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Background: Field-based high throughput phenotyping is a bottleneck for crop breeding research. We present

a novel method for repeated remote phenotyping of maize genotypes using the Zeppelin NT aircraft as an
experimental sensor platform. The system has the advantage of a low altitude and cruising speed compared to
many drones or airplanes, thus enhancing image resolution while reducing blurring effects. Additionally there was
no restriction in sensor weight. Using the platform, red, green and blue colour space (RGB), normalized difference
vegetation index (NDVI) and thermal images were acquired throughout the growing season and compared with
traits measured on the ground. Ground control points were used to co-register the images and to overlay them

Results: NDVI images were better suited than RGB images to segment plants from soil background leading to two
separate traits: the canopy cover (CC) and its NDVI value (NDVIpj,). Remotely sensed CC correlated well with plant
density, early vigour, leaf size, and radiation interception. NDVlp ., was less well related to ground truth data.
However, it related well to the vigour rating, leaf area index (LAI) and leaf biomass around flowering and to very
late senescence rating. Unexpectedly, NDVlp|,n correlated negatively with chlorophyll meter measurements. This
could be explained, at least partially, by methodical differences between the used devices and effects imposed by
the population structure. Thermal images revealed information about the combination of radiation interception,
early vigour, biomass, plant height and LAl. Based on repeatability values, we consider two row plots as best choice
to balance between precision and available field space. However, for thermography, more than two rows improve

Conclusions: We made important steps towards automated processing of remotely sensed data, and demonstrated
the value of several procedural steps, facilitating the application in plant genetics and breeding. Important
developments are: the ability to monitor throughout the season, robust image segmentation and the identification of
individual plots in images from different sensor types at different dates. Remaining bottlenecks are: sufficient ground
resolution, particularly for thermal imaging, as well as a deeper understanding of the relatedness of remotely sensed
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Background

Field-based high-throughput phenotyping methods are
urgently needed by plant breeding research [1,2].
Whereas laboratory-based phenotyping platforms that
monitor the performance of single plants of model spe-
cies have advanced greatly in recent years (e.g. [3], for a
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review see [4]), the development of field-based pheno-
typing approaches has lagged. For field-based methods,
progress has been made mostly using camera-based ap-
proaches that are mounted on ground-based vehicles
like tractors (e.g. [5,6]; for a review see [2,7]). Yet, there
is little progress on methods and platforms that operate
from the air [1] although currently drones are becoming
increasingly popular for aerial photography. However,
high quality camera systems often still exceed the pay-
load of available drones. Automation of data processing,
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difficulties in extraction of meaningful parameters and
blurry images taken from conventional carrier systems
such as airplanes travelling at relatively high altitude are
other reasons which presently restrict fast methodo-
logical advances. Nevertheless, the potential throughput
of airborne phenotyping approaches is intrinsically
higher than that of ground-based approaches, for several
reasons: (1) wider viewing angle from the air, (2) poten-
tially higher travelling speed, (3) absence of physical con-
tact with and hence no mechanical distraction of the
growing crop and (4) independence of wet soil condi-
tions that prevent traffic on the ground.

Maize is one of the most important staple crops and
has gained an enormous importance in tropical and tem-
perate regions as a food, fodder, and energy crop. As a
consequence there is a high need to develop high-
throughput methods for hybrid breeding of maize in
order to increase selection efficiency [8-11]. Relevant
breeding approaches require field-based testing of their
genotypes [12]. Often hundreds or thousands of geno-
types need to be investigated for their performance in
the field and hence need to be grown and assessed syn-
chronously side by side. It is widely accepted that in
such breeding programs, phenotyping of traits that are
related to yield and quality is currently constituting a
serious bottleneck [2,13], for which the development of
technological possibilities has not kept pace with the
genomic characterization of the germplasm.

Therefore, we aimed to develop a concept allowing for
1) continuous measurements of genotypes throughout
the growing season using RGB and near infrared im-
aging and thermography, 2) develop protocols to auto-
matically identify individual field plots in images derived
by the different sensors at different dates and from
slightly different angles, 3) identify suitable traits and op-
timal plot size based on the repeatability and 4) relate
remotely sensed data to ground truth data.

More specifically, this study investigates the appli-
cation of a camera combination consisting of (1) a
standard RGB camera, (2) a camera to determine the
normalized difference vegetation index (NDVI) and
(3) a high-resolution thermal camera (Table 1). This
sensor array was operated manually on a Zeppelin air-
craft offering regular sight-seeing round trips. The maize
experiment was placed on one of the flight tracks in
order to ensure frequent monitoring during the growing
season (Figure 1). The experimental field contained 16
different maize genotypes, arranged in a well-designed
plot structure with plots of multiple sizes (i.e. different
number of rows). Each genotype x plot size combination
was replicated four times (Additional file 1). From the ac-
quired images, parameters such as the canopy cover, leaf
greenness and canopy temperature were detected, and a
software routine was developed that allowed for (semi-)

Page 2 of 19

automated identification of and data extraction from the
field plot structure. The extracted parameter values were
then correlated with ground measurements of relevant
crop traits collected throughout the crop development.
They comprise phenological traits (like the time needed
to reach certain key developmental stages) and morpho-
logical characteristics (like plant height and leaf biomass)
that contribute to the performance of a genotype in a given
environment. We hypothesize that the elaborated methods
of image capture and analysis can be used to identify geno-
typic differences and changes during development of maize
throughout the season and that remotely sensed parame-
ters can be related sufficiently well to ground measured
plant properties and traits relevant for breeding.

Results

Processing of image-based signals

A semi-automated recognition of black metal markers
on 2 m high poles worked well for all sensor outputs.
The markers were distinguishable from the soil and
plant signal by all three cameras (Figure 1). However,
cleaning of the field markers before flight campaigns was
necessary, especially during pollen shedding. White tarps
that were put on the ground were less useful as markers
since they were easily covered with soil, particularly after
rains. Cleaning of the white tarps proved to be too la-
borious and time consuming. Moreover, with increasing
plant size the white tarps were progressively obscured by
the maize plants, changing the detectable marker shape
and increasing the need for manual co-registration of
the images. However, the tarps were very useful as land-
marks for the pilots when the plants were small, and the
plots were difficult to detect.

After identification in the images, the black metal
markers were used to clip the images to the area of
interest (Aol) and subsequently co-register all sensor
output images and correct them for trapeze distortion
(Figure 1). On top of the aligned and corrected image
stacks, the prepared experimental plot mask was pro-
jected for subsequent plotwise data extraction.

The most basic information derived from the images
of the vegetation camera, was the plot-based NDVI
(NDVIpyy) including both, plant and soil information. A
segmentation process based on the NDVI or RGB infor-
mation led to two additional traits: the canopy cover
(CC) and the NDVI values of the area covered by plants
(NDVIpp). CC was best calculated from NDVI images
since throughout the season the same segmentation
threshold could be used whereas for RGB images, it
had to be adjusted for each measurement campaign
(Figure 2). For NDVI images, only maximal signal
intensity needed to be adjusted to comparable conditions
for the different measurement campaigns. Using a
NDVI threshold of 0.1 excluded non-plant material



Liebisch et al. Plant Methods (2015) 11:9

Page 3 of 19

Table 1 Size of ground images (length and width) and effective pixel dimensions (Instantaneous Field of View = IFoV)

as affected by sensor resolution and measurement altitude

Camera Lens (focal length) Sensor resolution Sensor dimensions Image parameter Altitude 290 300 310
mm pixel mm m m m
NIR 60 4282 x 2848 222x%14.8 length 107.6 1113 1155
width 715 74.0 76.5
IFoV? 0.025 0.026 0.028
RGB 60 3898 x 2595 222x148 length 107.3 111 1147
width 714 739 764
IFoV 0.0275 0.0285 0.0295
IR 75 640 X 480 149%11.2° length 619 64 66.1
width 464 48 496
IFoV 0.096 0.1 0.103

?IFoV = (pixel dimension*distance)/focal length.

