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Abstract

Background: Grass stalks architecturally support leaves and reproductive structures, functionally support the
transport of water and nutrients, and are harvested for multiple agricultural uses. Research on these basic and
applied aspects of grass stalks would benefit from improved capabilities for measuring internal anatomical features.
In particular, methods suitable for phenotyping populations of plants are needed.

Results: To meet the need for large-scale measurements of stalk anatomy features, we developed custom image
processing software that utilized a variety of global thresholding, local filtering, and feature detection methods to
measure rind thickness, pith area, vascular bundle counts, and individual vascular bundle size from digital images of
hand-cut transections of stalks collected with a flatbed document scanner. The tool determined vascular bundle
number with an average accuracy of 90% across maize genotypes that varied five-fold for this trait. The method is
demonstrated on maize, sorghum, and Miscanthus stalks. The computer source code is staged for download.

Conclusions: Simplicity of sample preparation and semi-automated analyses enabled by this tool greatly increase
measurement throughput relative to standard microscopy-based techniques while maintaining high accuracy. The
tool is expected to be useful in genetic and physiological studies of the relationships between stalk anatomy and
traits such as biofuel suitability, water use efficiency, or nutrient transport.

Introduction

The stalks of widely cultivated grass species such as maize
and sorghum support multiple architectural and physio-
logical functions, while contributing the most to aerial
non-grain biomass. Visible in transections of such stalks
are the many vascular bundles scattered throughout the
parenchymatous pith. Surrounding the pith is a layer rich
in collenchyma that is usually visibly distinct and com-
monly called the rind. The developmental mechanisms
that determine the number of vascular bundles, their dis-
tribution, and the proportion of rind to total stem tissue
in graminaceous crops is currently an important topic of
research [1]. For example, water movement through the
plant may relate to the number and size of xylem-bearing
vascular bundles. Therefore, selection-based breeding for
stem anatomy traits could be an effective strategy to im-
prove water use efficiency [2,3]. Also, cell walls in the
sclerenchyma surrounding the bundles or collenchyma in
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the rind are typically highly lignified, which limits digest-
ibility when the stems are used for animal feedstock or in-
dustrial fermentation for ethanol production [4,5]. Plants
better suited for ethanol production may be identified
through surveys of natural variation for stem anatomy
traits [6-8]. Another reason for studying anatomical fea-
tures of grass stalks is their relationship to mechanical
properties. The strength of the stalk determines the degree
of wasteful crop lodging and pre-harvest breakage in the
field [9-12].

These various motivations for measuring the anatom-
ical features of grass stems create the need for a method
that is efficient enough to measure hundreds if not thou-
sands of individuals within defined populations for the
purpose of mapping the genetic loci responsible for vari-
ation in the trait. Traditional methods for studying anat-
omy usually rely on sectioning chemically fixed tissue
with a microtome followed by mounting the cut section
on glass slides for examination with a microscope. These
microscopic methods give superb cellular-level reso-
lution, and have been used in large-scale studies of ana-
tomical features [13-15], but typically their throughput is
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low. Relaxing the resolution criterion from cellular to tis-
sue level increases the feasibility of automation. Higher
throughput achieved by greater automation would im-
prove the feasibility of acquiring the large data sets needed
for some types of studies, such as statistical genetic trait
mapping.

Computerized processing of digital images is an increas-
ingly common means of quantifying plant structure.
Sometimes sophisticated microscopy is called for [16-18]
but simpler devices such as flatbed document scanners are
perfectly adequate in many cases [19,20]. To quantify stem
anatomical features as phenotypes across populations of
plants suitable for statistical genetic analyses, for example,
a simple imaging device and minimal sample preparation
may provide the appropriate balance between resolution
and throughput. The goal of the present work was to cre-
ate an image analysis tool that could operate on images of
hand-cut stem transections obtained on a flatbed scanner
to measure anatomical features in high throughput.
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Results

