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Abstract

Mutant analysis, Arabidopsis

Genetic resources available for Arabidopsis thaliana make this species particularly attractive as a model for molecular
genetic studies of guard cell homeostasis, transport and signalling, but this facility is not matched by accessible
tools for quantitative analysis of transport in the intact cell. We have developed a reliable set of procedures for
voltage clamp analysis of guard cells from Arabidopsis leaves. These procedures greatly simplify electrophysiological
recordings, extending the duration of measurements and scope for analysis of the predominant K™ and anion
channels of intact stomatal guard cells to that achieved previously in work with Vicia and tobacco guard cells.
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Introduction

Stomata are pores, commonly found in the epidermis of
leaves, and are surrounded by a pair of specialised cells
known as guard cells. Guard cells regulate the size of the
stomatal pore to balance the exchange CO, for photo-
synthesis with the need to conserve water [1]. The
acquisition of stomata and the leaf cuticle are considered
to be key elements in the evolution of advanced terres-
trial plants [2] allowing plants to inhabit different and
often fluctuating environments while controlling water
content. Stomatal pores typically occupy less than 5% of
the leaf surface, but they provide for over 90% of the
CO, entering the leaf and over 70% of water loss from
the plant as a whole [3]. Guard cells respond to a num-
ber of well-defined signals — including hormones, light
and atmospheric CO, concentration — integrating these
signals to regulate stomatal aperture [4,5].

In the past few decades, the combination of physio-
logical and molecular biological methods in the model
plant Arabidopsis thaliana has greatly advanced our
understanding of stomata [1,4-7]. Among these, voltage
clamp methods have proven powerful in connecting the
molecular and physiological frameworks in an under-
standing of stomatal function. The voltage clamp itself
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lies at the core of a toolchest of techniques and provides
the essential utility to bring the driving force of mem-
brane voltage under experimental control. By so doing,
it enables the dissection, identification and monitoring
of ionic currents carried by individual ion transporters —
ATP-dependent pumps, ion-coupled carriers and ion
channels — across biological membranes [8]. Classic volt-
age clamp methods rely on impalements with two
microelectrodes (or a single microelectrode with two
separate barrels) that are used to measure membrane
voltage and to pass current for voltage clamping, re-
spectively [8,9]. Because a defined spatial geometry is
essential for quantifying current spread under clamp
conditions [8-10], these methods have proven highly
successful for work primarily on a small number of
single-celled species as well as cell types that are easily
isolated from their surrounding tissues [11-17].

Since its wider introduction in the 1980's [18,19], the
patch clamp variant of the voltage clamp has been
widely used in studies of plant ion channels [8,20]. The
patch clamp offers a number of advantages for work on
plant cells, the most important being the facility for elec-
trical recordings from single cells isolated from almost
any surrounding tissue, thereby avoiding the difficulties
of electrical coupling via plasmodesmata between cells
in situ [21]. It also presents some difficulties. For patch
clamp recordings from plant cells it is essential to
remove the cell wall, commonly by enzymatic digestion,
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and to stabilise the protoplast against osmotic swelling
in the absence of turgor. Both manipulations affect the
underlying homeostatic properties of the cells and must
influence their physiological behaviour [22,23]. Addition-
ally, obtaining electrically and mechanically robust seals
between the patch electrode and protoplast, and retain-
ing stable measurements without significant “rundown”
of currents over long periods of time are often challen-
ging [20,24].

By contrast with many plant cell types [but see Chen
et al. [15]], guard cells at maturity do not retain electrical
connections with their neighbours [11,25]. They are easily
separated by mechanical peeling of leaves [1] and recov-
ered intact with their cell wall within the monolayer of
epidermal cells. These features greatly simplify their hand-
ling for voltage clamp recordings and analysis, avoiding
the need to isolate protoplasts and the technical chal-
lenges of the patch clamp. Despite the obvious advantages,
only a very few studies [26-28] have made use of micro-
electrode impalements and classic voltage clamp methods
with intact Arabidopsis guard cells. A major difficulty in
this case has been to obtain reliable measurements over
20-30 min or more, time periods long enough for physio-
logical and pharmacological studies with single cells.
Thus, many researchers have relied on statistical
approaches in patch recordings from populations of guard
cell protoplasts, often without an internal reference for
comparisons; simply put, impalement methods have not
offered significant benefits in overcoming the problem of
‘rundown’ in channel activities common to patch clamp
recording [20,24].