PIFoV = (sensor pixel size* distance to ground)/focal length, derived from companies IFoV calculator.

and included green and senescent plant material. A
threshold of 0.2 excluded large parts of the senescent
plant area as well (data not shown).

Seasonal development of canopy cover was most reliably
evaluated in plots with more than two rows

The canopy cover increased until flowering (540°Cd)
and decreased during the late senescence phase (after
892°Cd; Figure 3). The corresponding dates and growth
stages can be found in Table 2. The canopies of nearly
all investigated genotypes were closed at the onset of
flowering indicated by CC values above 0.95. At this
stage, only genotypes 6 and 15 showed CC below 0.9
(data not shown). A small reduction of CC was observed
during flowering and shortly after flowering between
540 and 793°Cd (Figure 3) and likely was related to
green leaf area overlayed by tassels and anthers.

To elucidate which plot size (row number) was suffi-
cient to differentiate among genotypes we used the re-
peatability, i.e. the proportion of the genotypic variation
compared to the overall phenotypic variation. The re-
peatability of CC was above 0.95 before onset of tassels
for the three and four row plots decreasing slightly to
0.85 at maturity. As expected, the smaller plot size
showed lower repeatability, especially for the one row
plots. There, values ranged from 0.9 before flowering
down to 0.7 close to maturity. Clearly, three- to four row
plots were preferable for this type of aerial observations.

Seasonal development of NDVI was most reliably
measured in plots with more than one row

NDVIpj,, and NDVIpy,,, (Figure 4) showed similar sea-
sonal trends, but NDVIp, . had less variance within each
measurement point in time. Yet, differences were higher
for NDVIpy,, (indicated by lower HSD), demonstrat-
ing the value of image segmentation. In general, NDVI

increased until 892°Cd (Figure 4), whereas for some geno-
types a plateau in NDVI values was observed from 727°Cd
onwards (data not shown). At 940°Cd, NDVI dropped and
subsequently decreased slowly to the lowest values ob-
served at 1366°Cd.

The repeatability of NDVI values were high (h*> 0.85)
with the highest values being observed during and after
flowering (Figure 4). Repeatability was generally higher
in plots with more than one row, but there was only a
minor advantage of having more than two rows. The re-
duction of the repeatability of NDVIp,, towards the end
of the growing season was not observed for NDVIpy,, in
the three and four row plots.

The skewness of NDVI (Additional file 2 section 6)
showed a different seasonal pattern than NDVI being
relatively constant with a small reduction at the begin-
ning of flowering and a stronger increase at the end of
the season. The repeatability of the skewness was gener-
ally lower than the one for the CC and NDVI. Plot size
effects were more pronounced making it less suited to
differentiate among genotypes.

Highest repeatability of canopy temperature was found
on temperate days

Canopy temperatures (T¢) ranged from 22 to 27°C dur-
ing flight campaigns with significant differences between
day of measurement (Figure 5). Across the season, T¢
was highly correlated to air temperature T,, measured
by the close-by weather station (Table 3). To exclude the
temperature effect, Tc was normalized to T, resulting in
the temperature difference dT. As to be expected the
relationship of dT to T, was not significant but the ef-
fect of radiation parameters (actual PAR and sun hours)
and evapotranspiration (ETo) were more pronounced
(Table 3). Measurements of dT taken between 612 and
940°Cd were negative, indicating the canopy was cooler



Liebisch et al. Plant Methods (2015) 11:9 Page 4 of 19

C

Thermography (IRjer = = ouem
500 100 -
1000 B Ak o |
200 Ll f ‘ H Pt
1500 1155 FH S ‘
300 1 L2 S A
2000
400
2500
1000 2000 3000 1000 2000 3000 4000 100 200 300 400 500 600
D Marker detection, cutting of the area of interest Image co-registration

and trapeze correction

7

K
¥
[ 4
s
&
2
%
f
3
|
$

E Plant segmentation step Overlay of experimental setup

R 1 oA : - 2y : 10 " *

13

Figure 1 lllustration of the imaging and analysis pipeline. (A) Aerial platform Zeppelin NT, (B) handheld sensor array consisting of three
cameras, (C) images derived by: a consumer camera (RGB), a modified consumer camera for vegetation detection (B + NIR) and an infrared
camera (Thermography, IR). Squares indicate location of field markers. (D) Round black metal plates serve as field markers (left) for automatic
detection and subsequent clipping of the area of interest (Aol) and trapeze correction of the raw images (middle). Co-registered tiff images for
the RGB composite and the three data channels IR, B and NIR (right). (E) Three steps of image procession: mask to segment plant from soil pixel
(left), mask to identify plots (middle) and a combined output map of NDVIpj,n. values within plots in false colour (right). The shown images represent
one of three parts of the field separated for measurement purposes, details described in the material section. See Additional file 1 for a complete image
of the experiment.
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Figure 2 Comparison of HSB and NDVI based threshold segmentation masks laid over unprocessed RGB and B + NIR images,
respectively, when the same colour or NDVI thresholds were applied throughout the season (see materials section for further info).
A

1275°Cd

than ambient air measured by the weather station. Only
at 1275°Cd when plants were in an advanced senescent
stage dT was positive. The skewness of Tc showed a
small but significant reduction over time but no geno-
type effect (data not shown).

The repeatability of T was highly affected by plot size
and day of measurement (Figure 5) which differed in the
prevailing climate conditions (Table 4). In one row plots,
Tc showed a very low repeatability except at 727 and
940°Cd when high values were found in plots of all sizes
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Figure 3 Canopy cover of four row plots (A) and repeatability of canopy cover affected by plot size (B). Boxplots are based on mean
values of the 16 genotypes. The solid line in the box indicates the median and the dotted line the mean.
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Table 2 Dates of aerial image acquisition
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Flight Date® TimeP DAS¢ T Camera line up Growth stage

1 16.06.2011 8:38 56 371 NIR, RGB leaf 6 to 9 fully developed

2 05.07.2011 17:18 75 540 NIR, RGB Begin of tasseling

3 11.07.2011 17:47 81 612 NIR, RGB, IR Most genotypes tasseling (>50%)

4 26.07.2011 16:43 96 727 NIR, RGB, IR All genotypes tasseling (100%)

5 02.08.2011 17:22 103 793 NIR, RGB, IR Begin of comn filling

6 12.08.2011 17:22 113 893 NIR, RGB, IR Begin of leaf senescence

7 16.08.2011 17:26 117 940 NIR, RGB, IR

8 15.09.2011 14:30 147 1275 NIR, RGB, IR Late senescence, upper leaf levels affected

9 29.09.2011 17:47 161 1366 NIR, RGB Full maturity of most genotypes (black layer observed)

2day. month. year, °Central European time, days after sowing, dthermal time (in °Cd).

