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PLANT METHODS

Comparative evaluation of extraction methods for
apoplastic proteins from maize leaves

Katja Witzel"*, Muhammad Shahzad', Andrea Matros®, Hans-Peter Mock? and Karl H Muihling"”

Abstract

Proteins in the plant apoplast are essential for many physiological processes. We have analysed and compared six
different infiltration solutions for proteins contained in the apoplast to recognize the most suitable method for
leaves and to establish proteome maps for each extraction. The efficiency of protocols was evaluated by
comparing the protein patterns resolved by 1-DE and 2-DE, and revealed distinct characteristics for each infiltration
solution. Nano-LC-ESI-Q-TOF MS analysis of all fractions was applied to cover all proteins differentially extracted by
infiltration solutions and led to the identification of 328 proteins in total in apoplast preparations. The predicted
subcellular protein localisation distinguished the examined infiltration solutions in those with high or low amounts
of intracellular protein contaminations, and with high or low quantities of secreted proteins. All tested infiltration
solution extracted different subsets of proteins, and those implications on apoplast-specific studies are discussed.
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Background

The plant apoplast comprises the cell wall matrix and
the intercellular spaces, and plays a major role in a wide
range of physiological processes, including water and
nutrient transport [1], plant-pathogen interactions, and
perception and transduction of environmental signals
[2,3]. Proteins present in the plant apoplast reflect this
broad functional diversity. Studies on the dynamic
change of apoplast protein composition revealed new
insights into plant responses to abiotic stress [4-7],
nutrient supply [8-10], wounding [11], water deficiency
[12,13], pathogen response [14-16] and xylem composi-
tion [17,18]. The selection of a suitable extraction proto-
col is a crucial step in proteomics surveys as proteins
reveal a high degree of biochemical heterogeneity and
investigated plant materials can be characterized by the
presence of non-protein components interfering with
subsequent analytical techniques, e.g. two-dimensional
gel electrophoresis (2-DE) or liquid chromatography-
mass spectrometry (LC-MS). These biological realities
led to the establishment of sample preparation methods
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for numerous plant species and tissues, such as Arabi-
dopsis leaves [19], papaya leaves [20], sunflower leaves
[21], cotton seedlings [22], apple and strawberry fruit
[23], potato tuber [24], grapevine leaves and roots [25],
grape berry cell wall [26], rubber latex [27], cotton fibers
[28], banana meristem [29] and chloroplast [30], among
others. Despite their biological significance, investiga-
tions on apoplastic proteins are hampered due to their
low abundance compared to intracellular protein con-
centrations. The extraction of proteins from the leaf and
root apoplast is mainly based on the principle of
vacuum infiltration with an extraction solution, followed
by a mild centrifugation step to collect the apoplastic
washing fluid. The composition of the infiltration solu-
tion is essential as it has to fulfil certain prerequisites,
such as maintenance of osmotic pressure to prevent col-
lapsing of plasma membrane and stringency for extract-
ing cell wall-bound proteins. Borderies et al. [31]
compared different solutions to extract loosely bound
cell wall proteins of Arabidopsis cell suspension cultures
and showed that the composition of extraction solution
determines the efficiency of preparation. Similarly, Bou-
dart et al. [32] investigated weakly cell wall-bound pro-
teins in rosettes of Arabidopsis. Here, we compared
protein extracts obtained by six different infiltration
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solutions already described for apoplastic proteins from
different plant species. We aimed at identifying a proto-
col most suitable for the extraction of leaf apoplast pro-
teins of maize, a crop of high economic importance. We
evaluated the protein patterns as resolved by 1-DE or 2-
DE, identified the proteins using LC-MS and located
them to cellular compartments.

