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Abstract

Background: A well characterized output of the circadian clock in plants is the daily rhythmic movement of leaves.
This process has been used extensively in Arabidopsis to estimate circadian period in natural accessions as well as
mutants with known defects in circadian clock function. Current methods for estimating circadian period by leaf
movement involve manual steps throughout the analysis and are often limited to analyzing one leaf or cotyledon at a
time.

Results: In this study, we describe the development of TRiP (Tracking Rhythms in Plants), a new method for estimating
circadian period using a motion estimation algorithm that can be applied to whole plant images. To validate this new

analyzed.

broad applicability of this new method.

method, we apply TRiP to a Recombinant Inbred Line (RIL) population in Arabidopsis using our high-throughput
imaging platform. We begin imaging at the cotyledon stage and image through the emergence of true leaves.
TRIP successfully tracks the movement of cotyledons and leaves without the need to select individual leaves to be

Conclusions: TRIiP is a program for analyzing leaf movement by motion estimation that enables high-throughput
analysis of large populations of plants. TRiP is also able to analyze plant species with diverse leaf morphologies.
We have used TRIP to estimate period for 150 Arabidopsis RILs as well as 5 diverse plant species, highlighting the
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Background

The genomics era is transforming the way we form and
test biological questions. With the decreasing cost of Next
Generation Sequencing (NGS) technology the use of high-
throughput experimentation on large plant populations is
possible. This shift towards expanded genetic and pheno-
typic analysis has led to next generation mapping popula-
tions which include Nested Association Mapping (NAM)
populations [1] and Multiparent Advanced Generation
Inter-Cross (MAGIC) lines [2] for enhanced gene map-
ping and trait discovery. The availability of genome
sequencing and the advancements in de novo genome
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assembly have stimulated research in important crop
plants and the development of better model systems for
studying biofuel production, photosynthesis, abiotic stress
response and the impacts of climate change on yield
[3]. Many of the current techniques used for phenotyp-
ing are extremely labor intensive and often not feasible
for the study of large populations. New methods for
high-throughput phenotyping [4,5] are being developed
to catch up with the mass of NGS data that is being
generated.

It is well established thatan output of v the circadian clock in
plants is the daily rhythmic movements of their leaves
[6]. This rhythmic movement can be used to estimate the
period of the internal clock. To determine the timing of
leaf movement, time-lapse photography is used to image
every 10-20 min over a window of 5-10 days under con-
stant light conditions. This generates large image series
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that are then analyzed for rhythmicity by tracking the
position of the cotyledons or leaves in each image. Several
methods have been developed to perform this analysis;
however, they all require user input at several steps dur-
ing the analysis [7-9]. For example, one commonly used
method relies on MetaMorph® software in combination
with the Biological Rhythms Analysis Software System
(BRASS), which analyzes individual cotyledon movement
and fits period, phase and amplitude data using a Fast
Fourier Transform Nonlinear Least Squares (FFT-NLLS)
method [8]. The input data for BRASS is generated in
MetaMorph®, or an equivalent image analysis software,
and this step is a major bottleneck to the analysis. In
MetaMorph?®, the region tool is used to select the region
surrounding individual leaves. This region must be drawn
large enough to surround the leaf across the image stack
as it grows and moves over the course of the time series.
The coordinates of the leaf are then recorded across the
stack and exported to Excel for analyses with BRASS.
The need to process each plant individually makes the
analysis of a large population extremely labor inten-
sive and time consuming. Another drawback to using
a single cotyledon is that the movement of the cotyle-
don is dependent on active growth of the petiole and
once growth ceases the movement dampens dramatically
causing unreliable period detection [6]. A more auto-
mated method was used to analyze leaf movement on
Brassica oleracea seedlings; however it required glue-
ing polystyrene balls to each cotyledon blade in order to
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track the movement in MetaMorph® [10,11]. To overcome
these constraints, we have developed a motion estimation
algorithm [12] called Tracking Rhythms in Plants (TRiP)
that tracks leaf movement of cotyledons and true leaves
simultaneously.