Image preprocessing

Example images of four stalk transections cut from two
different maize genotypes are shown in Figure 1A. The
images were acquired with a flatbed document scanner
in three-color (red, green, blue) mode. The tool to be
described here operates on such images to measure stalk
diameter, rind thickness, number of vascular bundles,
density of vascular bundles, and vascular bundle size
from such images. The first step in the method creates a
binary representation of a grayscale version of original
image (Figure 1B) using Otsu's method for determining
a threshold value that minimizes the intraclass variance
[21,22]. A subsequent filtering step eliminates objects
(dirt or debris) too small or eccentric (smaller than
15000 pixels, which is significantly smaller than the
smallest stalks we have ever analyzed, or with an eccen-
tricity greater than 0.99) to represent a stem section,
producing a binary image consisting only of background

Figure 1 The initial processing steps of maize stalk transections. A) Original, unprocessed images of four stalk transections. The two on the
left are the same genotype. The two on the right are the same genotype but different from those on the left. B) Segmenting all non-background
objects by a simple thresholding technique identifies the stalk samples and smaller non-stalk objects such as scratches and debris. C) A filtering
step based on object size and shape results in a binary image consisting of background and stalk samples. D) A crop box centered on each of
the stalk objects is placed on the original image to allow the user to make adjustments to the scenes to be processed.
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Table 1 Range of trait values observed in a sample of
thirty maize genotypes

Trait Genotype Mean value
Stalk diameter (cm) E2558W 326 +0.23
LH85 1.60 £ 0.06
Rind thickness (cm) W182BNgt 042 +0.08
A663 0.13+0.04
Vascular bundle density (cm™2) 05602 573+38
W182BN 368+28
Vascular bundle size (cm?) PHK93 904+11x107*
Mo39 431+12x107*

Of the 30 genotypes sampled by collecting transections from 3 individual
plants each, those which gave the largest and smallest value for each trait are
listed in the middle column. The mean + SEM of the three samples per
genotype is given in the right hand column.

and stalk transection (Figure 1C). A box bounding each
object in the filtered image is automatically placed on
the original image for the purpose of cropping individual
stem section images (Figure 1D). This box, generated
automatically by the program, is the smallest possible
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rectangle that includes all of the identified object. The
user may manually adjust the crop box if, for example, a
portion of the stem section should be omitted from fur-
ther analysis due to damage during sectioning or other
anomaly. Standard binary object morphology operations
quantify the total area, diameter (average), and perimeter
of each stalk section.

The maize genotypes shown in Figure 1 were two of 30
randomly selected from the hundreds of genotypes com-
prising the Wisconsin Diverse Association Panel [23]. Of
the 30 genotypes sampled, E2558W was found to have the
widest average stalk diameter and LH85 had the narrowest
(Table 1). The difference was approximately two-fold.

Rind thickness

The rind of monocotyledonous stalks is primarily com-
posed of the epidermis plus lignified sclerenchyma and
collenchyma cells beneath the epidermis. To isolate this
portion of the stalk from the adjacent central pith, the
green channel of the original image was filtered with a
Gaussian distribution set to suppress the signal from the
rind and maintain the bright signal from the pith.

from filter width 1, 1.5, 2, and 2.5 are shown.

Figure 2 Discerning the pith/rind boundary. Processing of the green channel of the original image with a Gaussian filter suppresses the rind
region to establish the boundary of the pith (red line). The result depends on the width of the Gaussian filter used to convolve the image. Results
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sample perimeter.