We have revisited the problems of voltage clamp record-
ing from intact Arabidopsis guard cells and offer here a few
simple procedures that enable classic, two-electrode voltage
clamp recordings. Included with this protocol are summar-
ies of results demonstrating its utility in characterising the
major ion channel currents and their stability over time
periods of one hour or more. The impalement approach
greatly simplifies experimental access to these currents and
enables physiological studies to be carried out on a cell-by-
cell basis.

Materials
Plant materials

o Arabidopsis thaliana. For purposes of
demonstration, we included with wild-type (Col0)
the nitrate reductase-null mutant nial-1/nia2-5
(nialnia2) [29], the ABA-receptor quadruple
mutant pyrl/pyll/pyl2/pyl4 (QC3) [30], the vesicle-
trafficking mutant syp121 (=syrl/penl) and its
complementation with SYPI121 [31,32], the
dehydroascorbate reductase mutant dhari-3 [33],
and the K* channel mutant kci-2 [31].
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Reagents

e KCl, Ca(OH),, NaOH, HCI, Cs(Cl,
tetraethylammonium chloride (TEA-CI), potassium
acetate (K*-Ac), and 2-(N-morpholino)ethanesulfonic
acid (MES) analytical grade.

e Opening Buffer (OB) for pretreating the stomatal
guard cells, comprising 50 mM KCI and 10 mM MES,
titrated to its pH 6.1 with NaOH, without added Ca®".

e Recording Buffer 1 (RB1) for voltage clamp
measurements of K* channel currents, comprising
10 mM KCl and 5 mM MES, titrated to pH 6.1 with
Ca(OH), ([Ca®"] =1 mM).

o Recording Buffer 2 (RB2) for voltage clamp
measurements of the Cl'/anion channel currents,
comprising 15 mM TEA-C], 15 mM CsCl and 5 mM
MES, titrated to pH 6.1 with Ca(OH),([Ca**] = 1 mM).

Equipment

e Environment-controlled growth room
Refrigerator for stratifying seeds at 4°C

e Narashige PD5 multi-purpose microelectrode puller
or equivalent, modified for multibarrelled
microelectrodes [9].

e High-impedance (>10'" Q), multi-channel voltage
clamp amplifiers and probes [8,9]

e Desktop computer and data acquisition system [8,9]

e Light microscope with a total magnification at least
400x or higher
12-volt battery for DC power to supply microscope
Huxley-type micromanipulator with carrier (see
below) incorporating light-weight micropositioner
(e.g. Narishige C2-type micromanipulator)

e Faraday cage

e Anti-vibration table

e Gravity-feed system for switching between
experimental solutions [9]

e Optically clear and pressure-sensitive silicone
adhesive [8,9,12]

e Fine-tipped forceps, dressing forceps and razor
blades

e Glass capillaries for double-barrelled
microelectrodes [9]

e Two-ml polypropylene pipettes, silicon rubber and
0.5-mm diameter Ag wire for halfcells (see [9] and
below)

Protocol

Key steps for growing Arabidopsis plants and selecting
guard cells for voltage clamp

Growth history has an appreciable impact on stable
voltage clamp recordings in Arabidopsis guard cells.
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1. Pretreat compost with Intercept 70WG
(Scotts, Ipswich, UK), a systemic insecticide.

2. Sow seeds onto the nutrient-rich Levington F2+S 3
compost (Coulders, Glasgow, UK) in 60 mm pots
covered with polyester mesh (Remnant Kings,
Glasgow, UK Figure 1A) to avoid soil contact of the
abaxial leaf surface and soil-borne stress factors.

3. Stratify seeds at 4°C, once sown, for 48 hours and
leave the seed to germinate under a plastic lid
(>95% RH) for one week.

4. Cultivate plants in a controlled environment
growth room under long day conditions with
100 pmol m™ s light and a light/dark cycle of
16 h/8 h, 22/18°C, and 55/70% RH. Evenly and
regularly water plants from below.