Results and discussion

Ground truth

To validate this new method we first simulated time series
data with a 3-D computer generated (CG) model of a plant
with a 24 h and 25 h period (Figure 1). This 3-D model
was animated with a time series based on the manually
estimated motion of an Arabidopsis Col-0 seedling. We
used TRiP to analyze these simulated video sequences,
and obtained 24 h and 25 h periods from the CG model
thereby validating the motion detection algorithm. To
further test the performance of the circadian period esti-
mation we created simulated traces with periods ranging
from 20 h to 28 h. For each period, we introduced 3 differ-
ent amplitude trends and 3 noise levels that approximate
the traces generated from leaf movement data (Figure 2A;
Table 1). TRiP accurately estimated the correct period for
all simulated traces at all noise levels (Figure 2B). The
amplitude trends did not have much of an effect on the
model output, which is consistent with previous analy-
sis of FFT-NLLS methods [13]. It should be noted that
the motion detection and circadian period estimation are
separate steps in the analysis. The motion detection out-
put can be used as input into other circadian period
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Figure 1 TRiP successfully detects leaf movement from CG plant model with known period. Images of growing Arabidopsis seedlings were
digitized and used to animate a time series of leaf movement. (A) A trough (T=12, subjective dusk) and (B) a peak image (T= 24, subjective dawn)
keyframe were each used to produce two animations that demonstrated plant leaf movement with defined circadian periods, which were assessed
using TRIP. (C) Visualization of motion field at T=24. (D) Traces of simulated leaf movement with periods of 24 h or 25 h measured with TRiP.
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Figure 2 TRiP successfully estimates circadian period from simulated period data. (A) Examples of simulations generated for 3 amplitude trends
and 3 levels of noise (A = 0.2 amplitude, B = 0.6 amplitude, C = 1 amplitude) (B) Error surrounding TRiP period estimates for the 3 levels of noise.
(C) Error surrounding TRIP period estimates at the 3 amplitude trends with known period. Period and standard deviation data for all simulations can
be found in Table 1.
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Table 1 Period estimation using TRiP to analyze simulated data with different amplitude trends and noise levels

Known Amplitude 2 Noise level A 3 Noise level B 3 Noise level C 3

Period ' Period Period Period
(h) (h; mean = sd) (h; mean =% sd) (h; mean =+ sd)
20 I 20.00 +0.02 19.98 + 0.06 19.99 +£0.12
21 I 21.04 £ 0.07 21.07 £0.09 2107 £0.12
22 I 22.08 £ 0.07 2211 £0.09 22104+0.18
23 I 23.08 £0.07 23.09 £ 0.07 2307 +£0.18
24 | 23.99 +£0.02 24.00 + 0.04 24.06 £ 0.15
25 I 25.05+£0.06 25.05+0.11 25.05+0.26
26 I 2609+ 0.14 26.08 £0.24 2598 +£0.26
27 I 27.114+0.12 27204£0.12 27104034
28 I 28.13+0.16 28124022 28.14+0.27
20 Il 20.00+0.03 2000£0.12 19.97 £0.10
21 Il 21.06 + 0.06 21.05 4+ 0.09 21.06 £ 0.21
22 Il 22.08 £ 0.09 22104+ 0.07 2204 +0.14
23 Il 23.08 £ 0.07 23124012 23054022
24 Il 24.00 + 0.04 23.98 £ 0.09 2406 +£0.19
25 Il 25.07 £0.06 25.06+0.13 2507 £0.28
26 Il 26.15+0.11 26.07 £ 0.09 26.08 £0.27
27 Il 2716+ 0.14 27.14£0.14 26.99 £ 0.31
28 Il 28.17+£0.15 28.194+0.20 2817 £0.31
20 Il 20.00 £0.03 20.00 + 0.07 20.06 £0.15
21 Il 21.07 £0.05 21.08 £0.14 21124020
22 Il 22.09 +0.09 22.124+0.09 2202+0.16
23 Il 23.08 +0.08 23.0440.12 23.044+0.18
24 Il 24,00 £ 0.02 2396 +0.12 24,08 +0.20
25 Il 2507 £0.05 2508 £0.15 2497 £0.19
26 Il 2618 +£0.11 26.1240.19 2622 +0.29
27 Il 27.15+0.14 2718 +0.14 2701 +£0.17
28 Il 28.18+0.12 2817 +£0.17 28.16+0.38

' A cosine of known frequency.

