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Abstract

Background: From initial seed germination through reproduction, plants continuously reprogram their
transcriptional repertoire to facilitate growth and development. This dynamic is mediated by a diverse but
inextricably-linked catalog of regulatory proteins called transcription factors (TFs). Statistically quantifying TF binding
site (TFBS) abundance in promoters of differentially expressed genes can be used to identify binding site patterns in
promoters that are closely related to stress-response. Output from today’s transcriptomic assays necessitates
statistically-oriented software to handle large promoter-sequence sets in a computationally tractable fashion.

Results: We present Marina, an open-source software for identifying over-represented TFBSs from amongst large sets
of promoter sequences, using an ensemble of 7 statistical metrics and binding-site profiles. Through software
comparison, we show that Marina can identify considerably more over-represented plant TFBSs compared to a
popular software alternative.

Conclusions: Marina was used to identify over-represented TFBSs in a two time-point RNA-Seq study exploring the
transcriptomic interplay between soybean (Glycinemax) and soybean rust (Phakopsora pachyrhizi). Marina identified
numerous abundant TFBSs recognized by transcription factors that are associated with defense-response such as
WRKY, HY5 and MYB2. Comparing results from Marina to that of a popular software alternative suggests that
regardless of the number of promoter-sequences, Marina is able to identify significantly more over-represented TFBSs.

Background
Definitions and presumptions
We define a list of transcription factor binding sites
(TFBSs), t1, t2, . . . , tN , where ti is either a DNA motif, mi
or position weight matrix (PWM), wi. The former is a
variable-length character-string from the four-nucleotide
DNA alphabet, while the latter is a two-dimensional
matrix of preset weights.
A group, Ga, is a FASTA file populated with user-

provided promoter sequences. Let Ga,Ga+1, . . . ,GN rep-
resent a list of N groups such that N ≥ 2. We define a
contingency matrix, ci as a 2 × 2 matrix, used to model
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ti over-representation across Ga and Ga+1. A set of statis-
tical metrics, S, quantify degree of ti over-representation
given ci.

Transcription factors and binding site representation
Plants are constantly surrounded by stimulus, be-they
deletorious pathogens or positive stimuli such as light
and nutrients. In order for the plant to respond to these
signals, plants must utilize regulatory proteins known
as transcription factors (TFs) to facilitate transcriptional
reprogramming in a dynamic, tissue-dependent manner.
These proteins bind to enhancer or promoter cis-elements
and facilitate the recruitment of RNA polymerase II.
This combinatorial binding of TFs facilitates downstream
execution of adaptative signals in the face of drought,
herbivory, and high salinity. By quantifying binding–sites
for these regulatory proteins, inherent transcriptional
dynamics and magnitude of over-representation can
be inferred.
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TFs are classified into families by inherent DNA-binding
signatures otherwise known as protein domains. In Ara-
bidopsis thaliana, for instance, there are 64 known TF
families [1], and it is not uncommon for different TF
family members to exhibit relatively similar functional-
ity. This redundancy is especially true when it comes to
stress-response [2-4].
DNA motifs and PWMs are two models frequently

used to define a TFBS. The former is a short cis-element
region presumed to be a TFBS, while the latter models
nucleotide propensities of a TFBS in the form of a matrix
[5,6]. PWMs have been used across a broad spectrum of
plant investigations such as identification of conserved
exonic splice-site enhancers in Arabidopsis thaliana [7],
prediction of potential seed-storage regulatory elements
in mustards, grasses and legumes [8], and identification
of novel regulatory elements in Arabidopsis thaliana [9].
With assays such as ChIP-ChIP and ChIP-Seq, novel reg-
ulatory elements can be identified and modeled as a
PWM [10].