(Figure 5). Interestingly, the highest repeatability values
of 0.65 to 0.85 were observed in the three row plots.
Surprisingly, the highest repeatability was not observed
on the hot days, but on the two days with the lowest T¢
(Additional file 1: Figure A10). At these days, we ob-
served the strongest cooling effect of the canopy com-
pared to ambient temperature reflected by dT.

Relationship of remotely sensed parameters to ground
measured plant properties

The observed maize development can be divided into
three phases that can be distinguished by NDVI

measurements: 1) early development until canopy clos-
ure (up to 540°Cd), 2) flowering and early senescence
(540-793°Cd) and 3) late senescence up to maturity
(after 793°Cd). We used different ground truth measure-
ments depending on the developmental phase to evaluate
the value of remotely sensed parameters (Table 5). For
canopy cover, we considered ground truth measurements
related to canopy structure and architecture but evaluated
also early vigour and stay green. During the early
phase, i.e. at the single measuring campaign between
303 and 371°Cd, the remotely sensed CC was highly corre-
lated to plant density (r = 0.67) early vigour rating (r = 0.77)
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Figure 4 Plot and plant NDVI and their repeatability as affected by plot size. NDVI is shown in four row plots (A, B) and repeatability of
NDVI'in one, two, three and four row plots (C, D) of NDVipio; (A, C) and NDVlpi,; (B, D). Boxplots are based on mean values of the 16 genotypes.
The solid line in the box indicates the median and the dotted line the mean.
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Table 3 Correlation coefficients determined for canopy
temperature and dT with climate conditions measured at
the same time, as daily averages and as cumulated values
for precipitation

Climate parameters Canopy dT

temperature

°C °C
Canopy temperature (Tc) °C 1 X 0.72
Air temperature (Tp) °C 0.96 ** 0.51
Daily maximum temperature (Ty) °C 093 * 0.7
Gust speed ms™ -0.58 —-0.14
Vapour pressure deficit (VPD) kPa 023 -0.06
Actual radiation pmol s™''m™ 068 089 *
Precipitation (7 days cumulated) mm 0.26 044
Evapotranspiration (ETo) mm day’1 045 0.88 *
Sun hours h day™ 0.74 0.97 **

Thermal data from das 1275°Cd, was excluded because plants showed already
advanced senescence.
Significance codes are: ***' p-value < 0.001, **' p-value < 0.01 and “*'p-value < 0.05.

and leaf size (r = 0.67). During flowering and early senes-
cence, CC was closely correlated to plant density (r = 0.73)
and radiation interception (r = 0.75 to 0.86) but less to total
plant biomass and leaf area index (r=0.22 — 0.38). During
senescence, CC was again closely correlated to radiation
interception measured at the early senescence phase (893°
Cd; r=0.6 to 0.71) but less to late radiation interception
(1275°Cd; r = 0.2 to 0.49). A correlation between stay green
rating and CC was only detected during very late senes-
cence (r=0.36 to 0.53). No correlation was found for leaf
biomass.

For NDVIpy,, we considered ground truth data related
to leaf greenness, senescence and canopy size (Table 5).
During the early phase, i.e. at the single measuring cam-
paign between 303 and 371°Cd, early vigour, was highly
correlated to NDVIpp,, (r=0.64). At the flowering
phase, correlations to leaf biomass, plant height and
leaf area index were moderate to high (0.29 - 0.58).
At advanced senescence, a positive correlation to
stay-green rating was observed (r=0.53). The most
striking result was the moderate negative correlation
with SPAD values throughout the season (r=-0.45
to —0.59), where a strong positive relationship would
be expected. This strong discrepancy may be related
to camera-based constraints or to the influence of plant
architecture.

For the differences in canopy temperature, negative re-
lations were observed with radiation interception, crop
vigour rating, biomass, height and LAI (Table 6). Posi-
tive correlations were found for stay green rating and
leaf temperature (LTMP) during late stages of develop-
ment (>940°Cd). We found no correlations with leaf
stomatal conductance (LSC) and LTMP before 940°Cd
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most likely caused by the large time difference between
ground and aerial measurements.

Genotypic differences

Clear differences between genotypes were detected for
all parameters (both in remotely sensed parameters and
ground-truth traits). A detailed discussion of these ef-
fects would exceed the scope of this manuscript and will
be done in a future publication. Yet, in order to demon-
strate the value of the presented method, it is important
to point out a few cardinal differences detected for the
remotely sensed parameters (Figure 6). For CC, differ-
ences between hybrids and inbred lines were pro-
nounced because of the larger canopies of the hybrids.
Their canopies were mostly closed in a 6 to 9 leaf stage
(at 371°Cd), when the CC of the inbred lines was
still below 0.9 (Figure 6). At the beginning of tasseling
(540°Cd; data not shown), the majority of the genotypes
had a CC higher than 0.9. Evaluating CC of the inbred
lines, we observed genotype 9 to be significantly lower
than the genotypes 8, 11, 12 and 14.

the genotypes differed for both, plant size and CC,
NDVIpy,, clearly distinguished among genotypes. How-
ever, NDVIpp,,,; showed the difference of leaf greenness
independent of differences in CC due to emergence rates
or canopy architecture. This effect was clearly found for
the three genotypes 6, 9 and 15 with plant densities
below 70% of the original sowing rate (data not shown),
where NDVI values markedly increased when measured
on a plant basis instead of a plot basis. It is clearly visible
that hybrids had generally higher NDVIpy,,, values com-
pared to inbred lines.

Significant differences of T between genotypes were
found at 612, 727, 893 and 940°Cd, but not on 793 and
1275°Cd (data not shown). On 793°Cd we measured the
highest T, of 27.5°C during IR image acquisition. How-
ever, it did not lead to a good separation among geno-
types in contrast to dT. At flowering (727°Cd) when Ty
was lower, Tc ranged between 22.0 and 24.0°C and
were 1.4 to 2.3°C lower than T, depending on genotype
(Figure 6). The highest dT was found for genotype 3 and
the lowest for genotype 13.

Discussion

Imaging platform, sensors and experimental field site
Many non-destructive measuring techniques are ground
based or stationary using fixed, handheld or motorized
systems (e.g. tractor mounted sensor platforms or crane
systems). Thus, they are often limited to relatively small
measurement areas and low numbers of replicates or ge-
notypes. Furthermore, they are rather labour and time
intensive, and do seldom cover temporal plant develop-
ment [1,14,15]. For example, three tractors and several
workers would be needed to measure a typical breeding
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Table 4 Selected weather conditions prevailing at the time of thermal image capture (A) and some daily average

values (B)

Date year-month-day 2011-07-11 2011-07-26 2011-08-02 2011-08-12 2011-08-16 2011-09-15
Time hh:mm:ss 17:45:38 16:45:38 17:25:38 17:25:38 17:25:38 14:25:38
Days after sowing days 81 96 103 113 117 147
Thermal time® °C days 612 727 793 893 940 1275
A at time of thermal capture

Air temperature (Tp) °C 2595 24.40 27.52 24.40 24.01 21.71
Relative humidity (rH) % 51.25 37.75 53.25 56.25 69.75 56.25
Dew point °C 151 9.1 17.2 15.1 18.2 12.6
Wind speed ms 093 13 0.74 13 0.56 093
Gust speed ms” 223 315 1.86 353 223 241
Soil temperature in 5 cm depth (Ts) °C 20.63 17.34 19.20 18.70 20.15 17.32
Vapour pressure deficit (VPDair)b kPa 062 0.76 062 0.54 037 0.50
Photosynthetically active radiation (PAR)® umol s m™ 1422 1082 nd? 1611 1043 nd