2Three levels of amplitude trends, defined as the rate at which the amplitude envelope of the signal decays, were applied: | = 0, Il = 0.001, Ill = 0.002.

3Noise levels (A=0.2 amplitude, B=0.6 amplitude, C=1 amplitude).

The mean and standard deviation were calculated from 10 repeated simulations. Circadian periods plotted in Figure 2 were calculated using TRiP.

estimation algorithms provided on other platforms such
as BioDare [13,14].

We next wanted to test TRiP on live plant images using
growth conditions that have previously been used for the
leaf movement analysis in Arabidopsis. To test the abil-
ity of TRiP to detect period differences on agar grown
seedlings, we grew Col-0 and the long period mutant
prmt5-2 [15,16]. Seedlings were imaged for 5 days and
analyzed using TRiP; output traces are shown in Figure 3.
TRiP calculated a period of 24 h for wild type and 26
h for prmt5-2, consistent with published results using
the MetaMorph® and BRASS method described above
(Figure 3A). To test the ability of TRiP to analyze leaf

movement during emergence of true leaves we grew
Col-0, a collection of previously characterized circadian
clock mutants and the natural accession Jea on soil and
imaged seedlings for 5 days during which time true
leaves emerged. Leaf movement was successfully detected
and resulted in period estimates consistent with pub-
lished data (Figure 3B-C, Table 2). These results confirm
the functionality of this new method for the analysis of
leaf movement in Arabidopsis. An important advantage
to the motion estimation algorithm applied in TRiP is
that the cotyledon/leaf movement captured in the image
is processed to generate one waveform for each plant.
This method also alleviates common problems with leaf
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Figure 3 TRiP analysis of agar and soil grown Arabidopsis seedlings.
(A) TRiP motion traces for the long period mutant prmt5-2 and Col-0
grown on agar. (B) TRiP motion traces for the short period mutant
toc1-101 and Col-0 grown in soil (€) TRiP motion traces for Col-0 and
the Jea accession grown in soil. Relative vertical motion traces are an
average of 10 individual plants for prmt5-2 and Jea and 5 plants for
toc1-101. Shading indicates the standard deviation.
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Table 2 Circadian period of leaf movement on Arabidopsis
clock mutants estimated using TRiP

Mutant N Period

(h; mean % sem)

Col-0 34 2496 £0.15

ccal- 7/hy-201 4 19.92 £0.20
toc1-1012 5 2239£0.21
prrs-13 4 23094+0.15
2tl-4fkf1-24 10 31.81+£087
prr5-1prr7-3prr9-1° 8 arrhythmic

'Previously described in [17].

2Previously described in [18].

3Previously described in [19].

“4Previously described in [20].

5Triple mutant generated using alleles described in [19].
Arrhythmicity is consistent with the triple mutant described in [21].

movement analyses such as overlapping leaves. Even as
true leaves emerge and interfere with the cotyledons the
movement is still captured.