Results and discussion
In this study, six different solutions were tested for the
ability to extract proteins from the maize leaf apoplast:
water [8], 20 mM ascorbic acid/20 mM CaCl, [6], 100
mM sorbitol [4], 25 mM Tris-HCI [9], 100 mM sodium
phosphate buffer [16] and 50 mM NacCl [33] (Figure 1).
In most cases, the infiltration solutions were applied for
wheat leaves and no comparison of the efficiency of pro-
tein extraction for each method was performed. Thus,
this study focussed on identifying the optimal method
for extracting apoplastic proteins from maize leaves.
Proteins from the leaf apoplast and symplast extracted
with the six infiltration solutions were compared on 1-
DE (Figure 2A, Additional file 1). A sharp band pattern
was obtained from all apoplast extracts with a high
number of protein bands in each extract. While the
yield of protein extraction was similar, the protein pro-
files showed distinct differences. A prominent band of
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about 20 kDa was present in extracts of 100 mM
sodium phosphate buffer, 25 mM Tris-HCI, 20 mM
ascorbic acid/20 mM CaCl, and 50 mM NaCl, but not
in water or 100 mM sorbitol. One protein band of high
molecular weight (approximately 100-130 kDa) was
apparent in extracts of water, 100 mM sodium phos-
phate buffer and 100 mM sorbitol, but not in 25 mM
Tris-HCI, 20 mM ascorbic acid/20 mM CaCl, or 50
mM NaCl. While there were similarities, each extract
revealed specific protein bands indicating that different
subsets of proteins were isolated by the six infiltration
solutions. Proteins with a molecular weight < 15 kDa
were underrepresented in all extracts and this corre-
sponds to previous proteomic reports on some of the
infiltration solutions [4,16]. The observed selective pro-
tein patterns generated by the individual infiltration
solutions emphasize the necessity of careful selection of
isolation method [34]. Band patterns from symplast pre-
parations did not reveal significant differences among
the infiltrates and the overall band patterns were more
complex as from apoplastic preparations. This demon-
strates an apparent subfractionation of the cellular
compartments.

Equal amounts of apoplast proteins were separated by 2-
DE to assess the protein patterns in more detail (Figure
2B). We found areas of good and poor resolved proteins
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Figure 1 Schematic representation of protein extraction from maize leaf apoplast. Different infiltration solutions were analyzed for their
specificity by proteome profiling using gel-based and gel-free approaches.
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Figure 2 Profiles of maize leaf protein extracts as resolved by 1-DE (A) and 2-DE (B). A: SDS-PAGE of apoplastic and symplastic proteins
extracted with water (i), 100 mM sodium phosphate buffer (i), 25 mM Tris-HCI (jii), 100 mM sorbitol (iv), 20 mM ascorbic acid/20 mM CaCl, (v)
or 50 mM NaCl (vi). A total of 10 pg protein per lane was loaded. B: 2-DE profiles of protein extracts from the maize leaf apoplast isoelectric
focussed on IPG 3-10 and visualized by Coomassie staining. A total of 25 ug protein per gel was loaded.

spots on all 2-D gels. Proteins in the acidic gel region of
pH 4-6 showed horizontal streaking. Although all samples
were precipitated, dissolved in urea-containing buffer sys-
tem and dialyzed prior to 2-DE to avoid the contamination
with nucleic acids or other interfering substances, these
poorly separated spots were observed. Contrary to this,
proteins in the basic region of 2-D gels near the pH 6-10
interval showed a superior resolution with minimal streak-
ing. The spot patterns resembled the band patterns to a
certain extent, e.g. as observed for the 20 kDa band that
was prominent also on 2-D gels of the respective apoplas-
tic extracts. The best resolution of proteins in 25-45 kDa
intervals was achieved on extracts of 20 mM ascorbic
acid/20 mM CacCl, infiltration solution, while high

molecular weight proteins separated best in extracts of
100 mM sodium phosphate buffer infiltration solution.
The latter was applied with success to extract proteins
from the leaf apoplast of lupin and resulted in the genera-
tion of well resolved protein maps containing about 50
spots to evaluate the effect of water and boron deficiency
[9]. Our results showed that this separation was not
reached, probably due to substances present in the maize
apoplast interfering with isoelectric focusing. As 2-DE did
not result in a comprehensible evaluation of the employed
infiltration solutions, we used nano-LC-ESI-Q-TOF MS
for proteomic analysis of all extracts.