B based on daily data

Maximum air temperature (Tyax) °C 273 250 28.1 26.1 26.1 219
Evapotranspiration (ETo- Penman)® mm day™’ 4 3.1 37 4.5 3.1 2.1
Radiation® kwh m™— 70 54 65 55 54 46
Sun hours® h 12 9.0 1.0 1.0 10 9.0

7 day cumulated precipitation mm 40.6 370 304 36.0 22.8 248
Total cumulated precipitation mm 230.2 3298 360.2 4154 4344 508.0

2T = 3 > O((Trnax + Tmin)/2)- Toaser Thase OF 8°C, Pealculated according equation, “measured with a line quantum sensor, “not detected, ®provided by the

meteorological service (LTZ, Baden-Wirttemberg, Germany).

set of 20’000 plots in a few hours [1]. In contrast, aerial
remote sensing offers the potential to cover large areas
planted with many plots in relatively short time. In our
study, the experimental field of 0.4 ha (30 x 132 m) was
imaged from the air within 10 s. Accordingly, it would
take around 6 minutes to monitor 20’000 two row plots
of 1.5x4.75 m covering an area of 14.25 ha. Of course,
additional time might be required depending on alloca-
tion, alignment and shape of the field.

The Zeppelin proved to be a valuable remote sensing
platform due to the limited restrictions for sensor weight
and its slow speed during image acquisition. Too high
travel speeds can cause blurring effects and thus mix tar-
get and non-target information deteriorating the quality
of the measurement. With a cruising altitude of 300 m
at the highest speed of 20 km h™', the lowest image
resolution (thermal camera) was 10 x 10 cm of ground
cover per image pixel. During the opening of the shutter
of 50 ms, the thermal camera moved 0.28 m along the
row resulting in a blurring effect of 3 pixels. In order to
keep the blurring effect within the row, it is preferable
to fly in row direction rather than crossway of it. That
blurring effect was less affecting the cameras with higher
resolution and shutter speed and is reduced by lower
cruising speed.

Costs of the Zeppelin operation were low compared to
tractor-based operation, since a touristic route was used
and only one man-hour plus ticket costs were required
to take the images. Of course, this makes the choice
of the test location extremely inflexible. Limits of the
Zeppelin system are mainly the weather conditions and
the mission area. Weather conditions restricting flights
are mainly wind, rain and thunderstorms. Wind speeds
above 25 m s™', and thunderstorms keep the Zeppelin
on the ground or force the pilots to return to the air
field (personal communication with Zeppelin NT). Rainy
conditions do not interfere with the ability and allow-
ance to operate the Zeppelin but affect data values of
the image due to high water content in the light path
[16]. In the beginning of the experiment the unpredicted
occurrence of bad weather conditions prevented image
acquisition during the early growth stages of maize.

The shown remote phenotyping approach may be
adapted to other aerial platforms such as blimps, fixed
wing or helicopter drones or even planes. A review of
platforms and sensors would exceed the focus of this
paper (for an overview of platforms see [16] for sensors
[17]). However, drones combined with lower weight
sensors and sensing technology as used in precision agri-
culture [18] seem to offer the temporal and spatial
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Table 5 Selected coefficients of correlation between crop traits measured in the field and remote detected canopy
cover and NDVlp,,,,: shown for different times of measurement

Ground plant parameter Canopy cover

DAS?® 56 75 81 96 103 113 117 147
Plant density 29 0.67*** 0.78*** 0.73%**
Plant vigour rating 47 0.77%%* 0.58%** 0.48%**
Leaf length 49 0.67%%* 0.51%%* 0.34**
Radiation interception 75 0.77%%% 0.74%%% 0.76%**
Radiation interception 97 0.82%** 0.75%** 0.86***
Total plant biomass 81-97 0.34* 022 ns 0.3*
LAP 81-97 032* 03* 038*
Radiation interception 12 0.6%** 0.63*** 0.771%**
Stay green rating 117 -022 ns -02ns -0.16 ns
Stay green rating 147 —0.33% -0.12ns 0.34**
Radiation interception 147 02 ns 0.49%** 041%*
NDVlpjant
Plant density 29 0.37%** 0.52%** 0.39%*
Plant vigour rating 47 0.64*** 0.55%%* 0.34%%*
Radiation interception 75 0.47%%* 0.62%** 0.40%**
SPAD 96 —045%** —0.59%** —0.55%**
Radiation interception 97 0.49%** 0.29* 0.50%**
Leaf biomass 81-97 0.39%** 043%** 0.35%**
Plant height 81-97 0.47%%% 0.18 ns 0.37**
LAl 81-97 0.58%** 0.44%%* 0.58%**
SPAD 103 —0.54%** —0.50%** —0.50%**
Radiation interception 12 0.43%** 0.27%** 0.38***
Stay green rating 147 0.38** 0.36%** 0.53%%*

2Days after sowing, see Table 2 for conversion in thermal time, PLeaf area index (m? m=).

Significance codes are: ***' p-value < 0.001, ** p-value < 0.01 and "*'p-value < 0.05.

flexibility needed for phenotyping (for a review on
drones see [19]). Because of pay load restrictions most
drone approaches use a single sensor or sensors re-
stricted in measurement capabilities. Remote sensing
platforms capable of carrying a high payload and thus
multiple or high weight sensors such as large drones and
air planes are restricted in use by issues such as costs,
law, region, manpower and training [19] similar to the
Zeppelin platform. Additionally, the high flying altitude
and speed resulting in high ground pixel sizes limits
their use for crop phenotyping. In the future, light
weight or micro drones combined with low weight sen-
sor technology as currently investigated for precision
farming applications might enable flexible high through-
put crop phenotyping with multiple sensors and high
temporal resolution as needed for breeding research.
The field markers that were used to semi-automatically
match the images from the different sensors were an im-
portant feature of the experiment. Their identification was
the prerequisite for the semi-automated registration of the

area of interest and the ortho-correction process. Detec-
tion of the markers in RGB and NIR images may be im-
proved by including white centres on the black plates, but
it is not yet clear how that would interfere with thermal
detection. Single plot labelling, as described by Jones et al.
2009 [20] for ground IR imaging would require too much
investment for large, remotely sensed field setups. We
consider markers to identify the corners and intermediate
way points of the experimental area as sufficient to correct
for image distortion and to allow for a correct positioning
of a plot map.

Once the processing pipeline was established, data
processing needed relatively little labour for input file
conversion, check of the correct identification of the
field markers, identifying and setting thresholds for
segmentation and for creating the plot overlay. Time
needed for conversion of proprietary input files (cr2
from Canon and irb from InfraTec) into the open tagged
image file format (Ziff) can be minimized by using
acquisition software saving in open formats in future
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Table 6 Selected coefficients of correlation between crop traits measured in the field and remote detected
temperature difference (dT) shown for different times of measurement

Ground plant trait dT

DAS? 81 96 103 113 117
Plant vigour rating 47 —0.45%% —0.4**
Lsc® 81 009 ns -008 ns
LTMP® 81 -0.16 ns 0.1 ns
Radiation interception 81 —0.59%% —0.55%**
Radiation interception 97 —0.55%%* -0.24 ns
Total plant biomass 81-97 —-0.38* —0.34*
Plant height 81-97 —0.46%%* —0.53***
LA 81-97 —0.52%%% —049%%*
LSC 103 -0.07 ns —0.27% 0.17 ns
LTMP 103 —0.06 ns -0.19 ns 0.09 ns
Stay green rating 105 0.12 ns 0.2 ns 0.34**
Stay green rating 112 0.1 ns 0.12 ns 0.36%*
LSC 17 -0.17 ns -021ns -0.13 ns
LTMP 17 0.45%** 0.53*** 0.28*
Radiation interception 118 —0.52%** —0.29% —0.66"**

2Days after sowing, see Table 2 for conversion in thermal time, PLeaf stomatal conductance (mmol m=2 s7"), “Leaf temperature (°C), “Leaf area index (m? m~2).
Significance codes are: ***' p-value < 0.001, ** p-value < 0.01 and “*'p-value < 0.05.

measurement campaigns. Nevertheless, a manual inspec-
tion of the correct identification of the field markers was
necessary. It was facilitated by an automatically created
overview and by a manual interface to identify the centre
of the field marker, if necessary. Further development of
reliable field markers in combination with suitable soft-
ware will be necessary to improve automation for large
areas monitored with higher throughput.

