimised 
data loss by identifying faulty sensors as early as pos-
sible. Whilst this approach enables users to indentify 
faulty sensors, there is no feature implemented within 
SensorDB to tag faulty values and thereby exclude such 
values from further evaluation. However, it is possible 
for the user to programmatically extract data from Sen-
sorDB, “clean” the data using an appropriate algorithm 
to remove spurious values and reingest the data as a 
new stream.

-20

-10

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700

Re
qu

es
t T

im
e 

(m
s)

Streams

Mean Request Time

(a) Write request time

0 100 200 300 400 500 600 700

0

500

1000

1500

2000

2500

3000

3500

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 100 200 300 400 500 600 700

To
ta

l R
un

 T
im

e 
pe

r 1
00

00
 p

oi
nt

s (
m

s)

To
ta

l R
un

 T
im

e 
(m

s)

Streams

Total Run Time Total Run Time per 10000 points

(b) Write total run time

0
2
4
6
8

10
12
14
16
18
20

0 100 200 300 400 500 600 700

Re
qu

es
t T

im
e 

(m
s)

Streams

Mean Request Time

(c) Read request time

0 100 200 300 400 500 600 700

0
100
200
300
400
500
600
700
800
900

0

50000

100000

150000

200000

250000

300000

350000

400000

0 100 200 300 400 500 600 700

To
ta

l R
un

 T
im

e 
pe

r 1
00

00
 p

oi
nt

s (
m

s)

To
ta

l R
un

 T
im

e 
(m

s)

Streams

Total Run Time Total Run Time per 10000 points

(d) Read total run time
Fig. 10  Write and Read Benchmarks for varying numbers of streams. Write Benchmark—one thread and experiment, 10 nodes. Read Benchmark—
one experiment, 10 nodes, 4 threads

http://www.sensordb.csiro.au


Page 13 of 14Salehi et al. Plant Methods  (2015) 11:53 

Case study 2: Biological user (SensorDB mapped with respect 
to the biological experiment)
For the same field experiment described above in case 
study 1, the object temperature data (i.e. the biological 
data of interest) was mapped to the SensorDB data model 
with respect to the experiment (in Fig. 2). The metadata 
for each node was uploaded to provide contextual infor-
mation for the stream data. In this case, each node is an 
individual experimental unit and the stream is the time 
series of object temperature. Note that each node can 
have multiple streams. Mapping the experimental field 
plan and sensor data to the SensorDB data model with 
respect to the biological experiment in this fashion, per-
mits the researcher to think in terms of the experiment in 
a more natural way and immediately provides contextual 
information to the sensor data streams. Visualisation and 
comparison of treatments and experimental units was 
then straight forward.

Case study 3: Visualisation of data from multiple sensor types
In this case study we used the Restful/JSON API through 
a Python toolkit to retrieve data from different sensor 
types. The RESTful/JSON API is a powerful feature of 
SensorDB that we utilise through a REST client devel-
oped in Python for script based transactions with Sen-
sorDB. The Python REST client enables users to develop 
their own scripts for SensorDB data upload and down-
load, without directly interacting with the core devel-
opment team. The Python toolkit currently supports 
data upload for the following sensors: Vaisala WXT520 
weather station http://www.vaisala.com/; Hussat soil 
moisture sensor http://www.hussat.com.au/; the Green-
Seeker normalised difference vegetative index hand held 
sensor http://www.ntechindustries.com/RT100-hand-
held.html; an infra-red temperature sensor developed 
in-house and Licor LI-191R line quantum sensor http://
www.licor.com/env/products/light/quantum_line.html.