In order to obtain an overview of all proteins present
in the six different extracts, we aimed at establishing
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qualitative protein profiles by LC-MS analysis. An auto-
matic data directed analysis mode was applied as
described in materials and methods section. Results
exceeding the PLGS score of 12 for protein identifica-
tion and probability score of 50% for de novo sequen-
cing of peptides were accepted.

A total of 328 proteins were identified from all

extracts. Additional file 2 shows the identities of those
proteins, along with the predicted subcellular localiza-
tion and detection in the six apoplastic extracts. Addi-
tional file 3 provides the respective identifier, PLGS
score, number of peptides, protein coverage, peptide
sequences and peptide sequence probability score for all
identified proteins. In order to visualize and identify
infiltration solutions with similar protein abundance pat-
terns, a hierarchical clustering method was applied. Two
main clusters were found, with the first represented by
the 100 mM sodium phosphate buffer and the second
containing all other infiltration solutions indicating the
isolation of a rather different set of proteins by the first
one than compared to all other solutions under exami-
nation (Figure 3). The most similar abundance patterns
derived from leaf infiltration with 25 mM Tris-HCI and
50 mM NaCl reflecting a comparable degree of protein
extraction efficiency.
The highest number of proteins was found in apoplastic
extracts using water as infiltration solution. Here, 171
proteins were detected. Extracts of 25 mM Tris-HCI,
100 mM sorbitol and 20 mM ascorbic acid/20 mM
CaCl, yielded in the identification of a similar number
of 131, 133 and 133 proteins, respectively. We found
114 proteins in extracts of 50 mM NaCl solution and
107 proteins in those of 100 mM sodium phosphate
buffer. Out of all 328 proteins, only 28 proteins were
common across all six extracts (Additional file 4). A
similar observation was made for Arabidopsis cell wall
proteins when extracted by different solutions; here,
only 11 out of 96 proteins were found to be common in
all extracts [31]. Exhydrolase II [UniProt: Q9XE93] was
found in all extracts and its identification is illustrated
in Additional file 5 as an example. Here, the amino acid
sequence is shown and the 12 detected peptides are
marked within, resulting in protein sequence coverage
of 28.7%.

The quality of apoplastic protein preparations is esti-
mated in many cases by enzymatic measurements of
specific proteins such as malate dehydrogenase [5,9] and
glucose-6-phosphate dehydrogenase [6]. However, it is
known that the activity of those enzymes is detectable
in respective cellular compartment as well [35]. To
assess the amount of symplast contaminations in our
samples, we used topology prediction tools. The identi-
fied proteins were classified for their subcellular localiza-
tion as deduced by Expasy tools Target P and WoLF
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PSORT (Figure 4). A number of proteins in this study
were allocated to other cellular compartments then the
apoplast, suggesting considerable amounts of intracellu-
lar protein contaminations. However, previous reports
using different plant species and extraction methods
described the detection of cytosolic, mitochondrial or
vacuolar proteins in cell wall or apoplast preparations
[31,36-38]. These consistent findings point to the occur-
rence of non-classical secretory pathways for proteins
lacking signal sequences [39,40] and therefore, differen-
tiation between yet unknown apoplastic proteins and
ones resident in other organelles remains difficult.
Water-infiltrated leaves revealed 23 protein identifica-
tions localized to the apoplast, while a high number of
intracellular proteins were detected from the vacuole
(19), cytosol (46) and chloroplast (23). This observation
is indicative for the disrupture of plasma membrane
during the infiltration process. Also, apoplastic extracts
with 100 mM sorbitol as infiltration solution contained
a superior proportion of chloroplast (26) and cytosolic
(41) proteins with only 15 predicted apoplastic proteins.
This result was unexpected as the sugar alcohol sorbitol
was applied to maintain the osmotic cell pressure. Simi-
lar numbers of proteins in infiltrates with 25 mM Tris-
HCl, 20 mM ascorbic acid/20 mM CaCl, and 50 mM
NaCl were assigned to the chloroplast (14, 17, 14), the
cytosol (36, 34, 27), and the apoplast (25, 31, 25). Of all
tested infiltration solutions, 100 mM sodium phosphate
buffer contained the lowest number of proteins assigned
to intracellular compartments (chloroplast: 10, cytosol:
16) and the highest number of proteins targeted to the
extracellular apoplast with 34 identified proteins.