Implementation
Marina is an operating-system independent GUI software
tool built using the Java programming language.
This manuscript builds on the works of Chekmenev et.

al [11], Loots et. al [12], and Kel et. al. [13], by implement-
ing multiple statistical metrics to identify the maximum
number of biologically-sound TFBSs, while accounting for
cases when large promoter sets are provided.
To begin analysis with Marina, at least two FASTA

files populated with user-provided promoter sequences
are required. Each FASTA file is known as a group. A
group, for instance, could represent promoter sequences
of interest for a particular condition or time point.
TheMarina workflow (Figure 1) is partitioned into three

distinct phases. The first phase performs abundance-
estimation given a catalog of known TFBS models
(Figure 1a). Initial abundance derivation is performed
via mapping of the TFBS onto user-provided promoter
sequences. Following TFBS mapping, low-quality TFBSs
are removed (Figure 1b). Finally, a collection of statisti-
cal metrics quantify and rank TFBS over-representation
(Figure 1c).

Phase 1: Binding site mapping
In order to effectively quantify TFBS abundance using this
tool, TFBS models must be provided. These models are in
the form of either DNA motifs or PWMs. Cumulatively,
1,240 TFBS models were mined and utilized through-
out this study. Of these models, 1,160 were DNA motifs
with the remaining 80 being PWMs; motif-to-PWM ratio
of 13:1.
Plant DNA motif and PWM models originated from

AthaMap [14], AGRIS [15], PlantCARE [16], TRANSFAC

[17], and JASPAR [18]. DNA motifs and PWMs were
stored in either a tab-delimited or FASTA file format,
respectively. Due to licensing restrictions, Marina does
not come pre-packaged with a catalog of TFBS models,
however several PWMs are provided, built from known
PDB structures using the 3DTF web-server [19]. Be it
PWMs or DNAmotifs, a user-friendly schema is provided
for importing custom TFBS profiles.

DNAmotif and PWMmapping
To efficiently derive over-representation using DNA
motifs, Marina scans promoter sequences for any occur-
rence of this motif using the Boyer-Moore-Horspool algo-
rithm [20]. Due to the short length of many DNA motifs,
elements such as ARF1 (TGTCTC) [21] may ubiquitously
map throughout a promoter sequence with many map-
pings having little biological significance. Though this tool
provides the option to filter short-length models be it
PWMs or DNA motifs, resultant abundance estimations
may seldom be biologically significant simply due to the
likelihood of spurious mappings.
Marina maps each PWM onto promoter sequences

using a concurrent implementation of the P-MATCH
algorithm [11]. P-MATCH calculates a likelihood that a
particular candidate promoter region contains a TFBS. By
default, Marina uses a probability-cutoff of 0.80; any sub-
sequence with a score greater than this cutoff is rendered
a potential TFBS.
Alongside DNA motif and PWM extrapolations is a

third pseudo-extrapolation known as combined mode.
This mode simply performs the two former extrapo-
lations back-to-back, merging their results into a sin-
gular data-structure. Combined mode capitalizes on
the abundance of DNA motifs and probabilistic power
of PWMs.

Phase 2: Modeling TFBS over-representation
TFBS abundances across all promoter sequences are
modeled using a group-specific acyclic graph. Each
graph is organized such that group name is the root-
node and each TFBS is a child leaf node. Every TFBS
node references a list of promoter sequences containing
this TFBS.
Per graph child node, two measures are used to model

initial TFBS abundance: raw counts and support [22].
The former is simply defined as the number of pro-
moter sequences which contain this particular TFBS.
Raw counts are a useful, comparable metric if all
groups have approximately the same number of pro-
moter sequences. Unfortunately some groups may be
larger than others, resulting in skewed and uncon-
trastable counts. To circumvent this possibility, the
latter probabilistic measure, support, comes in help-
ful. Support, P(ti,Ga), is a data-mining metric for
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Figure 1Marina workflow. a) A group is an umbrella-term to represent a set of promoter sequences. In order to run Marina, at least two groups
must be provided. In doing so, TFBSs within each group can be contrasted and statistically quantified using TFBSs modeled as either DNA motifs or
PWMs. Marina can also run if both these data-structures are provided, hence the name combined. b) Each group is modeled as a uni-directional
graph, providing a means of trimming low-abundant promoter-sequences and TFBSs. c) A diverse collection of statistical metrics are used to model
and quantify TFBS abundance. Magnitude of TFBS abundance is ranked and the hypergeometric distribution p-value computes significance of TFBS
over-representation.