Applying TRiP to an Arabidopsis RIL population

To apply our leaf movement system to a high-throughput
experiment, we analyzed a 150 line RIL population
derived from a cross between the Arabidopsis accessions
Col-0 and Jea [22]. The ability to image cotyledons and
true leaves reduces the complications around germina-
tion and growth rate differences within the population. As
leaves emerge, TRiP continues to capture the motion in
the entire frame. Our current imaging platform allows us
to image 1652 plants in one week (Additional file 1). To
estimate period in the RIL population we implemented a
randomized block design to account for camera and posi-
tion effects. The resulting mean period values (Additional
file 2) were used to map quantitative trait loci (QTL)
in this population using available SNP marker data [22].
We identified 3 putative and 2 suggestive QTL for cir-
cadian period, with one on each of the 5 chromosomes
(Figure 4, Table 3). QTL on the top of chromosome 5
have been identified for circadian period in other stud-
ies [19,23]. Candidate clock genes in this region include
PSEUDO-RESPONSE REGULATOR 7 (PRR7) [24] and
REVEILLE1 (RVEI1) [25]. The QTL identified on chro-
mosome 2 includes EARLY FLOWERING3 (ELF3) [26]
that has been identified as a QTL for period in a Bay-0
x Shakdara RIL population [27]. Finally, the QTL on
chromosome 4 includes PROTEIN ARGININE METHYL-
TRANSFERASE 5 (PRMTS5) [15,16]. We did not detect
any significant interactions between the identified QTL.
These results demonstrate the utility and sensitivity of
TRIP for assessing natural variation in the circadian clock
in large plant populations.
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Figure 4 Genetic mapping of circadian period in Col-0 x Jea RIL population. (A) QTL likelihood map was generated in R/qgtl for each chromosome.
Horizontal dashed lines indicate significance levels. (B) Effects plot for the QTL above a significance threshold of 0.05. Colors correspond to the QTL

Applying TRiP to diverse plant species

An important goal while developing a new method for leaf
movement detection was to be able to apply this method
to a range of plant species with varying leaf morphology.
To test the versatility of TRiP on different plant species
we took a phylogenetic approach and selected flowering
plant species from diverse clades that included the model
species Arabidopsis as well as important crop species
including Brassica rapa and Soybean. We successfully
estimated circadian period from leaf movement data on
Brassica rapa, Arabidopsis thaliana, Glycine max, Cleome
violacea, Solanum lycopersicum, and Mimulus guttatus
(Figure 5; Table 4). Additional video sequences for each
species show the leaf movement with and without the
TRiP motion vectors (Additional files 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13 and 14). This highlights the broad appli-
cability of TRiP to model and non-model species and the
feasibility of analyzing large populations of plants in a rea-
sonable amount of time with few hands-on steps during
the analysis process.

Conclusions

The presence of circadian rhythms in plants was first doc-
umented in 1729 by the French astronomer Jean Jacques
Ortous de Mairan following his observations of the daily
leaf movements of the heliotrope plant (Mimosa) that
persisted in constant darkness [28]. This innate diurnal

periodicity was measured a century later by de Candolle
and others and found to be approximately 24 h in length
[29]. Darwin characterized and quantified these move-
ments extensively in the 1880s [30], paving the way for
the emergence of circadian biology. The development
of transgenic technologies and the use of fluorescent
reporter systems have increased the sensitivity and feasi-
bility of more elaborate circadian clock studies in plants,
in particular the model plant Arabidopsis [31,32]. How-
ever, with the advances in NGS technology and reduction
in cost, the field of molecular ecology is transforming. The
ability to sequence natural populations facilitates more
directed study for evolutionary and ecological questions
such as the genetic basis of local adaptation, specia-
tion, species composition and species interactions [33].
To complement these NGS studies, high-throughput phe-
notyping methods will need to be developed that can
be applied to these natural populations. Understanding
the genetic contributions to changes in flowering time in
response to photoperiod, temperature and precipitation
is critical towards expanding the geographical distribu-
tion of crops as well as their adaptability to the changing
environment [34,35]. The circadian clock is an impor-
tant integrator of environmental cues that coordinates the
physiological response of the plant through a complex
genetic network [36]. The ability to asses circadian clock
function and variation in these natural populations will