Figure 3 Determining rind width. A) An original stalk transection image. B) Image after binarization. C) Black pith mask determined from
boundary found as shown in Figure 2 imposed in the binarized transection to segment the rind (white). D) Rind segment overlayed on the
image in A. The width of the rind is the average distance between each point on the pith boundary and its nearest point on the

Binarizing this filtered image by Otsu thresholding cre-
ates an image with a boundary marked by the red line in
Figure 2. The rind segmentation result depends to a
relatively minor degree on the filter width parameter,
which the user may adjust from the default setting
(Figure 2). Figure 3 shows an original transection image,
the binarized image, a pith mask based on the step

shown in Figure 2, and an overlay showing how the rind
could be faithfully segmented from the stalk image. To
measure the average width of the rind, the mean Euclidean
distance between each point on the object boundary and
the point nearest it on the rind/pith boundary is com-
puted. The rind of W182BNgt plants was more than
three-fold thicker than that of the A663 genotype (Table 1),

gray value intensity plot.

Figure 4 Processing to highlight vascular bundles. A grayscale representation of a stalk transection before (A) and after (B) anisotropic
filtering. This step renders the vascular bundles as bright spots of mostly uniform intensity that will appear as single rather than split peaks in a
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Figure 5 Vascular bundle localization. The position of each peak
in grayscale value detected after the filtering step shown in Figure 4
is projected on to the original image and labeled in red. At this
stage, the user may choose to select bundles not detected by

the program.

indicating considerable genetic variation in the specifica-
tion of this anatomical trait.

Vascular bundle number and density
To enumerate the vascular bundles specifically in the
pith, a grayscale version of each image is convolved with
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a Gaussian kernel having a width approximately equal
to the average size of a vascular bundle. A typical result
is shown in Figure 4A. An anisotropic diffusion filter
[22-26] is then applied to enhance the contrast and re-
duce noise. These steps result in localized peaks in
grayscale value, fairly uniform bright areas, correspond-
ing to the location of vascular bundles (Figure 4B). The
peaks are computationally identified via non-maximum
suppression [27,28]. Masking the rind (Figure 3) re-
stricts the bundle counts to the pith area. Figure 5
shows a typical result, in which most of the vascular
bundles identifiable by eye are counted by the tool. The
user may manually select vascular bundles missed by
the tool to add to the count. A random sample of
41 transection images was counted by a human expert
and processed automatically by the tool. The expert
counted 3469 bundles in the piths of these samples and
the tool counted 3128, or 90% of the ground truth. Re-
sult of this accuracy test are presented in Figure 6. One
reason for the consistent though minor undercounting
of bundles by the tool is that the human may have in-
cluded bundles that the tool determined not to be
within the pith.

Dividing the number of bundles by the pith area gives
vascular bundle density. This trait also varied among the
30 genotypes sampled, though relatively less than the
stalk or rind thickness traits. The highest average dens-
ity, observed in the OS602 genotype, was 57% greater
than the lowest density observed, in the W182BN geno-
type (Table 1).
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Figure 6 Accuracy of vascular bundle counting. A random set of 41 transection images was used to test the accuracy of the tool. A) The
vascular bundles located in the pith in 41 transections were counted by a human and by the tool. Each point in the scatter plot represents the
two numbers associated with each different section. The diagonal line represents perfect agreement. B) The number of bundles automatically
counted relative to the number determined by eye was converted to a percent accuracy value for each transection and presented as a frequency
histogram. Fitting a normal distribution to the histogram determined the mean accuracy value to be 90%.
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Determining the size of the bundles

Despite the simplicity of the tissue preparation (hand
cut transections) and imaging system (flatbed docu-
ment scanner) the size of individual vascular bundles
could be measured from the images. The process be-
gins by copying a 40 x 40 pixel region surrounding the
center coordinates of each previously identified bundle.
A homomorphic filtering process [29-31] normalizes
brightness and increases contrast of the vascular bun-
dle by first taking the logarithm of the intensity values
and then performing two-dimensional discrete Fourier
transforms to identify low frequency components of
the image, which are subsequently suppressed by filter-
ing because they tend to represent reflectance artifacts
more than structural features in images. A 2D Gaussian
distribution fit to the grayscale values of this enhanced
patch, when projected onto the image plane, produces
a measure of the vascular bundle area. Figure 7 shows
i) unprocessed vascular bundles of different sizes, ii)
after processing, and iii) with contour lines of the fitted
Gaussian distribution projected onto the image. Among
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the genotypes sampled, vascular bundle size varied
more than two-fold between the largest in PHK93 and
the smallest in Mo39 (Table 1).