Table 1 presents the 67 proteins allocated to the apo-
plast of maize leaves and grouped according to their
function into 7 classes. The largest class consisted of 39
proteins related to cell structural processes, including
carbohydrate metabolism (e.g.: lichenase 2, alpha N-ara-
binofuranosidase, beta galactosidase, exoglucanase,
exhydrolase II) and cell wall modification (e.g.; pectines-
terase, xyloglucan endotransglycosylase hydrolase, per-
oxidases). Synthesis and integration of polysaccharides
into the cell wall and extension of this network during
plant growth are the major biological functions of pro-
teins present in the apoplast [41] and our findings
reflect this reality. Fifteen proteins were involved in dis-
ease and defense reactions, the second prime function
of the apoplast [42]. The third class was related to pro-
teins with transporting function and here, 7 proteins
were identified. Further classes were related to cell
growth/division, protein destination/storage, secondary
metabolism and signal transduction.

The number of proteins identified exclusively in any
of the extracts was compared and revealed that 16 out
of 34 apoplastic proteins were found only in extracts of
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Figure 3 Hierarchical clustering analysis of protein abundance patterns. Columns represent LC-MS experiments on protein extracts of
indicated infiltration solutions. Rows display the presence (yellow) or absence (black) of proteins in the respective extracts. Additional file 2
provides protein identifications and their detection in the respective apoplast extracts.

100 mM sodium phosphate buffer, representing the
highest number of unique proteins in all tested infiltra-
tion solutions (Table 1). Usage of this infiltration solu-
tion appears to prevent damaging the plasma membrane
and enables extraction of proteins adhesive to the cell
wall. Most polypeptides found in the analysis were
annotated as hypothetical based on an in silico match to
a genome sequence, or putative due to a homology to a

protein with known function (Figure 4). The identifica-
tion of these proteins in apoplastic preparations reveals
the potential inherited in proteomic surveys for estab-
lishing comprehensive maps of all translated polypep-
tides present in a subcellular compartment. A number
of 12 proteins with unknown function were exclusively
identified using the 100 mM sodium phosphate buffer
infiltration solution (see Additional file 2). As this
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Figure 4 Predicted subcellular distribution of identified proteins from the maize leaf apoplast extracted by different infiltration
solutions. Topology prediction was performed with Expasy tools Target P (http://www.cbs.dtu.dk/services/TargetP/) and WolLF PSORT (http://

protein fraction performed best regarding contamina-
tions from other cellular compartments and contained
most of the apoplastic proteins, we assume that these
yet unknown proteins are involved in physiological pro-
cesses of the apoplast.

Conclusions

The plant apoplast is a dynamic compartment with a
broad range of physiological functions. To study pro-
teins involved in nutrition, growth, signaling or trans-
port processes, it is crucial to apply extraction methods
selective for apoplastic proteins. In this study, we com-
pared six different infiltration solutions already reported
for the isolation of this protein subset. The protein pat-
terns resolved by 1-DE revealed clear differences
between apoplast and symplast preparations. We found
the lowest number of intracellular protein contaminants
with the highest number of extracted proteins present
in the apoplastic fluid obtained with 100 mM sodium
phosphate buffer. Also, the number of secreted proteins

exclusively found in a single fraction was highest for
that buffer. Those findings are now employed in com-
parative proteomic studies aiming at identifying proteins
involved in abiotic stress responses.