representing abundance of a TFBS within a particular
group [22]. A collection of statistical metrics continue
where support leaves off, providing a means of deducing
TFBS abundance.
Both raw-counts and support serve as viable metrics

to initially model TFBS abundance, however there may
be cases were a rift between the two measures can
appear. For example, suppose a single TFBS mapped
only once to a group. Due to such minimal map-
ping, raw-count will be small but support would be
large. Both low-support and low-count thresholds exist
so as to filter corresponding graph nodes. Such graph
trimming ensures that high-support and/or high-count
TFBS nodes remain as they are more likely of hav-
ing correlations to a particular group [23]. A caveat
with threshold cutoffs is that low-abundance TFBSs will
get discarded.

Phase 3: Deriving over-represented TFBSs using numerous
statistical metrics
Given remaining TFBSs nodes, Marina aims to deduce
magnitude of over-representation per TFBS, ti by con-
trasting its abundance across groups Ga and Ga+1. To
facilitate this objective, a collection of 7 knowledge discov-
ery metrics, S, are implemented (Table 1). Though a single
metric can theoretically suffice, employing the entire set
provides a means to appreciate unique features per mea-
sure and avoid individual bias. This table is by no means
exhaustive as there are well over 20 frequently used met-
rics [24,25]. The metrics in this table were selected so
that there exists a sound mixture of both well-studied
association and correlation measures.
In order to utilize such measures, TFBS abun-

dances must be modeled in a suitable data-structure.
A contingency matrix, ci, is an ideal data-structure



Hosseini et al. Plant Methods 2013, 9:12 Page 4 of 11
http://www.plantmethods.com/content/9/1/12

Table 1 Statistical metrics

Metric Equation Output range Reference

Confidence (CF) max(P(Ga|ti), P(ti|Ga)) 0 . . . 1 [26]

Cosine (CO) P(ti ,Ga)√
P(ti)P(Ga)

0 . . .
√
P(ti ,Ga) . . . 1 [27]

Jaccard (JAC) P(ti ,Ga)
P(ti)+P(Ga)−P(ti ,Ga)

0 . . . 1 [28]

Kappa coefficient (K) P(ti ,Ga)+P(ti ,Ga)−P(ti)P(Ga)−P(ti)P(Ga))
1−P(ti)P(Ga)−P(ti)P(Ga)

−1 . . . 1 [29]

Laplace Correction (LP) max
(
NP(ti ,Ga)+1
NP(ti)+2 , NP(ti ,Ga)+1

NP(Ga)+2

)
0 . . . 1 [30]

Lift (LI) P(ti ,Ga)
P(ti)P(Ga)

0 . . . ∞ [31]

Phi coefficient (PHI) P(ti ,Ga)−P(ti)P(Ga)√
P(ti)P(Ga)(1−P(ti))(1−P(Ga))

−1 . . . 1 [32]

Given a group, Ga , and a TFBS, ti , magnitude of TFBS over-representation can be determined using a set of statistical metrics.

candidate as it models TFBS distributions through-
out multiple, independent groups (Table 2). Each
metric within S processes frequencies within a contin-
gency matrix, ci, so as to quantitatively deduce over-
representation of TFBS, ti. Certainly not all metrics
deduce magnitude of TFBS over-representation the same,
resulting in difficulties as to which TFBSs are unani-
mously most over-represented by all metrics. A solu-
tion to bringing uniform over-representation agreement
across all metrics is to standardize contingency matrix
counts using Iterative Proportional Fitting (IPF) [33].