Table 3 Summary of circadian period QTL detected in Jea x Col-0 RIL population

QTL CHR LoD INT/POS' ADD? VAR3 Candidate Genes

Jea 2 233 13.80-33.50 (24) 043 7.1 ELF3, CCR2, XCT, FIO1, LIP1, PHYB, LKP2
Jea 4 301 51.80-60.40 (59) 051 561 PRMTS, bHLH69

Jea 5 468 0.00-4.50 (0) 056 934 PRR7, RVE]

TINT/POS: 1-LOD QTL interval with peak position, cM.
2ADD: Additive effects of the QTL, hours.
3VAR: Percent of the variation explained.
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Figure 5 TRiP can be applied to a wide range of plant species with varying leaf morphologies. (From top to bottom: Brassica rapa, Arabidopsis
thaliana, Cleome violacea, Glycine max, Mimulus guttatus, and Solanum lycopersicum. Plants were imaged every 20 minutes for 5 days under constant
light and temperature at 20°C except Glycine max, which was imaged at 25°C. For each species, the relative vertical motion traces are an average of 8
individual plants (except Solanum lycopersicum, where n = 5) analyzed over 5 days. Shading indicates the standard deviation. White and gray bars
below each trace indicate subjective day and subjective night, respectively, defined by the entraining photocycle. The phylogenetic relationships
among the species are indicated at the right.
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Table 4 Circadian period of cotyledon or leaf movement
across diverse plant species

Species N Period
(h; mean = sd)

Brassica rapa 8 2358 +£0.76
Arabidopsis thaliana 8 2251+ 054
Cleome violacea 8 2567 £ 094
Glycine max 8 2461 £0.25
Mimulus guttatus 8 25.02 £047
Solanum lycopersicum 5 25.76 £ 0.64

TRiP was used to estimate circadian period for the six plant species shown in
Figure 3.

lead to significant advances in our understanding of the
interactions between the circadian clock and plant fitness.
The automated nature of TRiP, as well as its utility on non-
model organisms as demonstrated in this study, makes it
an excellent platform for addressing these questions.

Material and methods

TRiP program

TRiP is a Matlab-based program. The source code can
be run on the open source Octave software with slight
modifications outlined in the readme file provided with
the TRiP package. The TRiP code has been provided as
a supplemental file (Additional file 15) and can also be
found on GitHub (http://github.com/KTgreenham/TRiP).
The first step of the TRiP analysis is generating indi-
vidually cropped images of each plant. We have applied
a grid-based cropping function that takes each camera
image stack as input and crops the images using the grid
coordinates given and outputs the cropped image files in
a separate directory. We generate the grid coordinates in
Matlab of each box drawn around the plant. It is impor-
tant that the cells are drawn based on the first and last
image of the time series to ensure that the entire plant is
captured in the crop. Additional notes regarding the grid
coordinates can be found in the readme file. Once the
grid has been designed, all subsequent experiments can
use the same crop function and requires no manual image
processing.

Motion estimation
Within the Computer Vision and Image Processing
communities, differential motion estimation has proven
highly effective at computing fine-grained and large-scale
motion in video sequences [12,37,38]. We describe one
such standard motion estimation algorithm.

To begin, the motion between two sequential frames,
f(x9,¢) and f(x,9,¢ — 1) is modeled with a simple 2-D
translation motion vector at each pixel location:

f(x,y,t) =f(x+Vx,y+Vy,t—1), (1)
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where v, and v, are the horizontal and vertical motions.
That is, the image (or an image patch) is assumed to trans-
late uniformly between times ¢ and ¢ — 1. In order to
estimate the motion, we define the following quadratic
error function to be minimized:

E(evy) = Y [fGop,t) = fx+vey+v,t— D, (2)
x,y€2

where Q denotes a user specified region of interest (ROI)
in the image over which the motion is estimated. Minimiz-
ing this error function can be difficult and computation-
ally demanding because it is non-linear in the unknown
motion parameters. The minimization can be simplified
by approximating the error function using a first-order
truncated Taylor series expansion:

E(evy) ~ Y Uf = (F +vafe +0fy — 1
x,y€Q2
~ I = vk — mpl
x,y€Q2
Vx 2
“ B w9
x,y€Q2 Y
o 2
~ Y [h-£] 3)
x,y€Q2

where, f, f;, and f; are the spatial and temporal image
derivatives and where, for notational convenience, the
spatial/temporal parameters on f and its derivatives are
dropped.