Materials and methods

Plant cultivation

Maize grains cv. Lector (LG Seeds, http://www.Igseeds.
com) were imbibed overnight in aerated 1 mM CaSO,
solution and germinated at 28°C in the dark between
two layers of filter paper moistened with 0.5 mM
CaSO,. After 4 days, seedlings were transferred to light
in constantly aerated plastic pots containing one-fourth
concentrated nutrient solution. The concentration of
nutrient solution was increased to half and full strength
after 2 and 4 days of cultivation, respectively. The full
strength nutrient solution had the following concentra-
tions: 2.0 mM Ca(NOs3),, 1.0 mM K,SO,, 0.2 mM
KH,PO,4, 0.5 mM MgSO,, 2.0 mM CaCl,, 5.0 pM
H3BOs3, 2.0 pM MnSOQOy, 0.5 pM ZnSOy, 0.3 pM CuSOy,
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Table 1 Identification of proteins assigned to the apoplast.

Infiltration solutions

Entry Description mW (Da) p! (pH) i ii iiii iv v vi
Cell growth and division

UniRef90_Q6ZDE3 Abscisic acid 8-hydroxylase 2, Oryza sativa 56519 9.83 X

Cell structure

UniRefo0_A5H454 Peroxidase 66, Zea maize 33398 8.02 X
UniRefo0_A5H8G4 Peroxidase 1, Zea maize 38330 6.89 X
UniRefo0_A5JTQ2 Alpha N arabinofuranosidase, Medicago varia 83673 6.22

UniRefo0_B4FKV6 Peroxidase 54, Zea maize 36178 495 X
UniRef90_B5AK47 Dhurrinase-like B glucosidase, Zea maize 64233 7.95 X

UniRefo90_B6SMR2 Peroxidase 52, Zea mays 33504 8.14 X X X
UniRef90_B6SUH6 Non-cyanogenic beta glucosidase, Zea mays 56680 539 X X X
UniRefo0_B6SXU7 Heparanase-like protein 3, Zea maize 58262 9.35 X X X X
UniRef90_B6SXY3 Beta galactosidase, Zea mays 48728 838

UniRefo0_B6T391 Lichenase 2, Zea mays 34951 5.64 X X X X
UniRef90_B6T9B9 Alpha N arabinofuranosidase, Zea mays 74827 504 X X X
UniRef90_B6TU39 Peroxidase 2, Zea maize 34941 467

UniRefo0_B6TU78 Glucan endo-1-3 beta glucosidase 7, Zea maize 45316 5.54 X

UniRef90_B6TXJ8 Glycoside hydrolase family 28, Zea maize 47066 5.58 X

UniRef90_B6U063 Carboxylic ester hydrolase, Zea mays 50032 7.85 X X X
UniRef90_B6UOW?2 Beta galactosidase, Zea maize 93935 648

UniRef90_B9SD68 Hydrolase, Ricinus communis 67825 6.80 X X

UniRef90_C4N559 Xyloglucan endotransglycosylase hydrolase, Musa acuminata 20309 9.54 X
UniRefo0_C5WQU7 Beta galactosidase, Sorghum bicolor 92893 531 X X X X
UniRefo90_C57534 Beta galactosidase, Sorghum bicolor 79098 7.74

UniRef90_004943 Alpha galactosidase, Hordeum vulgare 17730 6.33 X X X
UniRef90_P93518 PRm 3, Zea maize 30099 3.90 X X X X
UniRef90_Q10CU3 Glycosyl hydrolase family 3, Oryza sativa 43916 820 X X

UniRefo0_Q10M79 Alpha L arabinofuranosidase, Oryza sativa 73965 473 X
UniRefo0_Q10NX8 Beta galactosidase 6, Oryza sativa 92780 552 X

UniRef90_Q2R3E0 Glycosyl hydrolases family 38, Oryza sativa 114085 585 X
UniRefo0_Q2RAZ2 Alpha L arabinofuranosidase, Oryza sativa 73421 457 X X X X
UniRef90_Q43417 Peroxidase, Cenchrus ciliaris 32473 7.50 X
UniRefo0_Q53MP2 Beta D-xylosidase, Oryza sativa 82557 6.62

