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Abstract

Background: In this paper, a novel method is proposed to identify plant species by using the two- dimensional
multifractal detrended fluctuation analysis (2D MF-DFA). Our method involves calculating a set of multifractal
parameters that characterize the texture features of each plant leaf image. An index, I0, that characterizes the
relation of the intra-species variances and inter-species variances is introduced. This index is used to select three
multifractal parameters for the identification process. The procedure is applied to the Swedish leaf data set containing
leaves from fifteen different tree species.

Results: The chosen three parameters form a three-dimensional space in which the samples from the same species
can be clustered together and be separated from other species. Support vector machines and kernel methods are
employed to assess the identification accuracy. The resulting averaged discriminant accuracy reaches 98.4% for every
two species by the 10 − fold cross validation, while the accuracy reaches 93.96% for all fifteen species.

Conclusions: Our method, based on the 2D MF-DFA, provides a feasible and efficient procedure to identify plant species.

Keywords: Plant identification, Multifractal detrended fluctuation analysis, Support vector machines and kernel methods
Introduction
The increasing interest in biodiversity and biocomplex-
ity, together with the growing availability of digital im-
ages and image analysis algorithms, makes plant species
identification and classification a topic that has attracted
many researchers’ attention. In general, many parts of a
plant such as flowers, seeds, roots, and leaves can be
used to identify plant species [1-3]. In this paper, we
focus on the usage of image of leaves as they are widely
available. Leaf ’s shape, color, vein properties, texture and
contours are important features for plant identification.
For example, leaf shapes were used in [4-6]; complex
veins and contours of leaves were used in [7] and leaf tex-
ture was used in [8-11] for plant species identification. For
plant species identification using digital morphometrics,
we refer the reader to [12-14] and the references therein.
Note that in [7], a monofractal method was used to ex-

tract plant leaf ’s features from leaf images. This method
was then used in [15,16]. It’s been recognized that the
monofractal method cannot fully extract detailed informa-
tion from the leaf image and therefore cannot be efficiently
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applied to process the images of the objects that are locally
irregular [17]. To overcome this difficulty, several multifrac-
tal analysis (MFA) methods were proposed [18-22]. For
example, Backes et al. [18,19] used multi-scale fractal di-
mensions to describe the texture property of leaf ’s surface
to identify plants, which turned out to be very efficient.
Note that the classical MFA is based on capacity measure-
ment or probability measurement and thus describes only
stationary measurements [17]. For a leaf image, the surface
itself is hardly stationary. Therefore, the multifractal
detrended fluctuation analysis (MF-DFA) method that can
deal with non-stationary is a desirable method for leaf
image analysis [23]. Though the MF-DFA method has been
successfully applied in many fields for non-stationary series
and surfaces [24-30], to the best of our knowledge, no work
yet has applied the MF-DFA on leaf images for plant identi-
fication and classification. In this paper, we attempt to iden-
tify plant species via leaf images by using the MF-DFA.
More precisely, we first adopt the MF-DFA to extract im-
portant texture features from leaf images and obtain several
key multifractal parameters, and then we apply the support
vector machines and kernel methods (SVMKM) to distin-
guish leaves from different plant species. The widely used
Swedish leaf data set [31] containing leaves from fifteen
This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
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Figure 1 Fifteen species of tree leaf images from the Swedish leaf database, their species’ name and corresponding.
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different Swedish tree species are used for our experiments.
Our results show that the average accuracy is 98.4% for
every two species by the 10 − fold cross validation; for the
over-all species, the average accuracy reaches 93.96% by the
same validation criterion.
We organize the rest of this paper as follows: in

Methods and materials we adopt the two-dimensional
(2D) MF-DFA to calculate the multifractal parameters.
In Results and discussion, we present and discuss our re-
sults. Our method is then further tested in Model test. A
summary is provided in Conclusions.