This quadratic error function is now linear in the
motion parameters v and can therefore be minimized
analytically by differentiating with respect to v:

dE 2 2T,
==Y 257 @
x,y€Q
seeting the result equal to zero and solving for v:
dE 0
dv
> ST,
3 —2fs[t—fs V] =0
%,y
- —>—>T_>
dooffim Y AL V=0
x,y€R x,y€R
—»—»T_} -
YA V= ) S
x%,y€Q x,y€Q
-1
- ZaT 2
v=| DA | XM
X%,y x,y€Q2
v =M"b. (5)
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This solution assumes that the 2 x 2 matrix M is invert-
ible. This can usually be guaranteed by integrating over a
large enough ROI 2 with sufficient image content.

Given a pair of frames f(x,y,¢) and f(x,y,£ — 1), the
spatial and temporal derivatives are numerically approxi-
mated as follows:

L@y, t) = (0.5f(x,9,8) + 0.5 (x, 5, t — 1)) xd(x) x p(y)

Sy y,t) = (0.5 (x, 9, 1) + 0.5 (x, 9, £ — 1)) x p(x) * d(y)

fe(x,9,8) = (0.5 (x,9,£) — 0.5((x, 9, £ — 1)) * p(x) * p(¥),
(6)

where x denotes the convolution operator and d and p are
1-D separable filters:
dx) =(0.5—-0.5) and pkx) = (0.5 0.5), (7)

and where d(y) and p(y) are the same filters oriented
vertically instead of horizontally.

Circadian period estimation

The circadian period is estimated using a two-step pro-
cess. Denote the plant’s vertical leaf motion over time as
vy(t). In the first step, this time series is detrended to
remove any linear trend. The Fourier transform of v, (¢)
is then computed and the circadian period 7y is taken to
be the frequency with the maximal amplitude. In the sec-
ond step, an iterative Nelder-Mead optimization is used to
refine this estimate by searching for the frequency, phase
and amplitude that best, in the root mean square sense,
fits the motion data v,(¢). This simple approach is similar
to employing FFT-NLLS with only a single frequency. We
have found that because the motion estimation is fairly
accurate, a model based on only a single frequency suffices
to extract accurate estimates of circadian period.

3-D Computer generated plant model

A 3-D computer generated (CG) model of a plant with a
realistic and precisely known motion was used to validate
TRiP. Top, front and side views of an Arabidopsis Col-0
seedling were taken every 10 minutes over a 5 day period
under constant light conditions and 20°C. This time series
was used to build and animate a 3-D CG plant model
(Figure 1). The modeling, texturing, and animation were
done in Autodesk Maya®. To verify the motion estimation
algorithm of TRiP with known motion we used the first
day of the 3-D CG model to generate simulated traces with
a period of 24 h and 25 h. The resulting rendered video
sequence could then be supplied to TRiP for validation
of the motion estimation and circadian period estimation.
We have also provided the raw images that were selected
as key frames across the 5 day imaging along with movie
files for the 24 h and 25 h simulations and the full 5 day
model (Additional files 16, 17, 18, 19, 20, 21, 22, 23).
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Camera and imaging set up