UniRef90_Q5CCP6 Beta galactosidase, Pyrus pyrifolia 94782 8.12

UniRefo0_Q5I3F3 Peroxidase 5, Triticum monococcum 27533 572

UniRef90_Q6L619 Beta galactosidase, Raphanus sativus 92580 8.36 X X
UniRef90_Q7G3T8 Beta galactosidase 13, Oryza sativa 91940 6.06

UniRefo90_Q8GUY1 Pectinesterase, Lolium perenne 24837 781

UniRefo0_Q8RUV9 Beta galactosidase 1, Oryza sativa 91652 5.71

UniRefo0_QOFXT4 Alpha galactosidase, Oryza sativa 45792 791 X X
UniRef90_Q9LLB8 Exoglucanase, Zea mays 66900 6.99 X X X
UniRef90_Q9XE93 Exhydrolase Il, Zea mays 68330 6.16 X X X X
UniRef90_Q9XEI3 Beta D-glucan exohydrolase isoenzyme, Hordeum vulgare 67862 6.24 X

Disease and defence

UniRef100_P25272 Kunitz-type trypsin inhibitor 1, Glycine max 22531 4.77 X

UniRefo0_A71ZL3 Invertase inhibitor, Coffea canephora 20205 6.68

UniRef90_B6TA80 Thaumatin-like protein, Zea mays 17632 6.75 X
UniRef90_B6TDW?7 Secretory protein, Zea mays 24467 4.64 X
UniRefo0_B6TTO0 Endochitinase PR4, Zea maize 28545 496 X X
UniRefo0_B6TTY1 Germin-like protein, Zea maize 26764 7.25 X X X X
UniRef90_B6TWH6 Lysosomal Pro x carboxypeptidase, Zea mays 59936 562 X X X
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Table 1 Identification of proteins assigned to the apoplast. (Continued)

UniRefo0_B6UB57
UniRefo0_024007
UniRef90_P01063
UniRef90_P29022
UniRef90_Q5U159
UniRefo0_Q6EUST
UniRefo0_Q6TM44
UniRef90_Q7M1R1
Protein destination and storage
UniRef90_B6TG95
UniRef90_B6TYX7
Secondary metabolism
UniRef90_064411
Signal transduction
UniRef90_B6TWC3
UniRef90_BOMZ47
Transporters
UniRef90_B4FB54
UniRef90_B6SP11
UniRef90_B6SY96
UniRef90_B6TRB2
UniRef90_P05046
UniRef90_P19656
UniRef90_Q04672

Lysosomal protective protein, Zea maize

Chitinase, Oryza sativa

Endochitinase A, Zea maize

Class Il peroxidase 14, Oryza sativa
Class Il peroxidase 27, Oryza sativa
Germin-like protein, Zea mays
Chitinase, Gladiolus x gandavensis

Vignain, Zea mays
Polygalacturonase inhibitor 1, Zea mays

Polyamine oxidase, Zea mays

Rhicadhesin receptor, Zea mays
Fasciclin-like AGP 14 4 protein, Populus trichocarpa

Non-specific lipid transfer protein, Zea mays
Non-specific lipid transfer protein, Zea mays
Non-specific lipid transfer protein, Zea mays
Copper ion binding protein, Zea maize
Lectin, Glycine max

Non-specific lipid transfer protein, Zea mays
Sucrose-binding protein, Glycine max

Bowman-Birk-type proteinase inhibitor C I, Glycine max

53540 587 X X X X X
18956 4.83 X X X X X
9194 4.38 X

29105 7.85 X
37174 577 X
33300 8.09 X X
21873 6.04 X X X X X X
30695 5.77 X X X X X
38823 4.68 X X X X X X
30011 8.08 X X X
56308 563 X

23726 9.20 X X

24786 8.63 X
12084 9.60 X

9802 8.73 X

12011 9.29 X

17057 9.78 X

30908 5.60 X X

11697 8.74 X X
60484 642 X

UniProt database identifiers, along with molecular weight (mW) and isoelectric point (pl) are shown. The identification of the respective proteins using different
extraction solutions is indicated (i: water, ii: 100 mM sodium phosphate buffer, iii: 25 mM Tris-HCl, iv: 100 mM sorbitol, v: 20 mM ascorbic acid/20 mM CaCl,, vi:

50 mM NadCl).