Conclusions
The recent advent of affordable sensor hardware has 
meant that obtaining time series data of physical phe-
nomena is now straight forward and routine. Hence, 
sensor data is undisputedly one of the growing sources 
of information for many companies and government 
agencies worldwide. The challenge has shifted from 
development of sensing hardware for data collection, to 
development of data handling systems to enable rapid 
interpretation and synthesis of the data by multiple users. 
This new challenge is evident in the agricultural research 
area of field based phenomics, where crop improvement 
is sought through a greater understanding of gene func-
tion and environmental response [6], as a recent review 
identified that effectively managing the data streams is a 

major research priority [7]. Such phenotyping research 
studies are often undertaken in remote locations repre-
sentative of the target environment [8] and increasingly 
require multidisciplinary collaboration among research-
ers [9] to collect, process and analyse the varied data 
types. Furthermore, continuous measurements of crop 
canopy temperature in irrigated cotton show promise as 
a decision support tool for commercial producers [10]. 
The sheer magnitude of the number of observations 
generated in the aforementioned research and indus-
trial applications can overwhelm traditional relational 
databases and unstructured data management systems. 
In contrast, SensorDB offers a solution that provides the 
user with real-time statistics at various aggregation win-
dows through a cloud service.

The focus of SensorDB on statistical information allows 
our users to quickly explore their data, discovering the 
trends and irregularities. SensorDB supports powerful 
stream data processing tools, including indexing with 
user-defined metadata, that enable users to rapidly aggre-
gate, select, group and filter their data without program-
ming. The virtual laboratory environment of SensorDB 
empowers the end user to focus on the meaning of the 
data and maximise value extraction. It also allows shar-
ing of big data collected from sensors, as well as analyti-
cal results, increasing productivity and know-how via 
collaboration through sharing any individual’s data and 
analysis algorithms. Via the elastic cloud solution used 
here, SensorDB scales as required by the application 
without the necessity to redesign. As a ready to scale 
product, SensorDB guarantees instantaneous response to 
user demands for data and big data analysis. This means 
outstanding throughput is preserved during data access 
regardless of the volume of data stored in the system. The 
do it yourself modular nature of SensorDB allows it to be 
easily adopted to suit varied applications without hav-
ing to directly interact with the core development team. 
Using this approach, we are empowering a community of 
users.

In conclusion, SensorDB is a novel web based virtual 
laboratory tool for managing large volumes of biological 
time series sensor data while also supporting rapid data 
queries and real-time user interaction. Users are empow-
ered through a Restful HTTP API that supports script 
based user interaction for customised visualisation, anal-
ysis and data IO. Collaboration and data sharing between 
different agencies and groups is facilitated through the 
use of a web based tool with a structured data model.

Availability and requirements
Project name: SensorDB. Project home page: http://sen-
sordb.csiro.au. Operating system(s): Platform independ-
ent. Programming language: Scala, Python, Java. Other 

http://www.vaisala.com/
http://www.hussat.com.au/
http://www.ntechindustries.com/RT100-handheld.html
http://www.ntechindustries.com/RT100-handheld.html
http://www.licor.com/env/products/light/quantum_line.html
http://www.licor.com/env/products/light/quantum_line.html


Page 14 of 14Salehi et al. Plant Methods  (2015) 11:53 

requirements: http://sensordb.csiro.au is compatible with 
the following web browsers: Chrome; Firefox; Internet 
Explorer 10; Internet Explorer 11. Any restrictions to use 
by non-academics: licence required.

Authors’ contributions
AS, EH, JJB, DP and PRL designed and wrote the software. AS, JJB, DMD, SCC, 
RTF and DG contributed to project coordination. DP, AS, JJB and PRL contrib‑
uted to evaluation of scalability and data retrieval latency. AS, JJB and DMD 
contributed to the overall conception and writing of the article with input 
and advice from RTF, DG and SCC. All authors read and approved the final 
manuscript.

Author details
1 CSIRO Agriculture, Clunies Ross St, Canberra 2601, Australia. 2 CSIRO Data61, 
Clunies Ross St, Canberra 2601, Australia. 3 CSIRO Agriculture, 306 Carmody 
Road, Brisbane 4067, Australia. 4 School of Computer Science and Information 
Technology, RMIT University, 124 La Trobe Street, Melbourne 3000, Australia. 
5 Centre of Excellence for Translational Photosynthesis, Australian National 
University, Canberra 0200, Australia. 

Acknowledgements
This work was funded through the Grains Research and Development Cor‑
poration (CSP00148) and the Australian Government National Collaborative 
Research Infrastructure Strategy (Australian Plant Phenomics Facility).

Competing interests
The authors declare that they have no competing interests.