5. Transfer pots after one week to propagators. We use
propagators with NITEX mesh fabric (mesh opening
200 pm diameter; Sefar, Heiden, Switzerland) over
the sides of the covers to permit free air exchange
while keeping out insects.

6. In preparation for experiments excise either the 5™
or 6™ true leaf of three-week-old plants; these leaves
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display an elliptical shape and are more serrated
compared to the older leaves. NOTE: There is a
correlation between stomatal responsiveness and
stomatal age, the most responsive stomata often occur
on leaves with higher stomatal densities, many
stomatal primordia and smaller epidermal cells
(Figure 1B and C). Successful impalements yield
similar currents under voltage clamp when recorded
from guard cells of plants grown under long- and
short-day conditions. Nonetheless, we favour plants
grown under long days, as growth under short days
gives lower stomatal densities (Figure 1D).

7. Pretreat the glass of the measuring chamber, coating
it with Dow-Corning silicon prosthetic adhesive
(Factor II, Tucson, USA; see [9]). NOTE: Silicon
adhesive is pressure-sensitive and optically clear. Once
dried, it remains useable for many weeks, even under
water. However, the solvent used in the adhesive must
evaporate before use or it will kill the cells.

8. Excise the epidermis of the leaf by wrapping the leaf
over a finger, adaxial side down, cut into the
mesophyll near the base of the mid-vein with

N
o
o

200 - -

150 1

Stomatal Density [nm?2]
=)
o

LD SD

g

Figure 1 Growth and selection of Arabidopsis guard cells on epidermal peels. (A) Rosette of a plant after 19-d growth at the stage from
which epidermal peels were taken for impalements. Plants were grown in individual flower pots, covered with a polyester mesh. True leaves are
numbered in order of their appearance. Scale bar, 1 cm. (B, C) Epidermal peels taken from plants grown under long- and short-day periods,
respectively. Note the higher density of stomata and the smaller size of the epidermal cells in (B). Scale bars, 30 um. Arrows in (B) indicate
examples of guard cell pairs favoured for impalement (D) Stomatal densities of plants grown under long-day (LD) and short-day (SD) (n=46).

The significance level is indicated with asterisks (P <0.01).
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forceps, and lift the abaxial epidermis away from the
mid vein towards the leave margin. Gently replace
peel against the mesophyll, keeping a gentle tension
to avoid folds, then cut at the end of the peel near
the leaf margin using a fresh (sharp) razor blade.
NOTE: It is often easier to peel away the epidermis
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leaf. Ideally, epidermal peels should be free from
wrinkles, folds, dirt and, once mounted, air bubbles.
Successful impalements are best obtained from open
stomata with young guard cells (arrows, Figure 1B), as
judged by the thickness of the stomatal lip and squat
shape of the guard cells.

9. Press the abaxial side of the leaf with the excised
epidermal peel gently onto the prosthetic adhesive

some minutes after excision when the leaf is less
turgid, and to work from the petiole to the apex of the

A
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Figure 2 Mechanical improvements for Arabidopsis guard cell impalement. (A) Double-barrelled microelectrodes pulled with settings for
Vicia (above) and for Arabidopsis (below), in the latter case showing a 1-1.5° taper to the final 10 um of the tip. The extreme tips of both
microelectrodes are below the resolution of the light microscope. Scale bars, 10 um. (B) A custom-built brace with a fixed clamp (fc) for one
amplifier headstage and a second, adjustable clamp (ac) provided by a Narashige C2 micromanipulator. The entire brace is fixed to the lateral,
rack-and-pinion coarse movement of a Huxley-type micromanipulator visible behind. Scale bar, 1 cm. (C) Halfcells of the Ag|AgCI-KCl type
constructed (left) using 0.5 mm diameter Ag wire soldered to a 2-mm diameter socket threaded in a PTFE sleeve and fitted with silicon and glass
tubing, and (right) using 0.5 mm diameter Ag wire soldered to a 2-mm diameter socket and press-fit with a silicon plug behind the tip segment
of a 2-ml graduated polypropylene pipette tip. Scale bar, T cm. When backfilled with KCl electrolyte, the halfcells weigh 5.5 g (left) and 0.6 g
(right). For general details of halfcell construction, see [9].
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Table 1 Effect of pretreatment with opening buffer (OB) on stomatal aperture in all Arabidopsis lines Col-0, nialnia2,