Methods and materials
Multifractal detrended fluctuation analysis
We first adopt the 2D MF-DFA method proposed in
[32] to our setting as follows:

Step 1: Regard a leaf image as a self-similar surface and
represent it by an M×N matrix X = (X(i, j)), i = 1, 2,…,
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Figure 2 Multifractal nature in the power-law of the gray image of le
for different values of q. In order to make clearer contrast among the differ
best fitted lines whose slopes are shown in the legend. (b): Dependence o
M and j = 1, 2,…, N. Partition the surface into Ms × Ns

non-overlapping square sub-surface of equal length s,
where Ms ≡ [M / s] and Ns ≡ [N / s] are positive integers
(Here [u] stands for the largest integer that is less than
or equal to u). Each sub-surface is denoted by Xm,n =
Xm,n(i, j) with Xm,n(i, j) = X(r + i, t + j) for 1 ≤ i, j ≤ s,
where r = (m-1)s and t = (n-1)s. Note that M and N
are not necessarily multiples of the length s, therefore,
the sub-surfaces in the upper-right and the bottom
may not be taken into consideration. We can then
repeat the partitioning procedure starting from the
other three corners.
Step 2: For each sub-domain Xm,n, find its cumulative sum

Gm;n i; jð Þ ¼
Xi

k1¼1

Xj

k2¼1
m;n Xm k1; k2ð Þ; ð1Þ

where 1 ≤ i, j ≤ s, m = 1, 2, …, Ms and n = 1, 2, …, Ns.
Then Gm,n =Gm,n(i, j) (i, j = 1, 2, · · ·, s) itself is a surface.
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Figure 3 Multifractal nature in the power-law of the gray image of leaf MX017. (a): The plots of the detrended fluctuation function Fq(s) for
different values of q. In order to make clearer contrast among the different curves, some constants are subtracted. The straight lines are the best
fitted lines whose slopes are shown in the legend. (b): Dependence of τ(q) and h(q) on q.
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Step 3: For each surface Gm,n, obtain a local trend G~
m,n

by fitting it with a pre-chosen bivariate polynomial
function. In this paper, we choose the trending function
as

~Gm;n i; jð Þ ¼ aiþ bjþ c; ð2Þ
a.where 1 ≤ i, j ≤ s and a, b and c are free parameters to
be determined by the least-squares method. The re-
sidual matrix is then given by ym,n = ym,n(i, j) with

ym;n i; jð Þ ¼ Gm;n i; jð Þ−~Gm;n i; jð Þ: ð3Þ

Step 4: Define the detrended fluctuation function F(m,
n, s) for the segment Xm,n as follows:

F2 m; n; sð Þ ¼ 1
s2
Xs

i¼1

Xs

j¼1

ym;n i; jð Þ2 ð4Þ

and the qth-order fluctuation function

Fq sð Þ ¼ 1
MsNs

XMs

m¼1

XNs

n¼1

F m; n; sð Þ½ �q
" #1=q

; q≠0: ð5Þ
Figure 4 The generalized Hurst exponents h(q) for each species.
Fq sð Þ ¼ exp
1

MsNs

XMs

m¼1

XNs

n¼1

ln F m; n; sð Þ½ �
( )

; q ¼ 0: ð6Þ

Step 5: Vary the value of s ranging from 6 to min(M,N)/4.
If there is long-range power-law correlation for large
values of s, then

Fq sð Þ∝sh qð Þ:

This allows us to obtain the scaling exponent h(q) via
linearly regressing lnFq(s) on lns. Note that h(2) is the so
called Hurst index of the surface, we then call h(q) the
generalized Hurst index of the surface. For each q, the
corresponding classical multifractal scaling exponent
τ(q) is given by:

τ qð Þ ¼ qh qð Þ−Df ¼ qh qð Þ−2; ð7Þ

where Df is the fractal dimension of the geometric sup-
port of the multifractal measure, and takes the value of
Df = 2 in our work. The generalized multifractal dimen-
sion Dq is then given by