Received: 4 June 2015   Accepted: 14 October 2015

References
	1.	 Michel S, Salehi A, Luo L, Dawes N, Aberer K, Barrenetxea G, Bavay M, 

Kansal A, Kumar KA, Nath S, Parlange M, Tansley S, van Ingen C, Zhao 
F, Zhou Y. Environmental monitoring 2.0. In: Ioannidis YE, Lee DL, Ng 

RT, editors, ICDE. Los Alamitos: IEEE Computer Society; 2009. vol. 0, pp. 
1507–1510. http://dblp.uni-trier.de/db/conf/icde/icde2009.html.

	2.	 Jeung H, Sarni S, Paparrizos IK, Sathe S, Aberer K, Dawes N, Papaioannou 
TG, Lehning M. Effective metadata management in federated sensor 
networks. In: International conference on sensor networks, ubiquitous, 
and trustworthy computing (SUTC ), 2010, pp. 107–114. doi:10.1109/
SUTC.2010.29.

	3.	 Aberer K, Hauswirth M, Salehi A. A middleware for fast and flexible 
sensor network deployment. In: Dayal U, Whang K-Y, Lomet D, Alonso 
G, Lohman G, Kersten M, Cha SK, Kim Y-K, editors. Proceedings of the 
32nd International Conference on Very Large Data Bases. VLDB ’06, pp. 
1199–1202. VLDB Endowment, Seoul, Korea; 2006. http://dl.acm.org/cita‑
tion.cfm?id=1182635.1164243.

	4.	 Reda I, Andreas A. Solar position algorithm for solar radiation applications. 
National Renewable Energy Laboratory: Technical report; 2005.

	5.	 O’Shaughnessy SA, Hebel MA, Evett SR, Colaizzi PD. Evaluation of a wire‑
less infrared thermometer with a narrow field of view. Comput Electron 
Agric. 2011;76(1):59–68.

	6.	 Furbank RT, Tester M. Phenomics—technologies to relieve the phenotyp‑
ing bottleneck. Trends Plant Sci. 2011;16(12):635–44.

	7.	 White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley 
MM, Feldmann KA, French AN, Heun JT, Hunsaker DJ, Jenks MA, Kimball 
BA, Roth RL, Strand RJ, Thorp KR, Wall GW, Wang GY. Field-based phenom‑
ics for plant genetics research. Field Crops Res. 2012;133:101–12.

	8.	 Rebetzke GJ, Chenu K, Biddulph B, Moeller C, Deery DM, Rattey AR, Ben‑
nett D, Barrett-Lennard EG, Mayer JE. A multisite managed environment 
facility for targeted trait and germplasm phenotyping. Funct Plant Biol. 
2013;40(1):1–13.

	9.	 Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S. Next-generation 
phenotyping: requirements and strategies for enhancing our under‑
standing of genotype-phenotype relationships and its relevance to crop 
improvement. Theor Appl Genet. 2013;126(4):867–87 (Export Date: 2 May 
2013).

	10.	 Mahan JR, Young AW, Payton P. Deficit irrigation in a production 
setting: canopy temperature as an adjunct to ET estimates. Irrig Sci. 
2012;30(2):127–37.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dblp.uni-trier.de/db/conf/icde/icde2009.html
http://dx.doi.org/10.1109/SUTC.2010.29
http://dx.doi.org/10.1109/SUTC.2010.29
http://dl.acm.org/citation.cfm?id=1182635.1164243
http://dl.acm.org/citation.cfm?id=1182635.1164243

	SensorDB: a virtual laboratory for the integration, visualization and analysis of varied biological sensor data
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Related work

	Implementation
	SensorDB data model
	Software implementation
	Data upload
	Real-time statistics on sensor data
	Preliminary analysis, visualization and download features

	Results and discussion
	Evaluation of data retrieval latency
	Evaluation of SensorDB scalability
	Write scalability
	Read scalability
	Large numbers of streams

	Case studies
	Case study 1: Diagnostic user (SensorDB mapped with respect to the sensor hardware)
	Case study 2: Biological user (SensorDB mapped with respect to the biological experiment)
	Case study 3: Visualisation of data from multiple sensor types


	Conclusions
	Availability and requirements
	Authors’ contributions
	References