Image segmentation to distinguish into canopy cover and
the NDVI value of the canopy itself was useful

The threshold settings for image segmentation for the
seasonal imaging campaigns were similar for the NDVI
but had to be adjusted for grey intensity (shades vs. non-
shade) according to radiation condition prevailing dur-
ing image capture. This procedure may be optimized by
using the relationship of global radiation to grey inten-
sity threshold in future campaigns. However, changing
canopy properties might complicate that. Another op-
tion could be the placement of additional reference
markers with different grey scales or colour to enable
subsequent adjustment of the exposure values. This
would also enhance the comparability of values between
different flight campaigns.

Segmentation in images above mm scale resolution
does always result in mixed pixels of either plant or soil
features along edges or feature borders. A rule of thumb
is, that for precise object identification a minimum ob-
ject size of three times the instantaneous field of view

(IFoV), ie. 3 ground pixels is needed [21]. Considering
an [FoV of 2.5-3 cm for the vegetation camera, it is evi-
dent that three pixels were not available for object iden-
tification in regions of leaf tips, edges and where tassels
cover the leaves. Such impurities were apparently mar-
ginal influential for determination of CC in both RGB
and B-NIR images but should be minimized to a certain
degree e.g. by using cameras with higher resolution. In
our case the detection of CC appeared relatively robust,
particularly CC was higher than 0.5. However, we were
not able to detect young seedlings, which had approxi-
mately two fully developed leaves (first flight data not
shown). Accordingly, an improvement is to be ex-
pected by using higher resolution cameras, especially
to estimate germination rate, development during early
growth stages, or if the detection of changes in tassel
colour is anticipated in order to determine the time of
flowering.

We used image segmentation to generate two inde-
pendent parameters: CC to measure the canopy cover
and NDVIpy,,, to measure leaf greenness independent of
differences in canopy cover. The alternative, average
NDVI signal of the whole plot without segmentation re-
flects a combination of temporal, spatial and genotypic
variation of leaf greenness and CC. Thus, NDVIp
should be interpreted carefully if used for plant pheno-
typing. Only when canopies are closed differences in leaf
greenness measured on plot base can be considered
reliable. Here the skewness of NDVIp,. can be used
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Figure 6 Genotypic differences documented by aerial imaging. NDVlg. (A), NDVlpj,. (B), canopy cover (C) in a vegetative growth stage
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avsed = average standard error of the difference. Colour of boxplots indicates maize type: hybrids (black) or maize ideotype of inbredlines: dent

growth stage for plant breeding purposes.

(green) and flint (red). The shown dates were based on observed significant differences between genotypes and relevance of the particular

as a quality parameter with values higher than zero
indicating plots with lower CC. At lower CC, NDVI-
plot 1S to a large extent influenced by soil pixel and,
thus, information about leaf greenness is masked by
differences in CC (see Additional file 2, section 6 for
details). Thus, detection of leaf greenness reduction
during senescence based on NDVIp,, must be ham-
pered as soon as CC becomes sparse.

We also tested, whether the distribution parameter
of the skewness of the NDVIpy,, would be valuable
as indicator for senescence. Senescence increases the

patchiness of green, yellow and brown leaf parts [22]. In
our study, the explanatory power of skewness was lim-
ited because effective pixel size was too small to disen-
tangle soil and plant signal sufficiently (see Additional
file 2 section 6).

For the detection of NDVIpy,,, even one row plots
were sufficient but clearly two and more rows improved
repeatability further. We consider two row plots as a
good balance between the precision to measure geno-
types remotely and the necessity to screen large num-
bers of genotypes.
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Thermal imaging had too little resolution for a suitable
segmentation

For the thermal images no effective segmentation could
be conducted because of the large IFoV of 0.3 x0.1 m
(discussed above). It was possible to detect maize rows,
interspaces and larger patches of soils but no single
leaves (Additional file 2). Therefore, the investigated
whole plot signal reflects a plant and soil mixture. Ac-
cordingly, it is important to take canopy cover into con-
sideration when comparing among genotypes. Similar
observations were reported by Jones et al. [20] and Costa
et al. [23]. Thermal measurements with the here re-
ported ground resolution are applicable without restric-
tions in crops with closed canopies or in orchards,
where plant area and unplanted inter row spaces are
large and generally have a different temperature than the
targeted plants as in [15]. Using the Zeppelin, an in-
creased resolution can be achieved by reduced flight alti-
tude (down to 80 m) and speed (down to 0 m s™%). This
would bring the ground resolution below 0.03 by 0.03 m
instead of 0.1 by 0.3 m as in the present study. Alterna-
tively, software solutions such as multiframe super reso-
lution ([24]) or sensors with a higher resolution are an
option.

Due to the mixed signal, the repeatability of T was
higher in larger plots. The partially observed low repeat-
ability of Tc in the four row plots is assumed to be
caused by the intensive use of the four row plots for
regular ground truth measurements. These frequent ac-
tivities led to broken lower leaves and may have com-
pacted the soil in the inter-row spaces leading to
additional random noise. This indicates that entering
plots for thermal measurement on a regular base should
be avoided.

Seasonal development of remotely sensed traits

The observed development of CC and NDVIp,,; as an
indicator for leaf greenness in this study is in agreement
with many studies, which recognized two to three phases
of maize development depending on sensor type and
parameter used [25-27]. In this study the initial growth
phase was only represented by one flight campaign but
the early vigour rating was still well related to the mea-
surements at the end of this phase. This indicates the
possibility to phenotype early growth stages of maize by
remote sensing. Thereby the limit of early growth mea-
surements is defined by the IFoV as discussed above and
by plant size. In this study, plants were sufficiently large
from the 4 to 6 leaf stage onwards. The following phase
with relatively constant and high NDVI corresponds to a
so-called plateau phase [26]. The duration of this phase
and the height of the NDVI values depended on the
genotype-specific flowering time and beginning of senes-
cence. The last phase of maize development was well
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identified by a decrease in NDVIp},,, and its skewness
following progressive senescence. The late start of the
senescence detected by remote sensing as compared to
rating on the ground, can be related to the fact that sen-
escence starts at lower, older leaves [25] which are not
detectable from above. Nevertheless, the NDVI parame-
ters did reflect stay green rating as the inverse of the
senescence after 900°Cd.

Correlation of image-based parameters and plant traits
We aimed to evaluate whether the remotely sensed
parameters, NDVI, CC and T, reflect plant traits mea-
sured on the ground, like biomass, radiation intercep-
tion, plant density and plant vigour.