Figure 5 The standard deviations of the averaged h(q) calculated in Figure 4.
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Dq ¼ τ qð Þ
q−1

¼ qh qð Þ−2
q−1

; q≠1: ð8Þ

In the case where q = 1, D1 can be obtained via a lin-

ear regression of
XMs

m¼1

XNs

n¼1
Pm;n ln Pm;n against lns,

where

Pm;n ¼
X

1≤i;j≤s
Xm;n i; jð ÞX

1≤i≤M

X
1≤j≤N

X i; jð Þ :

The other two indicators characterizing the singularity
strength of the multifractal surface are the Hölder exponent
α(q) and the singularity spectrum f (α), which are given by

α qð Þ ¼ τ′ qð Þ ¼ h qð Þ þ qh′ qð Þ; f αð Þ
¼ qα qð Þ−τ qð Þ ¼ q α−h qð Þ½ � þ 2: ð9Þ

Here α(q) characterizes the local singularity of an
image texture, and f (α) measures the global singularity
of an image texture. Varying the value of q in the range
from −15 to 15 determines Δα and Δf as follows:

Δα ¼ αmax−αmin;Δf ¼ f αmaxð Þ−f αminð Þ; ð10Þ
αmax =max{α(q), q∈[−15,15]} and αmin =min{α(q),

q∈[−15,15]}. Note that the index Δα is considered as an
Figure 6 The averaged values for six related multifractal parameters
indicator to measure the absolute magnitude of the
gray scale volatility. The larger value of Δα, the
smaller even distribution of probability measure and
the more roughness image surface will be expected.
The index Δf is the Hausdorff dimension of the meas-
ure object, which measures the degree of confusion.
Therefore both Δα and Δf are important multifractal
parameters in describing the characteristics of an
image in our study.
Experiment materials
To demonstrate our method of identifying plant species
by using the leaf texture, we use the Swedish leaf data
set [31] for our experiment, which is widely employed in
computer vision and pattern recognition fields [4,33,34],
plant taxon fields [1] and image processing fields [6,35].
This leaf data set has images of 15 species of leaves with
75 sample images per species. We label the fifteen spe-
cies by MI, MII, · · ·, MXV (See Figure 1).
We first transform the color image to gray scale so

that each image can be viewed as a three- dimensional
surface with the first two coordinates (i, j) denoting the
2D position and the third coordinate z denoting the gray
level of the corresponding pixel.
based the MF-DFA estimation for each species.



Figure 7 The standard deviations of the averaged parameter values calculated in Figure 6.
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Multifractal nature of image surfaces
Each image is stored as a 2D matrix in 256 grey levels.
This allows us to follow the procedure introduced in
Multifractal detrended fluctuation analysis to calculate
the associated h(q) and τ(q). If τ(q) is nonlinear in q, that
is h(q) is not independent of q, then the image possesses
the multifractal nature.
For the Swedish leaf data set, we find that the leaf im-

ages all possess the multifractal nature. Figure 2 and
Figure 3 demonstrate the multifractal nature of two ran-
domly chosen leaf images, namely, image MIV004 and
image MX017, the former has 1793 × 979 pixels and the
latter has 2934 × 1771 pixels. In each the left panel illus-
trates the dependence of the detrended fluctuation function
Fq(s) as a function of the scale s for different q. The well fit-
ted straight lines indicate the evident power law scaling of
Fq(s) versus s. The right panel shows that τ(q) is nonlinear
in q, indicated by the fact that h(q) depends on q.