Our imaging system uses 14 cameras, both Canon Power-
Shot ELPH 300s and A2300 IS models, employing the
CHDK (Canon Hacker Development Kit) software to set
interval shooting to take a picture every 20 min. The
CHDK software is installed on 4GB SIM cards that have
been formatted to FAT32. The Ultimate Intervalometer
script is used to run the time interval shooting. Details
of the CHDK installation and use can be found on the
CHDK wiki. A 4GB memory card can hold images from
3-4 weeks of 20 min interval shooting depending on the
camera and image resolution. There are other methods for
setting interval shooting on other camera platforms that
have been described in previous studies [7,8,39]. Any of
these camera systems can be used to generate the images;
the new method described in this study was designed for
any sequence of jpeg-formatted images. The cameras were
mounted with a fixed focus and minimum per plant pixel
count of 10,000 (100 x 100 pixels). Plants are placed
in front of a black background for contrast. For all plant
species tested except Glycine max, we built a step shaped
structure to maximize the number of plants in one image
frame. Each wood frame (L 18 cm x W 12 cm x H 6 ¢cm)
supports 6 shelves made of steel hollow sections cut in
half lengthwise (L 24 cm x W 1.75 cm x H 0.75 cm). The
edges were filed down and covered with electrical tape.
Pieces of Plexiglass were glued to the ends using Aquar-
ium safe silicone. The plants are placed in the stands with
the tips of the cotyledons or true leaves pointing to either
side, the first row holds 18 plants and the remaining rows
have 20 for a total of 118 plants/camera (Additional file 1).
Larger plants cannot be imaged on every shelf so we limit
the imaging to 3 rows of 20 plants for each camera. The
plants were watered daily to maintain soil saturation and
prevent wilting or movement from soil swelling. To image
Glycine max, we placed 10 plants in a plexiglass stand (L
45 cm x W 2.75 cm x H 2.5 cm) with 800 mL of water
at the start of imaging and watered every day. Imaging for
all plants began 24 h following transfer to constant light
conditions.

QTL mapping and analysis

A total of 150 lines in the Col-0 x Jea population were
assayed for leaf movement and circadian period estima-
tion using TRiP. Model fit traces that gave period values
above 32 h and below 18 h were removed. Standard
error of the mean (SEM) was calculated for each line
and lines with an SEM above 0.50 (corresponding to 30
min) were removed from the analysis (Additional file 2).
Mean period values were used for QTL mapping. The
markers and construction of the genetic map were previ-
ously described [22]. Composite interval mapping (CIM)
was performed with R/qtl [40] using 3 marker covari-
ates and a window size of 20 ¢cM to detect QTL. LOD
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threshold was calculated based on the averaged LOD fol-
lowing 1000 permutations. A two dimensional genome
scan was performed using the “scantwo” function in R/qtl
to test for QTL interactions. No significant interactions
were detected.

Plant growth conditions

All plants were grown in Sunshine Redi-earth under
~90 wmol s~ m~> light unless otherwise stated. All plant
species described except Glycine max were grown in 0.5"
pvc coupling purchased from Home Depot. The pots/pvc
couplings were filled with damp soil wet with water. A
day after transferring plants to the imaging chamber they
were watered once with a 20-20-20 fertilizer. Plants were
watered daily to prevent any movement due to water loss
or uptake. Soil saturation must be maintained throughout
the imaging.

Arabidopsis thaliana

Arabidopsis seeds were stratified in HpO for 3 days at 4°C
in the dark. Seeds were germinated in soil and put in a
12 h light : 12 h dark (12L:12D) entrainment chamber at
20°C for 7 days. On day 4 of entrainment the lights were
turned off 4 h after dawn for 20 h to promote hypocotyl
elongation and then returned to 12L:12D for 2 additional
days. Following entrainment, seedlings were transferred
to 24 h constant light (LL) and temperature (HH) for
imaging.

Brassica rapa

Dry seeds were sown directly on soil. Plants were
entrained for 7 days in a growth chamber at 20°C under
12L:12D conditions and high light (~350 pmol st m_2)
to limit hypocotyl elongation. Once cotyledons had
expanded (7 days), plants were transferred to LLHH
conditions for imaging.

Cleome violacea

Dry seeds were sown directly onto damp soil and
entrained to 12L:12D at 20°C until true leaves emerged.
Plants were imaged in LLHH at 20°C for 5 days.