QC3, QL3, kc1-3, syp121, syp121ox, and dhar1-3

Average of 8 lines Col-0

nialnia2 QC3

Aperture (um)  Control Pretreatment Control

Pretreatment

Control Pretreatment  Control Pretreatment

lkexperiments 2.95+0.04 (150) 3.22+0.09* (99)

lanion €Xperiments  2.894+0.06 (84)

3.05+0.07 (79) 3.55+0.15** (39) 241+0.11 (12) 2.87+0.09* (58)
348+0.09%* (74) 2.89+0.06 (28) 345£0.13** (30) 2.47+0.11 (23) 3.00£0.12** (25) 3.17+0.09 (33) 3.83+0.16** (19)

3.12+0.09 (46) 3.63+0.15** (15)

Data are means + SE of (n) experiments.

* P <0.05; *P <0.01 as compared with control. Arabidopsis lines and mutants as indicated: the nitrate reductase null mutant nial-1/nia2-5 (nial/nia2) [58,59] and
ABA-receptor quadruple mutant pyr1/pyl1/pyl2/pyl4 (QC3 and QL3) [60], the vesicle trafficking mutant syp121 (=syr1/penT) and the syp1271ox over expression line
[53], the dehydroascobate reductase mutant (dhar1-3) [62], and K* channel mutant kc7-2 [53]. All lines were in the Arabidopsis Columbia-0 (Col-0) background

except QL3, which was in the Landsberg (Ler) background.

NOTE: Stomatal apertures were measured in epidermal peels of young leaves from three to five weeks old Arabidopsis plants. All operations were carried out on an
Axiovert 135 fitted with Nomarski Differential Interference Contrast optics and an AxioCam digital camera system (Zeiss, Jena, Germany). All measurements were
conducted in continuous flowing solutions. For measurements of apertures, 8-12 stomata were selected and their images recorded at 5-min intervals for subsequent
analysis using Image J v.1.42 (http://rsbweb.nih.gov/ij/). Apertures and dimensions of impaled guard cells were determined using a calibrated eyepiece micrometer and

cell volumes calculated assuming a spheroid geometry.

coating of the measuring chamber glass. Remove the
remaining leaf tissue and cover the epidermal peel
immediately with OB to prevent it drying.

Key steps for pulling microelectrodes

The volume of an Arabidopsis guard cell is typically 10-
15% that of Vicia and tobacco guard cells. Thus, micro-
electrodes with input resistances near 100 MQ when
filled with 200 mM K*-Ac, such as have been used in
the past [13,34], are not suitable and generally give a low
rate of success and a high leak conductance with little
evidence of selective transport activity.

1. Pull microelectrodes to give tip resistances of 300—
500 MQ when filled with 200 mM K*-Ac.

2. For double-barrelled microelectrodes with the higher
input resistances (and correspondingly lower
electrolyte leakage rates), pull double-barrelled
microelectrodes, after twisting 360° [9], using
settings to give a pull time around 25 s. NOTE: We
use settings similar to those used for Vicia and
tobacco guard cells [34], but with the coil heat
elevated to give pull times roughly 25% less than used
for Vicia guard cells. The resulting microelectrodes
have 1.8-2.0 cm-long shanks and tips that tapered
with a 1-1.5° angle (Figure 2A).

3. Store microelectrodes in a glass desiccator and coat
microelectrodes with paraffin before impalement for
reducing capacitance [8,9,12].

Key steps for impaling Arabidopsis guard cells

Before starting

Electrical recordings using double-barrelled microelec-
trodes are carried out largely as described previously
[12,35] with some modifications. For K* currents, micro-
electrode barrels are filled with 200 mM K*-Acetate, pH
7.5, to minimise interference from the anion current and
recordings are carried out in continuously-flowing RB1;
for measurements of anion current, both electrode bar-
rels are filled with 200 mM CsCl and the cells bathed in
flowing RB2. Currents recorded under voltage clamp are
normalised to the surface area of the impaled guard cells
and, for K" channel analysis, are corrected for back-
ground (instantaneous) currents as described previously
[12,35] using Henry’s EP suite software (Y-Science,
University of Glasgow, UK). NOTE: The typical length
and radius of Arabidopsis guard cells are 20 and
5 um, respectively. For the data summarised in the
Tables, these parameters were 22+0.6 um’ and
4+ 0.1 pum, respectively. Assuming a spheroid geometry,
the mean guard cell surface area and volume were
468 + 12 ym® and 783 + 21 um?®, respectively.