Iterative Proportional Fitting (IPF)
IPF is an algorithm for standardizing counts in a
two-dimensional contingency matrix such that matrix
row and column marginals are equal to one another
(Table 3). Through such adjustment, inherent associations
and correlations can be discovered [34]. By perform-
ing IPF-standardization, output for all 7 metrics become
normalized so as to agree which TFBSs are the most
over-represented.
Equations 1 and 2 present an implementation of the IPF

algorithm originally outlined by Tan et al. [35]. The for-
mer equation adjusts counts, a, such that they are equal
on the diagonal axis. The latter equation then subtracts
the remainder of the counts from that of the entire matrix
sum, N.

ci1,0 = ci0,0 = a = N√ci1,1ci0,0
2

(√ci1,1ci0,0 + √ci1,0ci0,1
) (1)

ci0,1 = ci1,0 = N
2

− a (2)

Table 2 Contingencymatrices model TFBS
over-representation

Ga Ga

ti ci(0, 0) ci(1, 0) n(ti)

ti ci(0, 1) ci(1, 1) n(ti)

n(Ga) n(Ga) N

TFBS abundance within specific groups can be modeled as a two-dimensional
contingency matrix, ci .

Results and discussion
Case study: over-represented Glycinemax TFBSs during a
Phakopsora pachyrhizi time-course infection
To evaluate the functionality of this software tool, we
utilized a two time-course RNA-Seq study that inves-
tigates soybean (Glycine max) transcriptional dynamics
upon pathogenesis with soybean rust (SR; Phakopsora
pachyrhizi). As outlined in our previous study, suscepti-
ble Williams 82 soybean leaves were inoculated with SR
and assayed using RNA-Seq 10 days after infection (dai)
[36]. An accompanying uninoculated control was also
assayed to serve as a baseline condition. In both the con-
trol and 10 dai samples, a total of 5,940,995 70bp reads and
5,574,892 40bp reads were respectively sequenced using
the Illumina platform (GenomeAnalyzer IIx). Sequenced
reads were deposited in NCBI SRA under accessions
SRX100854, SRX129967 and SRX100853, SRX129959,
respectively.
Per run, quality assessment and control (QA/QC)

entailed removal of low quality reads and trimming of
low-quality 3’ ends should its quality score be less than
22. Reads were also discarded if they mapped at least
once to either the human genome (Hg19) or the JCVI
Microbial Resource [37]. Upon QA/QC completion, a
total of 5,015,459 control reads and 5,420,745 10 dai reads
passed filtering; quality-scores of 27 and 30, respectively.
For each time point, reads were mapped with at-most 3
nucleotide mismatches onto the soybean transcriptome
build (Glyma 1.0) using BWA [38]. Custom Python scripts
inferred differential expression by deriving RPKM [39]
and log2

(
RPKM10dai
RPKM0dai

)
per transcript.

Table 3 IPF-standardization yields equal marginals in a
contingencymatrix

Ga Ga

ti x N/2 − x N/2

ti N/2 − x x N/2

N/2 N/2 N

Identical counts within diagonal cells leads to marginal rows and columns being
equal to one another. Table adapted from [35].
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Table 4 Various metrics infer differingmagnitudes of TFBS over-representation