Results and discussion
For each image, we can calculate the generalized Hurst
exponents h(q) and six other multifractal parameters
including αmax, αmin, Δα, Δf, D1 and D2. For each tree
species, we take the averaged value over the 75 sam-
ples and report our calculated values in Figures 4 and
5. Their standard deviations are given in Figures 6 and
7, respectively.
As seen in Figure 4, comparing with h(2) and h(3), the

estimations of h(−3), h(−2), h(−1) and h(1) vary in rela-
tively wider dynamic ranges and thus demonstrate better
abilities to distinguish textures among different species.
Table 1 The calculated σbet., σin and I0 for the 12 multifractal

Parameters h(−3) h(−2) h(−1) h(1) h(2) h(

σbet. 0.0605 0.0403 0.0363 0.0255 0.0237 0.0

σin 0.0368 0.0342 0.0381 0.0779 0.0496 0.0

I0 1.6459 1.1810 0.9548 0.3280 0.4777 0.5

Tip: the symbol bold numbers mean the best choice yielding the top three I0 indice
Yet, one notes that there are relatively large variations in
the standard deviations among the 75 samples for the h
(q) exponents in Figure 5. This suggests that this indica-
tor alone may not be adequate to identify the fifteen tree
species. Also as seen in Figure 6 that the three parame-
ters, αmax, Δα, and Δf admit wider dynamic ranges than
the other three parameters do. The variations among the
75 samples in the same tree species are notably large as
shown in Figure 7.
For species i (i = I, II, · · ·, XV), with respect to each

calculated multifractal parameter, we denote the stand-
ard deviation of the 75 samples by σin(i) and define σin
as

σ in ¼ 1
15

XXV
i¼I

σ in ið Þ; ð11Þ

which represents the intra-species variance. Note also
that for each indicator, we can calculate its value corre-
sponding to each species and there are 15 values in total
for those 15 species. We define σbet. as the standard de-
viation of these 15 calculated values. Then the term σbet.
represents the inter-species variance for each multifrac-
tal indicator. We now define an index, I0, as

I0 ¼ σbet:
σ in

: ð12Þ

From the definition, we note that the multifractal par-
ameter with larger I0 serves better as an indicator to dis-
tinguish species. We present the calculated values of I0
in Table 1.
parameters

3) αmax αmin Δα Δf D1 D2

233 0.0845 0.0183 0.0806 0.1327 0.0140 0.0259

395 0.0722 0.0151 0.0646 0.2645 0.0264 0.0252

891 1.1705 1.2132 1.2469 0.5015 0.5316 1.0284

s.
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We choose the combination of three multifractal pa-
rameters with larger I0 values, namely, {h(−3), αmin, Δα},
as the feature descriptors for our classification purpose
and apply the support vector machines and kernel
methods (SVMKM) with the heavy-tailed radial basis
function-’htrfb’ as the kernel [36]. It is worth mentioning
that the combination of 4 or more parameters does not
lead to significant higher accuracies, but at a cost with
much longer computational time and with no visual ad-
vantages. In this sense, the combination of the above
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Figure 9 Average identification accuracies. (a): the average accuracies o
identifying species Ulmus carpinifolia versus the other 14 species using K =
three parameters is optimal. For the total sample set
containing 75 × 15 = 1125 samples, we use the K − fold
cross validation to evaluate the learning performance.
This means that 100 (K − 1)/K% samples are randomly
chosen as a training set and the remaining 100/K% sam-
ples are considered as a test set. The calculation process
is then repeated 10 times to eliminate the impact of
randomness.
In our first identification experiment, we test the pro-

posed method through examining the distinguishing
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Figure 10 Feature descriptors of the 15 species and clustering result based on them. (a): Visualization of averaged indicators over 75
samples in each tree species in the {h(−3), αmin,Δα} space; (b): Clustering analysis result on the 15 tree species.