An essential prerequisite is the use of a stable microelec-
trode mount that can accommodate two amplifier head-
stages and halfcells with a minimum of mechanical
relaxation over time. We have adapted a Huxley-type
micromanipulator with a custom-machined aluminium
brace that supports positioning clamps (Narashige, C2-type)

Table 2 Effect of pre-treatment with opening buffer (OB) on seal lasting time of guard cells from all Arabidopsis lines
Col-0, nialnia2, QC3, QL3, kc1-3, syp121, syp121ox, and dhar1-3

Average of 8 lines Col-0

nialnia2 Qc

Time (min) Control Pretreatment Control

Pretreatment Control

Pretreatment Control Pretreatment

Ik HA cm Zexperiments

lanion MA cmM™ experiments  19.1+3.6 (45)

212440 (179) 344+£38* (49) 19.2+1.5 (72) 36.8£3.1%* (14) 18.6+2.6 (7)
35.0+4.6% (29) 19.14£3.2 (12) 283+4.9%(9)

337£2.7% (34) 28.8+3.6 (45) 40.0+6.8% (12)
170435 (15) 37.5+52* (12) 22.743.2 (13) 52.0+14.2** (5)

All the experiments lasted less than 10 min are discarded. Data are means + SE of (n) experiments.

* P <0.05; **P <0.01 as compared with control.
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Table 3 Analysis of maximal conductance (gmax), gating charge (8), half maximal voltage (V;,;) of Ik, and I ot for the
Arabidopsis lines Col-0, niaTnia2, QC3, QL3, kc1-3, syp121, syp1210x, and dhar1-3 in both opening and non-condition

Channel Parameters Average of 8 lines Col-0 nialnia2 QC3
Control Pretreatment Control Pretreatment Control Pretreatment Control Pretreatment
Ikin Imax(MS €M) 2340.1(103)  2.0+0.2(67) 2240.2(26) 2.6+0.2%(15) 03+0.1(10)  09+£0.1*%(36) ~ 3.4+03(21)  3.2£0.2(13)
o 2.240.1(103) 1.9+£0.1%(67) 24+0.1(26) 2.0£0.1*(15) 1.1£02(10)  1.940.1**(36)  2.1+0.2(21) 1.9+0.2(13)
V4,5(mV) -186+2.1(103) -182+1.6(67) -185+£3(26) -182+2(15) -180+£10(10)  -179+2.5(36) -185+4.3(21) 188+2.6(13)
Ik out Imax(MS €M) 3.040.1(103)  3.5+0.1%(67) 2610.2(26) 3.8+06*%(15)  2.7£03(10)  3.6+0.2%(36) 39+03(21)  3.5+03(13)
o 1.6+0.1(103) 1.6+0.1(67) 1.8+0.126) 1.6+0.1(15) 1.5£0.1(10)  1.5+0.1(36) 1.5+£0.2(21) 1.5+0.2(13)
V4,5(mV) 09+1.7(103)  -3.6+1.7(67) 6.0+2.6(26) 04+2.3(15) -10+4.6(10)  -24+2.4(36) -4.1+£4.1(21)  -65+5.7(13)

Data are means + SE of (n) experiments.
* P<0.05; **P <0.01 as compared with control.

to stabilise paired amplifier headstages (Figure 2). Addition-
ally, connections between the headstages and microelec-
trode barrels are made using Ag-AgCl|KCl halfcells similar
to those described previously [9], but constructed around
the light-weight polypropylene tubing from the tips of dis-
posable 2-ml pipettes, which is essential to provide mechan-
ical stability for long-term recordings (Figure 2).

1. Carry out impalement by first positioning the
microelectrode to rest over one guard cell and
present the tip across the stomatal pore before
advancing along the axis of the microelectrode to
impale the second guard cell. NOTE: The initial
movement of the microelectrode towards the guard cell
requires very gentle manipulation. A ‘snapping’ of the
tip through the cell wall and into the guard cell should
occur together with an increase in input resistance to
approximately 1 GQ and decrease (more negative) in
membrane potential (see Additional file 1: Table S1).