Metrics TFBS raw-abundance

TF LP CO JAC LI CF K PHI p-value Suppressed Induced

ABF1 20 39 39 20 20 3 2 8.211e-274 130 169

ABFS 9 9 10 9 9 16 12 2.385e-31 10 20

ABI3/FUS3 67 19 17 67 67 41 58 3.036e-47 14 7

ABI4(2) 64 34 33 64 64 64 67 4.465e-172 66 43

AG 14 20 21 14 14 13 18 4.611e-82 30 42

AGP1 48 57 56 48 48 58 49 2.412e-720 427 398

ALFIN1 34 58 57 34 34 34 34 1.580e-731 440 426

ARF1 65 29 24 65 65 57 62 1.243e-113 40 25

ARR10 39 65 65 39 39 43 39 1.836e-895 579 552

ARR2 69 27 22 69 69 60 69 4.028e-99 33 15

ATHB-5 43 68 68 43 43 49 43 1.542e-901 584 555

ATHB1 40 67 67 40 40 45 40 3.162e-901 584 556

ATHB5-1 63 21 20 63 63 44 55 3.202e-78 26 18

ATHB5-2 37 60 60 37 37 37 37 9.771e-769 470 452

ATHB6 27 23 25 27 27 29 32 3.067e-109 41 46

ATHB9 53 38 36 53 53 55 52 2.105e-225 95 81

AtLEC2 55 51 51 55 55 68 61 1.066e-611 336 284

ATML1/PDF2 71 18 11 71 71 54 71 8.730e-38 10 1

AtMYB2 29 33 34 29 29 23 31 1.606e-170 70 76

AtMYB77 60 32 31 60 60 56 57 2.955e-141 53 40

AtMYC2 2 2 2 2 2 30 8 0.0002735 1 7

AtSPL3 30 45 46 30 30 8 26 7.997e-426 220 236

BLR/RPL/PNY 35 61 61 35 35 35 35 1.444e-777 478 462

bZIP910(2) 10 12 16 10 10 14 11 6.060e-42 14 26

bZIP911 12 11 13 12 12 19 14 4.350e-37 12 21

bZIP911(1) 11 10 12 11 11 20 13 2.529e-34 11 20

bZIP911(2) 18 13 14 16 16 32 29 3.730e-38 12 16

CBF 43 68 68 43 43 49 43 1.542e-901 584 555

CDC5 4 4 4 4 4 18 3 1.343e-10 3 13

DOF2 42 71 71 42 42 48 42 1.259e-902 585 556

DPBF1/2 51 55 55 51 51 66 54 1.857e-712 418 379

E2Fa 70 13 9 70 70 38 64 8.059e-24 6 1

E2Fc/d 1 1 1 1 1 26 5 0.0003077 1 8

EmBP-1 25 43 43 25 25 5 17 3.316e-397 203 228

GAMYB 47 59 59 47 47 53 47 2.040e-743 447 422

Gamyb 58 28 26 58 58 40 50 6.185e-120 44 36

GATA-1 17 24 28 18 18 12 16 5.923e-120 47 62

GATA-1/2/3/4 16 15 18 17 17 28 27 9.291e-54 18 24

GT-3b 13 25 29 13 13 7 7 1.244e-128 52 76

HAHB4 46 64 64 46 46 52 46 1.038e-891 575 546

HAT5 43 68 68 43 43 49 43 1.542e-901 584 555

HSE 19 26 30 19 19 11 15 1.641e-130 52 68

HVH21 41 66 66 41 41 46 41 3.881e-900 583 555
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Table 4 Various metrics infer differingmagnitudes of TFBS over-representation (Continued)