Application to other species

Transections of Sorghum bicolor, a grass species with a
maize-like stem anatomy, were similarly collected and
imaged as shown in Figure 8A. The tool isolated the
boundaries of the rind and enumerated the vascular
bundles within the pith (Figure 8B-D). Miscanthus
giganteus, the stalk of which is intensively studied for
biofuels purposes, has considerably narrower stalks and
smaller vascular bundles than sorghum or maize. None-
theless, manually adjusting the respective parameters as
discussed above enabled the tool to measure the target
suite of traits automatically as demonstrated in maize
(Figure 9). Thus, the tool presented here may be ex-
pected to quantify anatomical features in the stalks of
many grass species having discernable rinds, pith, and
vascular bundles.

raw image

N

enhanced grayscale 2D Gaussian fit

Figure 7 Measuring vascular bundle size. Each row is a different individual vascular bundle. A small, medium, and large bundle was selected
for presentation. The left column shows the original unprocessed color image. The center column shows the processed grayscale image
enhanced by a homomorphic filtering step. The right column shows the level contours of a 2D Gaussian distribution fit to enhanced grayscale
map. The outermost ring is taken as a measure of the size of the bundle.
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Figure 8 Applying the tool to transections of Sorghum bicolor stalks. A) Unprocessed image of a hand-cut transection of a sorghum stalk.
B) Stalk perimeter (blue line) determined from a binary representation of the transection superimposed on the original image. C) Rind/pith
boundary (red line) superimposed on the original image. D) Detected vascular bundles (red circles) superimposed on the original image.

Discussion

The need for a practical method for quantifying the
major anatomical features in large numbers of grass
crop stalks motivated this tool development project.
Three competing objectives needed to be balanced to
meet the need. One objective was to require only min-
imal sample preparation. Another was for the analysis
not to limit the rate of the overall process. The third
was to achieve high accuracy. Sample preparation in-
volves hand cutting transections from stalk internodes
systematically collected and tagged in the field and
placing them directly on the imaging surface of a
computer-controlled document scanner. Image acquisi-
tion and file saving requires only one manual input.
Thus, the actions needed to prepare and image the
samples are simple and efficient. Analysis of the result-
ing image file representing 12 transections is typically
automatic, though scenarios requiring manual adjust-
ments are encountered. For example, regions physically
damaged during sectioning or by insect feeding may re-
quire cropping by manually adjusting the bounding
box. The default settings of the Gaussian distribution
width or the rigidity of the anisotropic diffusion

parameters serve well for most maize transections but
may require adjustment when strongly divergent geno-
types or other species are to be studied. Even in scenar-
ios requiring semi-automated operation, in which the
user chooses some degree of supervision and parameter
adjustment, the analysis step was not more time con-
suming than sample preparation. Achieving acceptable
accuracy or fidelity in the analysis stage required devel-
opment of appropriate feature extraction algorithms.
Here the technical challenges to be overcome stemmed
principally from the choice of simple sample prepar-
ation and imaging because without fixation, staining, or
optical enhancement of contrast, the anatomical in-
formation in the images is frequently obscure. The
steps described here and summarized in a flowchart
(Figure 10) dealt with the inhomogenieties in lighting
across individual transections, probably due to vari-
ation in sample thickness and other consequences of
crude hand sectioning techniques, better than alterna-
tive image processing methodologies such as watershed
[32,33] and level-set techniques [34,35], which were
also tried. Lack of sample uniformity probably had a
larger effect on result quality than did parameter
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in thin stalks of Miscanthus.