Wang et al. Plant Methods  (2015) 11:12 Page 7 of 11
effect for every two species. To this end, we form a
three-dimensional parameter space with components
given by the above chosen feature descriptors {h
(−3), αmin, Δα}. In this space, one point represents a leaf
sample image. In Figure 8(a)-(d), we plot the corre-
sponding points for Ulmus carpinifolia versus Alnus
incana, Salix aurita versus Salix alba Sericea, Salix
sinerea versus Tilia and Sorbus aucuparia versus Fagus
silvatica, respectively. As shown in these plots, the sam-
ples from the same tree species are clustered together
reasonably well.
In addition, we calculate the discriminant accuracies

of every two tree species by SVMKM using the K − fold
cross validation with different K values. The average ac-
curacies of 10 trials are shown in Figure 9(a). To display
the applicability of identifying different tree species by
our proposed method, as an example, we plot the accur-
acy of identifying species MI (Ulmus carpinifolia) versus
other 14 species with K = 10 in Figure 9(b). As expected,
2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Figure 11 Identification accuracies of the 15 species calculated with K
tree species; (b): The accuracies of the 15 species.
the average accuracy of every two species is increasing
with respect to K. The obtained best accuracy is 98.40%,
higher than 96.82% reported in [35], which requires a
very complex pre-processing process for leaf images. It
is seen from Figure 9(b) that there are accuracy varia-
tions between species Ulmus carpinifolia and the other
14 species. Five species, namely, Salix aurita, Betula
pubescens, Ulmus glabra, Salix sinerea and Fagus silva-
tica, have accuracies below the average accuracy. This
suggests that species Ulmus carpinifolia has high simi-
larity with the above mentioned five species, which
agrees with the observation from Figure 1.
For each species, the averaged {h(−3), αmin, Δα} of the

75 samples is represented by a single point in the three-
dimensional parameter space (see Figure 10) in which
different points representing different species may be
clustered into several groups. We use the calculated dis-
criminant accuracy of every two species as the distance
between these two points (species). This allows us to
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Table 2 The results of identification for the fifteen species of tree leaves by the method of SVMKM with K = 10

MI MII MIII MIV MV MVI MVII MVIII MIX MX MXI MXII MXIII MXIV MXV

MI 69 0 2 0 1 0 0 0 3 0 0 0 0 0 0

MII 0 70 0 0 1 0 1 0 1 1 0 1 0 0 0

MIII 1 0 71 0 0 0 0 0 0 0 2 1 0 0 0

MIV 1 0 1 68 1 0 0 3 1 0 0 0 0 0 0

MV 0 2 0 0 69 0 0 2 1 0 0 1 0 0 0

MVI 1 0 1 1 0 69 0 0 1 0 1 1 0 0 0

MVII 0 2 0 1 2 0 70 0 0 0 0 0 0 0 0

MVIII 0 0 0 1 2 0 1 70 0 0 1 0 0 0 0

MIX 1 0 0 0 1 1 0 0 70 0 1 1 0 0 0

MX 0 0 0 0 0 0 0 0 0 74 1 0 0 0 0

MXI 1 0 1 0 0 0 0 0 3 0 70 0 0 0 0

MXII 0 0 1 1 0 1 1 0 0 0 0 71 0 0 0

MXIII 0 0 0 0 0 0 0 0 0 0 0 0 72 0 3

MXIV 0 0 0 0 0 0 0 0 0 0 0 0 0 73 2

MXV 0 0 0 0 0 0 0 0 0 0 0 0 2 2 71
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conduct a cluster analysis for all samples of the 15 spe-
cies by the method of hierarchical clustering [37]. The
result is given in Figure 10(b), which suggests that the
15 tree species’ leaf samples can be clustered into five
groups: (i) {Ulmus carpinifolia, Salix aurita, Ulmus gla-
bra, Salix sinerea, Fagus silvatica}; (ii) {Betula pubescens,
Populus, Sorbus intermedia}; (iii) {Quercus, Alnus incana,
Salix alba Sericea, Populus tremula}; (iv) {Acer, Tilia} and
(v) {Sorbus aucuparia}. This is consistent with visualizing
the images directly from Figure 1 showing our proposed
approach is applicable.
As another important aspect of identification experi-