HY5 6 8 8 6 6 21 10 6.247e-20 6 15

ID1 28 31 32 28 28 27 33 4.015e-146 58 63

MYB.PH3(1) 56 41 41 56 56 61 56 4.159e-333 154 130

MYB.PH3(2) 52 49 49 52 52 62 53 6.937e-564 306 276

MYB98 62 36 35 62 62 65 65 2.648e-210 85 60

O2 33 56 58 33 33 6 28 2.967e-731 446 457

OsbHLH66 26 40 40 26 26 9 20 1.723e-308 147 165

OsCBT 3 3 3 3 3 24 6 1.543e-7 2 10

P 57 52 52 57 57 71 66 2.571e-629 347 286

PCF2 61 47 44 61 61 70 70 3.566e-441 215 160

PCF5 59 48 48 59 59 69 68 2.612e-498 254 201

PEND 31 35 37 31 31 15 30 3.825e-230 101 108

PIF3(2) 21 22 23 21 21 17 25 4.178e-99 37 46

RAP2.2 66 30 27 66 66 59 63 1.614e-125 45 28

RAV1(1) 49 54 53 49 49 63 51 1.957e-688 400 366

RAV1(2) 38 62 62 38 38 39 38 1.073e-854 543 519

STF1 24 37 38 24 24 10 22 1.243e-242 109 124

TAC1 68 17 15 68 68 42 59 1.479e-44 13 6

TaMYB80 54 50 50 54 54 67 60 2.700e-594 324 276

TBP 36 63 63 36 36 36 36 1.545e-881 568 547

TEIL 50 42 42 50 50 47 48 8.458e-340 160 146

TGA1 23 46 47 23 23 2 9 3.416e-468 253 293

TGA1a 32 53 54 32 32 4 23 3.325e-688 413 433

WRKY11 7 7 7 8 8 31 19 2.346e-14 4 9

WRKY18/40/62 7 6 6 7 7 33 21 2.879e-11 3 7

WRKY26/38/43 15 16 19 15 15 25 24 4.164e-56 19 26

WRKY6 5 5 5 5 5 22 4 1.091e-10 3 12

ZAP1 22 44 45 22 22 1 1 2.468e-415 219 268

Promoter sequences from the top 600 induced and top 600 suppressed genes 10 dai were identified and their TFBS abundances quantified using Marina. A catalog of
pre-assembled DNAmotifs (1,160 motifs) and PWMs (80 matrices) accompanied such groups.
A total of 71 over-represented TFBSs were identified. Of these N TFBSs, magnitude of over-representation is ranked from 1 to N such that the most over-represented
are close to 1 while the least over-represented are close to N. Since TFBS models can vary across source-organisms, certain over-represented TFBSs were found
multiple times (i.e. GAMYB, bZIP911, and ATHB5). Furthermore, not all metrics rank the same. As a result, manually deducing degree of TFBS over-representation can
be a challenging task. IPF-standardization is designed to circumvent such a scenario.

Two gene-sets were then declared to contain the top
600 induced and 600 suppressed differentially expressed
genes (DEGs), respectively. Per gene set, the promoter
sequence 2.5kb upstream from each genes transcription
start site (TSS) was retrieved and appended to a FASTA
file. Both FASTA files in-conjunction with 80 plant PWMs
and 1,160 plant-specific DNA motifs served as input into
Marina.
Marina identified 71 potentially over-represented

TFBSs between the control and 10 dai groups (Table 4).
As shown in this table, there exists no consensus amongst
the various metrics as to which TFBS is truly the most
over-represented. There are however some TFBSs that
are ranked by all metrics in a relatively uniform manner:

AG, ATHB6, and ABFS. For all other TFBSs, it is diffi-
cult to deduce magnitude of over-representation. Such a
scenario warrants IPF-standardization as it normalizes
metric-ranks to agree in-concert which TFBSs are the
most over-represented (Table 5). By visually contrasting
this table with that of Table 4, it is clear that unstandard-
ized ranks from Laplace Correction (LP), Confidence
(CF) and Lift (LI) perfectly equal their IPF-standardized
counterpart.

Many over-represented TFBSs have defense or
stress-response functions
Given the list of IPF-standardized TFBSs (Table 5), all
4 WRKY genes were over-represented at 10 dai. These
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Table 5 IPF-standardized abundances provides agreement
amongst all metrics