Figure 9 Applying the tool to transections of Miscanthus gigantum stalks. A) Stalk perimeter (blue line) and rind/pith boundary (red line)
superimposed on the orginial, unprocessed color image. B) Detected vascular bundles (red circles). C) An individual vascular bundle in the
unprocessed image. D) Grayscale representation of A after processing including homomorphic filtering. E) Level contours of the 2D Gaussian
distribution fit to the grayscale image in D projected onto the original image. This shows the method measures the very small vascular bundles

tuning. Therefore, better methods for stalk sectioning
may have a larger impact on the capability of this tool
than further software efforts.

Overall, the set of design decisions and technical solu-
tions produced an effective tool for high-throughput
quantification of anatomical features in grass stalks. The
tool, written in the Matlab computer language, is staged
for download at http://phytomorph.wisc.edu/download/
HeckwolfPlantMethods2015/ along with a composite test
image representing a variety of transection phenotypes
so that the performance of future tools for studying stalk
anatomy can be benchmarked against that described
here.

The current tool and future derivatives of it may be
expected to enable systems-style projects attempting to
discover links between the anatomical features and
chemical or gene expression features, or large-studies
of the genetic architecture affecting stalk architecture.
More specifically, this tool may benefit biofuels re-
searchers seeking a deeper understanding of the rela-
tionships between stalk anatomy, cell wall composition,
and efficiency of carbohydrate conversion to ethanol
because lignin content, which is correlated with fea-
tures such as vascular bundle density quantified here
(Table 1), limits the efficiency of biomass to ethanol

conversion. Modeling of the size and number of vas-
cular bundles in grass stalks for the purpose of achiev-
ing a quantitative understanding of stalk hydraulics is
another area of research that may benefit from the
tool.

This motivation for the development reported here,
and therefore the resulting product, differs from a re-
cent study that also used image analysis of maize stalk
transections but to produce a 3D statistical model of
vascular bundle distribution [36]. The present work
emphasizes measurement throughput, to address the
need for quantifying the most salient anatomical fea-
tures in thousands of stalk samples, whereas Legland
et al. [36] created a normalized model of vascular bun-
dle distributions that facilitates quantitative compari-
sons between categories of samples.

Although the tool was developed to be effective
with minimal sample preparation, it may prove use-
ful in studies of transections that have been stained
to highlight features such as high lignin content. In-
corporation of such labeling or staining steps may
give the method reported here more power to re-
solve anatomical details, for example by differentiat-
ing between sclerenchyma and collenchyma within
the rind [37,38].
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Figure 10 Flow chart showing the image processing steps from
image acquisition to measurement of vascular bundle size.

Methods

Plant growth and sample collection

A set of 30 diverse maize inbred lines from the Wisconsin
Diverse Association Panel [23], was grown at the
Arlington Agricultural Research Station (University of
Wisconsin-Madison) in 2013 in a field experiment
using a randomized complete block design with two
replications. Three representative plants per plot and
field replication were harvested and brought to the lab
45 days after flowering for sample preparation.

Sample preparation and imaging

Transections of the third internode above the ground
were cut by hand using razor blades into sections be-
tween 4 and 10 mm thick. Sections thicker than that
resulted frequently in shadows or reflections on the
rim of the stalk, producing a halo effect, which made
the analysis of the stalks using standard parameter
setting difficult or impossible. To produce an image
for analysis, a total of 12 transections representing
three individuals of four genotypes were placed on the
horizontal imaging surface of an Epson Perfection
V700 Photo Scanner and scanned at resolution of 800
dots per inch in red, green, blue color mode. Using
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these settings, we produced images with a height of
3800 to 3900 pixels and a width of 5000 to 5100 pixels
and a resolution of 315 pixels per centimeter, with an
error of at most 5 pixels. To enhance contrast be-
tween the samples and the background, the lid of the
scanner was left open, resulting in a black back-
ground. The resulting files, typically larger than 30
megabytes, were saved in tagged image file format to
a computer disk array.
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