Measurements of CC during early maize development
and after beginning of corn filling, where genotypic vari-
ation was highest, seem to be promising indicators for
early vigour and delayed senescence. Although very early
measurements are missing in this experiment the deriv-
ation of CC from aerial images was successful and rela-
tionships to ground truth parameters were validated.
The strongest correlation was found to radiation inter-
ception which itself is a strong non-destructive indicator
for canopy size and leaf area traits. Clearly, the measure-
ment of canopy coverage and density in the field is very
time consuming compared to the aerial approach [28],
justifying its application for large populations.

NDVIpp,. appeared to measure the opposite of leaf
greenness, as measured by the SPAD meter. This nega-
tive relationship was not expected because SPAD values
indicate leaf greenness as a function of chlorophyll con-
tent (Additional file 2: Figure A4) and thus should be
positively correlated to NDVI values [11,29]. Such a
negative relationship of camera-based vegetation indices
to SPAD was also observed by [30] who reported them
to be in contrast to narrow or broad band indices. The
camera channels B and NIR of the vegetation camera
used in this study covered a range of 370 to 480 nm for
the blue channel and 675 to 775 nm for the near infra-
red channel, respectively. The SPAD values are mea-
sured as transmission difference of two narrow bands
(<10 nm range), with a high chlorophyll absorbance at
650 nm and a low absorbance of chlorophyll at 940 nm
with a stable light emission by a red and a NIR LED
(Konica Minolta Sensing Inc., Osaka, Japan). Accord-
ingly, the NDVI camera uses a much broader range of
the spectrum and different wavelengths than the SPAD
measurement. Measurements with more precise narrow-
band imaging sensors will likely improve the detection
of leaf greenness as related to leaf chlorophyll content
with spectral indicators such as NDVIpj,p.

Despite the failure to measure leaf greenness as a func-
tion of chlorophyll content as observable with the SPAD
meter, we believe that the strong correlations of
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NDVIpy . with other plant characteristic support the
applicability of this method for breeding approaches.
Its correlation to the leaf area index around flowering
is very useful for remote-sensing applications, espe-
cially as canopy cover was little related to the leaf area
index during this phase. Plant density and early vigour
reflect germination rate and the genotypes’ ability for
fast establishment in the field, respectively. These two
important traits which describe early development of
maize are used for breeding purposes [31]. Stay green is
a trait reflecting the plant’s ability to maintain the
photosynthesis functioning in the final growth stage. It
is linked to increased yields as well as enhanced stress
tolerance [11,32,33].

The effect of transpiration cooling of plants can be
shown by the normalization to standard temperatures
such as T, or temperatures of certain standard surfaces
[20]. We measured T, with a weather station resulting
in reasonable dT values: when maize was imaged in a
green and transpiring stage, the cooling effect was —0.5
to —-2°C; when it was imaged in the senescent non-
transpiring stage, dT was lightly positive. Leaf tem-
peratures can also be higher than T, when radiation
intensity is very high (e.g. at noon) and wind condi-
tions are stagnant as shown in lab and field studies
[9,34]. In this study, high radiation conditions during
remote measurement campaigns were avoided due to
late afternoon flights when radiation is lower. At the
conditions presented here, the temperature normalization
(dT) enabled a meaningful comparison between genotypes,
measurements on different days with different climate
conditions.

Highest repeatability, i.e. best differentiation among
genotypes was achieved at days with moderate T, when
the largest cooling effect of the canopy was observed.
This observation is in contrast to studies were T¢ is
measured mostly during hot days at the hottest time of
the day around noon as an indicator for drought toler-
ance adaptation of genotypes [8,9] or crop water status
[35]. Most of such studies were conducted in a different
climate and with different research questions than this
study and thus cannot fully be compared. Certainly, the
optimal time of the day and temperature for IR measure-
ments for plant breeding might still be a question to be
answered. Due to unfavourable thermic conditions in
the target area at midday, the company operating the
Zeppelin did not allocate regular flights to the area
where the experiment was placed. This made it impos-
sible to test which time of the day would be optimal for
thermal imaging.

The strong, negative correlation of dT with plant size
and coverage information such as radiation interception,
LAI and biomass confirms the applicability of the IR
camera to measure T¢. In canopies with higher biomass,
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coverage and plant density Tc is lower reflecting a
higher transpiring area and cooling effect. Additionally,
the correlation to radiation interception and LAI may be
explained by the large pixel size and thus the mix of soil
and plant information in the signal. The low correlation
of Tc and dT to stomatal conductance and leaf
temperature measured with the porometer might be ex-
plained by methodical differences as well as genotypic
differences. The porometer measurements in the field
reflect two point measurements per plot at the youngest
fully developed leaf in a four row plot and thus only a
marginal part of the IR plot image. This is supported by
the observation of a better correlation of Tc to leaf
temperature in the later growth stages when stomatal
conductance is reduced due to advancing senescence
and, thus, genotypic properties affecting T¢ are less im-
portant. The positive correlation of Tc to the stay green
rating may be an effect of differences in CC and canopy
architecture properties. A lower CC results in lower leaf
area as well as higher soil area in the image and thus a
smaller dT of the canopy.

Conclusion
We developed a multi-channel remote-sensing pipeline
with semi-automated image analysis.

The comparably low cruising altitude and cruising
speed of the Zeppelin combined with high ground reso-
lution enabled image segmentation. Accordingly we
could distinguish into canopy cover (CC) and the nor-
malized difference vegetation index of the segmented
canopy (NDVIpp,). Such segmentation was not possible
for the thermal images with their comparably lower
resolution. For CC and NDVIpy,,,;, two row plots enabled
a sufficient differentiation among genotypes; for thermal
imaging, more than two rows are preferable.

The NDVI camera could be used to measure different
traits, depending on the time of the year. Early in the
season, CC was related to early vigour, leaf length and
plant density, later it was related to radiation intercep-
tion. NDVIpy,,, was well related to the vigour rating and
to very late senescence rating. More important, it was
related to the leaf area index during flowering, when
canopy cover did not correlate well with the trait. Most
strikingly, NDVIpp,,. was negatively related to leaf
chlorophyll content measured with the SPAD-meter.
This discrepancy demands for an in-depth evaluation of
this phenomenon.

For the thermography, highest repeatability of canopy
temperature was observed on large plots on temperate
days with strongest differences in canopy cooling.

The presented aerial phenotyping approach is applic-
able to other crops and larger field experiments and
genotypic sets as well as other aerial carrier and sensor
systems. Similar approaches might be realistic with light
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weight aerial carriers in the future when sensor tech-
nology evolves and sensor weight decreases, especially
for thermal imaging. Such approaches can help to
close the gap between phenotyping and genotyping
and reduce the constraints currently limiting breeding
advances.

Method

Experimental set up

The experimental field was placed below one of the
frequently operated touristic routes of the Zeppelin
(Zeppelin NT, Friedrichshafen, Germany) in the area of
Lake Constance. It was embedded in a maize field near
Salem in Germany (47° 46’ 15.37” N, 9° 17" 15.16” E,
440 m.a.s.l.). The soil was a cambisol [36] classified
according to soil texture as a sandy loam. The ex-
perimental setup was organised as a split plot design
with four replications, the number of rows per plot
(one to four) as the whole plot factor and a set of 16
genotypes as the split plot factor (Additional files 1
and 2). To avoid neighbour effects between hybrids
(entries 0 to 5) and inbred lines (entries 6 to 15), the
two groups were randomized in two separate blocks
within the split plots. The plot length was 4 m and
row spacing was 0.75 m. Additional single row plots
of 10 m length were created at the end of each block
for destructive samplings and measurements.