2. Wait 2-3 min for a seal to stabilize after impalement.
NOTE: As with Vicia guard cells [34], successful
impalements show an increase in input resistance and
membrane voltage over 2—-3 minutes. Impalements
carried out in RB1 buffer, but with 0.1 mM KCI, will
give much larger changes in voltage as the
microelectrode seals into the cell. For purposes of the
comparisons below, we allowed recordings to stabilise

under free-running conditions for 10 minutes before
collecting voltage clamp data.

3. Switch to the RB1 or RB2 for K" and anion currents
measurements, respectively, using a gravity-fed system.

Comments

Buffer pretreatment and recording stability

Impalements are easier to achieve, and can be held for
longer time when epidermal peels are pretreated with
OB similar to that used by Allen et al. [36]. For compari-
son, the data in Tables 1, 2, 3, 4 and Additional file 1:
Table S1 summarise measurements from the guard cells
of 407 stomata, including measurements of stomatal
aperture, free-running membrane voltage, inward- and
outward-rectifying K* currents, Iy, and Iy . respectively,
and in separate experiments of anion current, I, The
data sets include measurements with and without OB pre-
treatment and show that stomata across all the lines tested
were significantly more open (P <0.05) following OB pre-
treatment: mean apertures following OB treatments were
3.22£0.09 and 3.48 £ 0.09 um at the start of measurements
in RB1 and RB2, respectively, compared to 2.95 + 0.04 and
2.89+0.06 um without OB pretreatment (see Table 1).
Most important, the comparison shows that OB pretreat-
ment greatly extends the time over which impalements
can be held. Stable current recordings were extended by
62% and 83% for K" and anion current studies, respectively

Table 4 Effect of pre-treatment with opening buffer (OB) on the ‘rundown’ of Ix;, and lx ., in Arabidopsis guard cells

of Col-0, nialnia2 and QC3

Channel Current Col-0 nialnia2 QC3
(A cm™) : - - - - -
10 min 30 min 10 min 30 min 10 min 30 min
lkin Control -484.1 £185.6 -6.43 +3.3** -118.7430.2 -1.2£10.3%* -413.8+142.1 -8.1£0.3%*
Pretreatment -586.3 +40.7 -431.9+75.2 -223.0 +49.5 -247.1+54.8 -602.1+1124 -543.2+44.3
Ik out Control 5982 £89.0 145.29+36.0** 527.9490.1 71.2£104% 591241111 1684+119.5%*
Prereatment 901.0 £271.5 921.64 +2364 698.8 +147.2 669.9+174.9 741341988 7323+127.0

Data are means + SE from the analysis of >5 experiments extending over 60 min or more in each case.