Metrics

TF LP CO JAC LI CF K PHI

ABF1 20 20 20 20 20 20 20

ABFS 9 9 9 9 9 9 9

ABI3/FUS3 67 67 67 67 67 67 67

ABI4(2) 64 64 64 64 64 64 64

AG 14 14 14 14 14 14 14

AGP1 48 48 48 48 48 48 48

ALFIN1 34 34 34 34 34 34 34

ARF1 65 65 65 65 65 65 65

ARR10 39 39 39 39 39 39 39

ARR2 69 69 69 69 69 69 69

ATHB-5 43 43 43 43 43 43 43

ATHB1 40 40 40 40 40 40 40

ATHB5-1 63 63 63 63 63 63 63

ATHB5-2 37 37 37 37 37 37 37

ATHB6 27 27 27 27 27 27 27

ATHB9 53 53 53 53 53 53 53

AtLEC2 56 56 56 56 56 56 56

ATML1/PDF2 71 71 71 71 71 71 71

AtMYB2 29 29 29 29 29 29 29

AtMYB77 60 60 60 60 60 60 60

AtMYC2 2 2 2 2 2 2 2

AtSPL3 30 30 30 30 30 30 30

BLR/RPL/PNY 35 35 35 35 35 35 35

bZIP910(2) 10 10 10 10 10 10 10

bZIP911 12 12 12 12 12 12 12

bZIP911(1) 11 11 11 11 11 11 11

bZIP911(2) 17 17 17 17 17 17 17

CBF 43 43 43 43 43 43 43

CDC5 4 4 4 4 4 4 4

DOF2 42 42 42 42 42 42 42

DPBF1/2 51 51 51 51 51 51 51

E2Fa 70 70 70 70 70 70 70

E2Fc/d 1 1 1 1 1 1 1

EmBP-1 25 25 25 25 25 25 25

GAMYB 47 47 47 47 47 47 47

Gamyb 58 58 58 58 58 58 58

GATA-1 18 18 18 18 18 18 18

GATA-1/2/3/4 16 16 16 16 16 16 16

GT-3b 13 13 13 13 13 13 13

HAHB4 46 46 46 46 46 46 46

HAT5 43 43 43 43 43 43 43

HSE 19 19 19 19 19 19 19

Table 5 IPF-standardized abundances provides agreement
amongst all metrics (Continued)

HVH21 41 41 41 41 41 41 41

HY5 6 6 6 6 6 6 6

ID1 28 28 28 28 28 28 28

MYB.PH3(1) 55 55 55 55 55 55 55

MYB.PH3(2) 52 52 52 52 52 52 52

MYB98 62 62 62 62 62 62 62

O2 33 33 33 33 33 33 33

OsbHLH66 26 26 26 26 26 26 26

OsCBT 3 3 3 3 3 3 3

P 57 57 57 57 57 57 57

PCF2 61 61 61 61 61 61 61

PCF5 59 59 59 59 59 59 59

PEND 31 31 31 31 31 31 31

PIF3(2) 21 21 21 21 21 21 21

RAP2.2 66 66 66 66 66 66 66

RAV1(1) 49 49 49 49 49 49 49

RAV1(2) 38 38 38 38 38 38 38

STF1 24 24 24 24 24 24 24

TAC1 68 68 68 68 68 68 68

TaMYB80 54 54 54 54 54 54 54

TBP 36 36 36 36 36 36 36

TEIL 50 50 50 50 50 50 50

TGA1 23 23 23 23 23 23 23

TGA1a 32 32 32 32 32 32 32

WRKY11 8 8 8 8 8 8 8

WRKY18/40/62 7 7 7 7 7 7 7

WRKY26/38/43 15 15 15 15 15 15 15

WRKY6 5 5 5 5 5 5 5

ZAP1 22 22 22 22 22 22 22

By having all metrics agree as to magnitude of over-representation per TFBS,
the investigator will have an easier time identifying TFBSs of interest. Much like
unstandardized ranks (Table 4), standardized ranks also range from 1 to N such
that ranks in the vicinity of 1 are most over-represented while ranks in the
vicinity of N are least over-represented.

abundances are supported by numerous studies which
show that WRKY genes are perceived upon PAMP signals
or abiotic stressors [40-43]. WRKY genes drive defense-
response by regulatingNONEXPRESSOROF PR1 (NPR1)
expression by binding to W-box motifs in the NPR1 pro-
moter. NPR1 protein binds with TGA TFs which regulate
pathogenesis-response (PR) expression, hence providing
a means of positively regulating SA-defense response
[44-46].
Similar to WRKY, a bZIP family TFBS, HY5, was also

over-represented 10 dai. Inextricably linked to photomor-
phogenesis, this TF is also known for its positive regula-
tion of auxin signalling; a phytohormone which regulates
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defense response [47,48]. Through interactions with HY1
and MYC2, HY5 is able to regulate photomorphogenesis,
ABA and JA signaling [49,50].
Much like MYC2, AtMYB2 is not only over-represented

at 10 dai but also plays a role in ABA-signaling. Microar-
ray analyses on Arabidopsis plants with 35S:AtMYC2/
AtMYB2 over-expression constructs revealed induced
expression of several ABA-regulated genes [51].
The GT (Trihelix) TF family member, GT-3b, was

over-represented at 10 dai. Much is unknown about this
TF family let alone GT-3b, however what is known is
that many GT members, like HY5, regulate photomor-
phogenic signaling [52]. A recent study showed how
GT-2a and GT-2b over-expression positively-regulates
ABA-signaling [53]. Though an over-expressed GT-3b
construct was not part of this recent study, translating
findings from GT-2a and GT-2b over to GT-3b could
reveal potentially novel insights into whether GT-3b plays
a part in ABA and defense-signaling roles.