For the precise detection of the experimental plots in
the aerial imagery we placed field markers within and
around the experimental field (Figure 1). Two types of
markers were used. Nine white plastic tarps (1 x2 m)
were placed on the ground in diagonal cross-like
form just after sowing. Eight round, black metal plates
(© 70 cm) were placed on top of 2 m poles along the
edge of the experimental field after canopy closure.

Maize genotypes and cultivation

We selected 16 maize genotypes which reflect a large
variability in plant development and morphology. The
selection comprised six commercial hybrids (entries 0 to
5), five dent (entries 6 to 10) and five flint inbred lines
(entries 11 to 15). The genotypes were Lapriora (entry 0,
KWS SAAT AG, Einbeck, Germany), DKC2960 (entry 1,
DeKalb Genetics Corp., Dekalb, IL, USA), Tiago, Pralinia,
Bonfire, Swiss301, DSP1771, DSP5009S3, DSP5049A31,
DSP5145X1, DSP5164A3, DSP2563E3, DSP2637A (entries
2 to 12, Delley seeds and plants, Delley, Switzerland),
UHO003 and UHO08 (entries 13 and 14, University of
Hohenheim, Germany) and SMxxx (entry 15, Freiherr von
Moreau Saatzucht GmbH, Altburg, Germany).

The genotypes were planted on April 21, 2011 with a
planting density of 9 plants per m” using a single-seed
drilling machine (type TRM, Wintersteiger AG, Austria).
The maize was cultivated according to best management

Page 15 of 19

practices by the local farmer (for details see Additional
file 2). For spraying of pesticides a tractor mounted wing
sprayer with a wing length of 15 m was used (no cross-
ing through the experiment).

Climate and weather conditions
Air temperature, relative humidity (2 m above ground),
precipitation, wind- and gust speed (3 m above ground)
and soil temperature (5 cm in the soil) were recorded
with an on-site weather station (Onset Hobo, Pocasset,
USA) installed at the edge of the field, at a distance of
150 m to the experiment. Thermal time (TT) was calcu-
lated as TT = Xie0((Tmax + Tmin)/2)- Thases With a base
temperature (Tp,e) of 8°C [37] and is expressed in de-
gree days (°Cd). Vapour pressure deficit (VPD) was calcu-
lated as VPD = ((100 - rH)/100)*SVP, with the saturation
vapour pressure: SVP (Pa) = 610.7%107°1/2373+T),
Additionally, for days with thermal measurements
evapotranspiration (ETO- Penman), radiation and num-
ber of sun hours were derived from a close by commer-
cial weather station at Ailingen (47° 41’ 30.49” N, 9° 28
11.79” E, 440 m.a.sl) managed by the local meteoro-
logical service (LTZ, Baden-Wiirttemberg, Germany).

Aerial imaging equipment

In this experiment we used a Zeppelin operated by
Zeppelin NT (Deutsche Zeppelin-Reederei GmbH,
Friedrichshafen, Germany) as remote sensing plat-
form. In this proof of concept study, we decided to buy
tourist tickets and to acquire images out of the open side
window instead of a fixed on-board installation of our
equipment. A fix installation would have demanded for
an aviation certification and training for the pilots for
using the imaging equipment. The sensor array was se-
cured against falling off. During flight campaigns (Table 2)
the Zeppelin was directed along the experimental field
in south to north direction. Images were captured at
approximate nadir position (view angle 90° to the soil
surface) at an altitude of about 300 m and cruising
speed between 0 and 20 km h™' depending on wind
situation.

For image capture we used a handheld camera system
(Figure 1), which consisted of two consumer grade cam-
eras and an optionally attached thermal camera. The
consumer grade cameras were a 10.1 megapixel CMOS
RGB camera (Canon EOS 400D, Canon, Tokyo, Japan)
and a two-channel, 12.2 megapixel CMOS vegetation
camera (Canon EOS 450D NDVI, modified by LDP
LLD, Carlsted, USA) with a sensitivity range of 370 to
480 nm (blue channel, B) and 675 to 775 nm (near infra-
red channel, NIR). More information on sensor sensitiv-
ity and NIR photography can be found in Nijland [38].
The two cameras were equipped with Canon EF-S 60 mm
£/2.8 Macro USM lenses and mounted on an aluminium
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frame with handles and interconnected with a remote
trigger cable for simultaneous image capture. The
aperture size was adjusted shortly before the field
capture using a random maize field between the air-
port and the experimental field. The focus was centre
weighed and set to Al servo mode, the ISO was set
to 100 and all other settings were set to automatic.
During the flight over the experimental field a series
of images was taken.

The thermal camera was an industrial grade thermal
infrared (IR) camera VarioCAM head 600 (Infratec
GmbH, Dresden, Germany). It was attached only for se-
lected missions on hot summer days (Table 2). The IR
camera measures in the spectral range between 7.5 and
14 pm, a spatial resolution of 640 x 480 pixels and a
thermal resolution of better than 0.03 K at 30°C. A
75 mm lens was attached and shutter speed was 50 ms.
For mobile image acquisition the IR camera needed
an additional battery and a laptop connected by fire-
wire for camera control and data saving. The camera
was attached to the handle bar between the two con-
sumer grade cameras and was run in video mode re-
cording five images per second during flight over the
experimental field with the focus adjusted automatic-
ally (every 40 seconds) shortly before the field was
reached.

Images were recorded in raw format (.cr2 for the
Canon cameras and .irb for the IR camera). The total
imaging setup had a weight of 7.2 kg, a detailed descrip-
tion (incl. information about the ground cover and
spatial resolution for the three cameras at altitudes of
300 + 10 m) can be found in Table 1.

Image processing and analysis

For analysis of the aerial imagery the macro array of field
plots arranged in the experimental field was split into
three sub arrays (rectangles), each one covered by a sep-
arate image scene (a detailed sketch of the field plot
macro array can be found in the Additional file 1). For
each camera images were selected manually and trans-
formed from the respective raw file format to 16 bit .tiff
images (Figure 1C). Selection criteria were that the tar-
get rectangle was well focused and central in the image
to minimize vignette effects.

The image processing scripts were developed in
Matlab (2011a Natick, MA, USA). The black field
markers (Figure 1D) were used to automatically identify,
match and co-register the sub arrays in the different im-
ages. For the RGB and the NDVI camera the blue chan-
nel was used to identify the markers in the images.
In order to accurately transform these images into the
same coordinate system, the marker positions were de-
termined consistently by normalized cross correlation
(NCCQ) [39]. Here, the marker regions of the NIR images
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served as templates and their best position (most similar
position) in the blue channel of the RGB image was de-
termined in the region of the corresponding markers by
NCC. In the thermal images, the black field markers
emitted higher temperatures than plants and soil. How-
ever, the success of the automatic marker detection
procedure was manually adjusted in a few cases. Subse-
quently, the marker positions were used to rectify
the sub array images by applying a projective trans-
formation using bi-cubic interpolation. For IR images
the resolution was up-scaled to the resolution of the
other sensors before applying the projective trans-
formation. The result is a set of images from all sensors
transformed to the same coordinates for each sub array
(see Figure 1D).