**P <0.01 as compared with control.
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Figure 3 I, and I o, of wild-type (A), niatnia2 (B), and QC3
(C) mutant Arabidopsis guard cells following pretreatment with
opening buffer (OB). (A) Steady-state current-voltage curves for I
in and lx oyt from one guard cell of wild-type Arabidopsis recorded at
intervals over 30 min after 2-h OB pretreatment. Shown are data for
voltage clamp scans taken at 10 (closed circles), 20 (open circles),
and 30 min (closed triangles) after impalement. Clamp scans were
from a holding voltage of =100 mV with tail steps to =100 mV. Test
voltage steps were to voltages between —80 and +50 mV for Ix ot
and to voltages between =100 and —240 mV for ly;,. Current—
voltage curves were fitted jointly to a Boltzmann function (solid
lines) and yielding values for grmay of 3.8 and 6.3 uS cm™, V; 5, of
—181 and +1 mV, and 6 of 1.9 and 1.8 for lx;, and lx oy, respectively.
Insets: Current traces for time points at 30 min. Scale: 500 pA cm™
vertical, 2 s horizontal. (B) Steady-state current-voltage curves for g
in and lx oy from one guard cell of nialnia2 mutant Arabidopsis
recorded at intervals over 30 min after 2-h OB pretreatment. Shown
are data for voltage clamp scans taken at 10 (closed circles), 20
(open circles), and 30 min (closed triangles) after impalement. Clamp
voltage scans as above. Current-voltage curves were fitted jointly to
a Boltzmann function (solid lines) and yielding values for g, of 0.9
and 6.1 pS cm™, V5, of =178 and +5 mV, and &, of 1.8 and 1.8 for
lkin and Ik our respectively. (C) Steady-state current-voltage curves for
Ikin and lgoue from one guard cell of nialnia2 mutant Arabidopsis
recorded at intervals over 60 min after 2-h OB pretreatment. Shown
are data for voltage clamp scans taken at 10 (closed circles), 20
(open circles), and 30 (closed triangles) 40 (open triangles), 50
(closed squares) and 60 (open squares) min after impalement. Clamp
voltage scans as above. Current-voltage curves were fitted jointly to
a Boltzmann function (solid lines) and yielding values for gyax of 4.1
and 4.6 pS cm™, V5, -182 and =7 mV, and &, of 1.7 and 1.9 for lkin
and Ix oy respectively. NOTE: Data analysis and curve fittings were
carried out using SigmaPlot 11 (Systat Software, Inc, USA) and are
reported, where appropriate, as means + SE of n observations. Where
appropriate significance was determined using Students’ T-test. Gating
characteristics for Iy, and lx .. were determined by fitting steady-state
current-voltage curves to Eqn. (1) using non-linear, least-squares
minimisation and the Marquardt-Levenberg algorithm [39].

— to periods often in excess of one hour — compared with
experiments in which guard cells were impaled immedi-
ately after peeling and mounting (see Table 2). The
capacity to extend electrical recordings over this time scale
ensures that experimental challenges such as exposures to
hormones and different environmental parameters (for
example CO,, light, Ca** and other ion concentrations)
can be carried out on a cell-by-cell basis in Arabidopsis
guard cells much as was pioneered in guard cells of Vicia
and tobacco [12,13,35,37,38]. In effect, work over these
timescales enables the use of each cell as its own control.
The following summaries are provided in conjunction with
the tabulated data.

K* channel currents

Out of 275 independent experiments with measure-
ments of the K" currents 88% showed Iy, activity and
100% yielded Ik, activity as judged by the current
activation kinetics, voltage dependencies and block by
Cs* and TEA" (not shown, see Roelfsema and Prins
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Figure 4 Decay in lg;, and lx oy from guard cells of wild-type Arabidopsis plants without (no pretreatment) and with opening buffer
pretreatment (pretreatment)Decay in Ik, and lx 0. from guard cells of wild-type Arabidopsis plants without (no pretreatment) and
with opening buffer pretreatment (pretreatment). Voltage clamp scans were carried out at intervals following impalements. Raw current
traces are shown in for scans at 10, 20, and 30 min time points from two guard cells for I o (A) and lg;, (C). Scale: vertical, 500 pA cam’
horizontal, 2 s. Clamp scans were from a holding voltage of =100 mV with tail steps to =100 mV. Test voltage steps were to voltages between
—80 and +50 mV for I, and to voltages between =100 and —240 mV for l;,. Data in (B) summarise the two current amplitude means + SE
(filled circles, no pretreatment; open circles, pretreatment) from 12 independent experiments with I, determined at +40 mV and Iy,
determined at —220 mV. Note that currents recorded from guard cells in control experiments without OB pretreatment generally decayed with
halftimes of 15-20 min.

no pretreatment

[26,27], Forestier et al. [28] and Blatt et al. [38]). Guard
cells pretreated with OB showed appreciably greater sta-
bility in both Ii;, and Ik o, over extended time periods
compared with guard cells impaled without pretreatment
(Figures 3, 4 and Tables 3 and 4). Mean Iy, and I oy
amplitudes of all of the lines tested at 30 min, for ex-
ample, decayed to less than 2% and 22%, respectively, of
the initial amplitudes recorded 10 min after impalements

For quantitative comparisons, the steady-state kinetic
characteristics for the K™ currents were fitted either in-
dividually or jointly to a Boltzmann function of the
form

o gmax(V_EK)
= (14 exp(-8(Vi/2-V)F/RT) v

in guard cells without OB pretreatment (see also [26]).
By contrast, the K" currents showed less than a 5%
change in amplitude over the same time period when
guard cells were first pretreated in OB.