Strong relationship between degree of TFBS
over-representation and IPF-rank
Due to the multi-dimensional nature of unstandardized
TFBS ranks (Table 4), dimensionality reduction was per-
formed to facilitate rank visualization on a 2D coordinate
plane. To carry-out such analysis, Principle Component

Analysis (PCA) followed by bi-variate clustering was exe-
cuted using the R library clusplot [54]. All 71 TFBSs were
partitioned into 6 discrete clusters and labeled based on
their respective IPF-standardized rank (Figure 2). Inter-
estingly, there appears to be a strong relationship between
the magnitude of TFBS over-representation and IPF-
standardized rank. This suggests that IPF-standardization
is suitable for deducing magnitude of over-represented
TFBSs.

Comparative software analysis
Several actively-used software tools and web-interfaces
are available to quantify TFBS over-representation
[14,15,18,55-57]. We classified such tools into two classes:
software that deduce TFBS over-representation given
either 1) one promoter-sequence set or 2) at least two
promoter-sequence sets. Marina falls into this latter
class and as does a popular software tool, F-MATCH
[13]. Both tools require two FASTA files as input such
that one file serves as a query sequence-set while the
other a baseline control. Degree of over-representation is
therefore deduced by statistically contrasting TFBS over-
representation across these two groups.
Both software tools were compared using three

independent sets of promoter-sequences of vary-
ing sizes. Each of these three analyses encompassed
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Table 6 ComparingMarina and F-MATCH given catalogs of
PWMs and DNAmotifs

Group size PWMs (x 80) DNAmotifs (x 1,160)

(# sequences) F-MATCH Marina F-MATCH Marina

600 44 47 N/A 24

1500 0 50 N/A 41

2500 0 53 N/A 44

A collection of 80 plant-specific PWMs were supplied to Marina. When
group-sizes are relatively small and PWMs are used, both Marina and F-MATCH
identify approximately the same number of over-represented TFBSs. However as
group-sizes increased, Marina consistently identifies over-represented TFBSs.
Marina also accepts DNAmotifs if PWMs are not available; F-MATCH does not
accept such models.

promoter-sequences of DEGs 10 dai from our prior soy-
bean – soybean rust RNA-Seq study [36]. F-MATCH
and Marina identify relatively the same number of over-
represented TFBSs when promoter-sequence sets are
600 sequences in size (Table 6). As these promoter sets
increase in size, Marina maintains steady consistency
as to identification of over-representated TFBSs, while
F-MATCH failed to detect any over-represented TFBSs.
We believe the reasoning behind why F-MATCH yields 0
over-represented TFBSs while Marina identified almost
50 TFBSs to be attributed towards usage of the bino-
mial distribution by F-MATCH, which is known to be
sensitive to large test sets. As far as output consistency
between the two tools, our only comparison pertains to
results obtained with 600 sequences sets. Given the 44
F-MATCH and 47 Marina over-represented TFBSs, 21
TFBSs were shared between the two result-sets. Unlike
F-MATCH, we did not include TRANSFAC Professional
PWMs in our analysis. We believe by introducing such
PWMs, the number of shared TFBSs would certainly
increase.

Conclusions
Marina is a operating-system independent software
tool to identify over-represented TFBSs across different
groups of promoter sequences. We illustrate its usage
using an RNA-Seq plant-pathogen study, however pro-
moter sequences from any organism can be analyzed
using Marina as long as compatible TFBS models are
provided. We also show its capability to identify over-
represented TFBSs regardless of input size. Given large
sets of DEGs, our results show that by contrasting their
promoter sequences, TFBSs perceived during defense
and stress response were significantly over-represented.
Other lesser-known TFBSs joined these ranks, raising
questions as to potential candidate TFs affiliated with
defense-response.
The underlying algorithms within this tool are guided by

a catalog of user-provided TFBS models be-it DNAmotifs
or PWMs. Thankfully, many regulatory element resources

and databases exist. By contrasting this software tool to
a popular alternative, we show that Marina is built for
large promoter-sequence sets while being able to identify
biologically sound over-representative TFBSs.

Availability and requirements
Project name:Marina.
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