Solanum lycopersicum

Dry seeds were sown directly onto damp soil and
entrained to 12L:12D at 20°C for 7 days under low light.
Cotyledons were imaged in LLHH at 20°C for 5 days.

Glycine max

Dry seeds were sown directly onto damp soil in 2.25"
square pots and put in a growth chamber at 121:12D with
a daytime temperature of 25°C and night time temper-
ature of 18°C. Following emergence of the first trifoliate
leaves, plants were transferred to LLHH at 25°C for
imaging.
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Mimulus guttatus

Seeds were stratified in the dark at 4°C in water for 1
week. Seeds were planted in soil and germinated in the
entrainment chamber at 121.:12D with a daytime temper-
ature of 20°C and night time temperature of 16°C. We
observed more robust leaf movement from true leaves.
Plants were moved into the imaging room at the emer-
gence of the first set of true leaves and imaged in LLHH at
20°C.

Additional files

Additional file 1: Figure S1. Leaf movement camera setup. (A) Image
from one camera with 118 Arabidopsis seedlings. (B) Image of the full
camera setup showing the step-shaped platform designed to hold 20
seedlings per row.

Additional file 2: Table S1. Data file with the mean period values for
each line in the Jea x Col-0 RIL population, the lines highlighted in grey
were removed due to SEM values above 0.50.

Additional file 3: Movie S1. Brassica rapa seedling imaged every 20 min
over 5 days.

Additional file 4: Movie S2. Brassica rapa seedling imaged every 20 min
over 5 days. Red arrows represent the TRiP motion vectors.

Additional file 5: Movie S3. Arabidopsis thaliana seedling imaged every
20 min over 5 days.

Additional file 6: Movie S4. Arabidopsis thaliana seedling imaged every
20 min over 5 days. Red arrows represent the TRiP motion vectors.
Additional file 7: Movie S5. Cleome violacea seedling imaged every 20
min over 5 days.

Additional file 8: Movie S6. Cleome violacea seedling imaged every 20
min over 5 days. Red arrows represent the TRiP motion vectors.
Additional file 9: Movie S7. Glycine max seedling imaged every 20 min
over 5 days.

Additional file 10: Movie S8. Glycine max seedling imaged every 20 min
over 5 days. Red arrows represent the TRiP motion vectors.

Additional file 11: Movie S9. Mimulus guttatus seedling imaged every 20
min over 5 days.

Additional file 12: Movie S10. Mimulus guttatus seedling imaged every
20 min over 5 days. Red arrows represent the TRiP motion vectors.
Additional file 13: Movie S11. Solanum lycopersicum seedling imaged
every 20 min over 5 days.

Additional file 14: Movie S12. Solanum lycopersicum seedling imaged
every 20 min over 5 days. Red arrows represent the TRiP motion vectors.
Additional file 15: TRiP. Compressed folder containing the TRiP code
including a ReadMe file and sample image data.

Additional file 16: Movie $13. CG plant model simulating a 24 h period.
Additional file 17: Movie S14. CG plant model simulating a 25 h period.
Additional file 18: Movie $15. CG plant model over 5 day time course.

Additional file 19: Col-0 Side View Images for 3-D Model. Images of
Col-0 captured every 10 min for 5 days from the side view for the 3-D CG
model. Table S2 lists the images used as key frames in the model.
Additional file 20: Col-0 Front View Images for 3-D Model. Images of
Col-0 captured every 10 min for 5 days from the front view for the 3-D CG
model. Table S2 lists the images used as key frames in the model.
Additional file 21: Col-0 Top View Images for 3-D Model. First half of
images of Col-0 captured every 10 min for 5 days from the top view for the
3-D CG model. Table S2 lists the images used as key frames in the model.

Additional file 22: Col-0 Top View Images for 3-D Model. Second half of
images of Col-0 captured every 10 min for 5 days from the top view for the

3-D CG model. Table S2 lists the images used as key frames in the model.
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Additional file 23: Table S2. List of the images used as key frames for the
3-D CG model animation.
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