where Eyg is the equilibrium voltage for K* across the
membrane, g.. is the maximum ensemble conduct-
ance for the channels, § is the voltage sensitivity coef-
ficient or gating charge and V,, is the voltage at
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Figure 5 Effect of pre-treatment with opening buffer (OB) on
Lanion in wild-type Arabidopsis. Steady-state current-voltage curves
for lanion from one guard cell recorded after 2-h pretreatment with
OB. Current-voltage curves for |,nion are not corrected for
background. Rundown in this cell was evident only after 65 min.
Data shown are taken from voltage clamp scans at 10 (closed
circles), 20 (open circles), and 30 (inverted closed triangles) and

40 min (open triangles) after the impalement. Conditioning voltage
was +50 mV with 10-s steps to voltages between +50 mV and
—220 mV. Inset: Raw current traces for recordings at 10, 20 and

30 min cross-referenced by symbol. Scale: vertical, 300 pA cm’?
horizontal, 5 s.

which the ensemble conductance equals g../2. Both
approaches yielded parameter values that are statisti-
cally indistinguishable (Table 3) and are similar to
those obtained previously for Arabidopsis as well as
Vicia and tobacco guard cells [13,24,26-28,37,40].
Comparisons of the intrinsic gating characteristics for
the different Arabidopsis lines and the overall means
showed that OB pretreatment had no substantive effect
on either § or Vi, (see also Figure 3). Values for g,
for I o showed a significant increase in both the wild-
type and nialnia2 mutant lines, whereas gu.. was
largely unaffected in the QC3 mutant line (Table 3).
These activities were reflected also in differences in the
free-running membrane voltages (see Additional file 1:
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Table S1). We note, too, a close similarity in the gating
parameters § and Vy,, between all of the lines, with the
exception of the syp121 and nialnia2 mutants for which
the genetic deletions are expected to affect channel gat-
ing or K" nutrition and balance [31]. Overall, these
results confirm that the underlying gating properties for
the two classes of K channels were unaffected, at least
during the first hour after impalements.

Anion current

To date, only Forestier et al. [28] reported I,;0, in intact
Arabidopsis stomatal guard cells, although components
of Inon have been identified with the SLACI and
ALMTI2 gene products [41-44]. We recorded I, in
over 95% of cases from 158 guard cells in RB2 with
current similar to past measurements from Arabidopsis,
Vicia and tobacco [28,35,40]. The mean membrane volt-
age of —-9.9+1.6 mV in RB2 was also comparable to
those recorded in these previous studies. We found no
appreciable difference between guard cells with or with-
out OB pretreatment (Additonal file 1: Table S1) but,
again, pretreatment prolonged the timeframe for I ,ion
recordings and experiments frequently extended over
periods of one hour (Table 2 and Figure 5). Thus OB
pretreatment improved the stability of I,,;,, recordings
much as it did for those of Ik ;, and Iy oyt

Summary

Three key factors are essential for successful, two-elec-
trode, voltage clamp recordings with Arabidopsis guard
cells. First, the preparation and handling of the plants
is important, incorporating a pretreatment regime with
a stomatal opening buffer prior to the start of experi-
ments; second, microelectrode design must meet the
demands for impalements of very small cells, notably
in the use of fine tips with input resistances roughly
5-fold higher than typically used for Vicia and tobacco
guard cells; finally, a modified clamp and brace to
carry the amplifier headstages and construction of
light-weight, but rigid halfcells are essential prerequi-
sites to provide stability without mechanical relaxation
for long-term recordings. Overall, this combination of
factors is sufficient to achieve measurements compar-
able to those with the much larger guard cells of Vicia
and tobacco. These methods should now greatly speed
the analysis of many mutants of Arabidopsis by simpli-
tying electrophysiological studies of the guard cells.

Additional file

Additional file 1: Table S1. Effect of pre-treatment with opening buffer
(OB) on guard cell membrane potential (E,) in all Arabidopsis lines Col-0,
nialnia2, QC3, QL3, kc1-3, sypi121, syp1210x, and dharl-3. Data are means
+SE of (n) experiments.
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