For evaluation of plant features we differentiated soil
from plant pixels, by means of segmentation [21]. This
procedure was tested for the blue-near infrared images
(B-NIR) and the RGB images separately. For B-NIR we
calculated the normalized difference vegetation index
(NDVI) based on the blue band instead of the red band:
NDVI = (NIR - B)/(NIR + B), where B is the blue channel
and NIR is the near infrared channel. For the B-NIR im-
ages the segmentation of plants was performed using
two separate threshold procedures. The first segmenta-
tion was based on NDVI with a threshold of 0.1 mean-
ing, all pixels with a higher values were regarded as
plant pixels. The threshold 0.1 was chosen for all images
to allow detection of maize leaves with reduced green-
ness particularly during the late development stages
(senescence). The second segmentation step was done
after converting the images to monochrome images,
which shows the reflection intensity, in order to remove
highly shaded areas. It was directly affected by the actual
radiation and thus was set individually for each flight
campaign depending on radiation conditions (thresholds
can be found in Additional file 2). The resulting masks
were combined by multiplication. For the segmentation
of the RGB images the images were transformed to the
HSB colour space. Thresholds were set for hue, satur-
ation and brightness, respectively and for each flight
individually.

To identify the sampling plots and to exclude un-
wanted areas such as tracks around the sampling plots, a
mask file was prepared (Figure 1). The mask was used as
overlay to clip and save an area of interest (Aol) for each
experimental plot. For each camera and field rectangle
an image stack was generated for visual control of the
output images.

The per plot extracted data comprised the median and
skewness (distribution parameter) for the RGB channels,
the NDVI and canopy temperature (Tc) with and with-
out segmentation, respectively. The skewness of a distri-
bution is a rating of the asymmetry of its histogram



Liebisch et al. Plant Methods (2015) 11:9

relatively to its distribution mean (Additional file 2:
Figure A5) and is defined as:

m Z:l:1 (5:-%)°
(V5 0, )

where 7 is the number of distribution elements, x; is
the i-th element and x is the mean. Negative values are
encountered if the median of the distribution is greater
than the distribution mean and positive values if it is
smaller. If the distribution is symmetric to its mean, the
skewness is zero.

The canopy cover (CC) was extracted as the fraction
of plant pixels from the segmented NDVI images. From
Tc we calculated the difference to air temperature (dT)
using the actual air temperature (T,) measured by the
weather station on-site at the time of the image capture.

Maize development and ground truth measurements
Unless reported otherwise, all observations presented
here, were taken from the four-row plots. Evaluations
and measurements started 0.5 m behind the first plant
to minimize edge effects. Emergence was evaluated on 4
m rows 155°Cd corresponding to 29 days after sowing
(DAS). The corresponding dates, degree days, DAS and
approximate growth stages can be found in Table 2.
Tasseling was evaluated during the period from 540 to
727°Cd on ten adjacent plants in approximately 3-day
intervals. The exact dates at which 50% of the plants
were tasseling were determined by linear interpolation.
Leaf and total above ground biomass, plant height and
number of leaves were determined on five adjacent
plants in the sampling plots when the respective geno-
type was considered fully tasseling. Fresh weight biomass
was determined with an electric field balance and height
was measured with a yard stick. Stay green (development
or delay of senescence) was evaluated five times from
815 to 1275°Cd on ten plants per plot by counting green
leaves below the ear [40].

The leaf area index (LAI), was calculated from leaf
biomass taking advantage of the narrow relationship
between leaf area and specific leaf fresh weight (SLW)
determined on a subset of plants (n =24, r’=0.98):
LAI (cm®> cm™?)=SLW (mg cm™2) -3.96/27.4, with
SLW cm~?) = leaf biomass (g)/(SL (cm)*70 cm)*1000,
where SL is the sampling length and the row dis-
tance is 70 cm. Details on the sub-experiment can be
found in the Additional file 2 in section 5.

Leaf chlorophyll content, canopy radiation interception
and stomatal conductance were determined throughout
the season mostly parallel to the aerial imaging campaign.
Leaf chlorophyll content was determined with a SPAD
meter (Konica Minolta Sensing Inc., Osaka, Japan) on 10
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leaves per plot. Before silking, measurements were done
on the youngest fully developed leaf. After silking,
SPAD was measured on the second leaf above the ear
leaf. Photosynthetic active radiation (PAR) was mea-
sured with a 1 m line quantum sensor (LI-186-line,
LI-COR, Lincoln, Nebraska, USA). Measurements were
taken in the middle row on the ground (PAR transmitted)
and above the canopy (incident PAR) at noon on clear days
or days with stable cloud cover. The proportion of PAR ra-
diation absorbed by the crop (radiation interception) was
calculated as the ratio of the difference between incident
and transmitted PAR to incident PAR [41]. Leaf stomatal
conductance (LSC) and leaf temperature (LTMP) were
measured with a steady state diffusion leaf porometer
(SC-1, Decagon Devices, Pullman, WA, USA) on the
same leaf as SPAD. Measurements were taken in early
afternoon (12-14:00) with two measurements per geno-
type and block for time reasons.

Statistical analysis

The investigated dataset consisted of three levels of data:
(1) genotype level: ground truth data collected in the de-
structive sampling plots, which were not the same as aerial
survey plots, (2) plot level: ground truth measured in plots
at the same day and on the same plots as the aerial survey
(generally four row plots) and (3) the remote sensing level:
data available for all plots and plot sizes measured at the
same time. Data from different levels of measurement were
combined by time of measurement (TT), genotype and
block. Data consisting of more than one measurement per
plot (SPAD, LSC, silking, stay-green rating, and biomass)
were averaged before entering data analysis.

Statistics were calculated with R version 3.0.1 [42].
Boxplots show the 25 and 75% quantiles as the lower
and upper limit of the box with the median as solid line
in between (mean values shown as dotted line in some
cases). The lower and upper whiskers represent the 5
and 95% percentile or the minimum and maximum
value if no individual points (outliers) are plotted.

Comparisons between genotypes or measurement
dates were done by means of a mixed model analysis
using the package ‘asreml’ version 3.0 for R [43] followed
by a HSD test. The variance components to estimate re-
peatability of the one to four rowed plots were deter-
mined by setting block as fixed and genotypes as
random factor. Repeatability was calculated as h* = O‘éen/
(Géen +02/4), where oéen is the estimated genetic variance
and o7 is the residual error variance. We used the repeat-
ability to elucidate which plot size (row number) was suffi-
cient to differentiate among genotypes, depending on
measurement time and traits. Coefficients of correlation (r)
were calculated by the Pearson product moment correl-
ation. The used significance codes are: “**’ p-value < 0.001,
“* p-value < 0.01 and “’p-value < 0.05.
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Additional files

Additional file 1: Figure A1. Overview of the experimental field set up
shown as a scheme (A), as aerial side view (B) and top down images of
the three measurement arrays as used for data extraction (C). The
columns shown in A represent the columns that can be seen in the field
in B and C. The grey coloured plots in A are the experimental four row
plots and the destructive sampling plots (numbers stand for maize
genotypes), black areas are field markers and targets white areas
represent edge rows, the one to three row plots or walkways.

Additional file 2: Word document containing additional information
about: 1. Experimental field setup, 2. Field management, 3. Weather
information, 4. Camera set up, 5. Ground measurements, 6. Observed
skewness of NDVIpj,,,; Of three genotypes during the season and 7.
Canopy temperature as related to air temperature and repeatability.
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