ment, we next test our method through calculating the
identification accuracies for different numbers of species.
The averaged accuracy result calculated when K = 10 is
shown in Figure 11(a). Note that the average accuracy is
Figure 12 Average identification accuracies of the 15 species calculat
decreasing as the number of tree species increases.
This is due to the increasing probability of incorrect
classification. However, under the worst situation, all
75 × 15 = 1125 sample leaf images are well mixed to-
gether, which gives the lowest average accuracy:
93.96%. This is still very convincing that our approach
is feasible. We calculate the identification accuracy
also when K = 10 for each species and report the result
in Figure 11(b), while the identification result for
each species is displayed in Table 2. The best three
accuracies reach 98.67%, 97.33% and 96%, and the cor-
responding species are Sorbus aucuparia, Sorbus inter-
media and Tilia. As is seen in Figure 1, these three
species are clearly distinct from the other species in
leaf shapes and textures. This again shows that our
method is effective and feasible.
ed with K = 10 with different species sample sizes.



Figure 13 The average accuracies of the 15 species for the selected combinations with increasing K.
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We remark that the sample size of each species has lit-
tle effect on the average discriminant accuracy. To jus-
tify this, we randomly choose n (n ≤ 75) leaf samples for
each species and run the procedure. Then repeat the
process 10 times and take the average accuracy, which is
reported in Figure 12. It can be seen from Figure 12 that
as the number of samples changes from 40 to 75, the ac-
curacy changes only 0.73%.

Model test
In this section, we test our proposed method to dem-
onstrate its efficiency. More precisely, we test the
validity of the optimal multifractal parameter combin-
ation {h(−3), αmin, Δα}. To this end, we choose other
Figure 14 The flow chart of software programing base on our model
four combinations composed by three multifractal pa-
rameters to construct four three-dimensional spaces
from Table 1. These four choices are {h(−3), Δf, D1}, {h
(2), h(3), αmin}, {h(2), Δα, Δf} and {h(1), h(2), Δf}. One
notes that each of the first three combinations con-
tains one multifractal parameter from {h(−3), αmin, Δα}
and the fourth combination consists of the three pa-
rameters that produce the three smallest I0 values. As
in the procedure proposed in the previous subsection,
we place the 1125 leaf samples into the four new
three-dimensional spaces and also use the SVMKM to
distinguish them. Under the K − fold cross validation,
the discriminant accuracies with increasing K are
shown in Figure 13. Obviously, the highest accuracy
is as follows. Detailed codes are available upon request.
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still comes from the combination {h(−3), αmin, Δα} for
each K and the lowest accuracy comes from the com-
bination {h(1), h(2), Δf}. This again suggests that the
index I0 successfully indicates the optimal multifractal
parameter combination.

Conclusions
In this paper we have adopted the 2D MF-DFA method
proposed in [32] to extract important texture features
from leaf images. This allow us to calculate the general-
ized Hurst exponents, h(q), and several other multifrac-
tal parameters including αmax, αmin, Δα, Δf, D1 and D2.
By defining an index, I0, which examines the variation of
the inter-species variances and the intra-species vari-
ances, we are able to find an optimal combination of the
multifractal parameters that best characterizes the key
features of plant species allowing high accuracy in plant
species identification. For the Swedish leaf data set
which contains 15 species and 75 × 15 = 1125 samples in
total [31], the combination of {h(−3), αmin, Δα} turns out
to be optimal compared to other combinations of pa-
rameters. We have obtained 98.4% of averaged discrim-
inant accuracy for every two species by SVMKM with
the 10 − fold cross validation, while the accuracy
reaches 93.96% for the over-all 15 species. Software
based on our work can be designed and coded, for that
purpose, we provided the corresponding flow chart in
the Figure 14.
We should point out that most of the existing work

on texture image recognition focuses mainly on the
standard multifractal analysis. Our work has shown
that the MF-DFA is of particular practice for plant leaf
identification as the MF-DFA multifractal parameters
can be combined to distinguish similar but different
leaf textures.
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