0.01 pM (NH4)gM070,4, 200 pM Fe-EDTA. Nutrient
solution was changed twice a week to avoid nutrient
deficiencies. The experiments were carried out under
greenhouse conditions with an average day/night tem-
perature of 28/18°C and a photoperiod of 14 h for 5
weeks with relative humidity about 70% + 5%. The fifth
and sixth leaf from medium part of the stem was har-
vested 16 d after reaching the full nutrient solution for
collection of apoplast proteins.

Extraction of apoplastic and symplastic proteins

Apoplastic proteins were collected using the infiltration-
centrifugation technique [43] with minor modifications.
Leaves were cut into segments of about 5.5 cm and
washed with deionised water. For infiltration, leaf seg-
ments were placed in plastic syringes (60 ml) filled with
40 ml of the respective infiltrating medium and were
infiltrated by pulling the plunger, producing a reduced
pressure of estimated about 20 kPa. Leaves were infil-
trated either with water, 20 mM ascorbic acid/20 mM
CaCl,, 100 mM sorbitol, 0.1 M sodium phosphate buffer
(pH 6.5), 25 mM Tris-HCI (pH 8.0) or 50 mM NacCl
(Figure 1). Thereafter, intact leave segments were care-
fully blotted dry, and then placed in a 10 ml plastic ves-
sel and centrifuged immediately at 400 g for 5 min at 5°

C. The clear infiltrate, now referred to as apoplast frac-
tion, was collected at the bottom of the tube.

After the extraction of the apoplastic fraction, the resi-
dual leaf tissue was shock frozen in liquid nitrogen,
thawed, and centrifuged at 715 g for 5 min for cell sap
extraction, now referred to as symplast fraction. Four
pools of extracts from five plants each were combined
for subsequent analyses. Extracts were stored at -80°C
until analysis.

Gel electrophoretic protein separation

Proteins contained in the different extracts were precipi-
tated by chloroform/methanol method [44]: 200 pl of
sample was mixed with 800 pl MeOH, 400 pl chloro-
form and 600 pl deionized water. The incubation at 4°C
for 5 min was followed by a centrifugation step (9,000 g,
2 min, 4°C). The upper phase was removed and 600 pl
MeOH was added to the lower and interphase. A
further centrifugation sedimented the proteins, the
supernatant was removed and the pellet was dried in a
vacuum centrifuge.

For one-dimensional separation of proteins, the pellets
were dissolved in 10% glycerol, 2.3% SDS, 5% B-mercap-
toethanol, 0.25% bromphenol blue, 63 mM Tris-HCl
(pH 6.8). The 2-D Quant Kit (GE Healthcare, http://
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www.gehealthcare.com) was used for determining the
protein concentration. A sample of 10 pg was separated
by SDS-PAGE according to Laemmli [45]. The two-
dimensional separation of proteins was accomplished as
described in Zorb et al. [46] with the following modifi-
cations. Protein pellets were first dissolved in 8 M urea,
2 M thiourea, 0.5% IPG (immobilized pH gradient) buf-
fer, 4% w/v CHAPS, 30 mM DTT, 20 mM Tris and
then dialyzed using 3.5 kDa cut-off membrane (Zellu-
Trans, Carl Roth, http://www.carlroth.com) against the
same buffer. The protein concentration was determined
with the 2-D Quant Kit (GE Healthcare) and 25 pg of
protein were separated on IPG strips of 7 cm in length
with pH gradient of 3-10. Protein gels were stained
according to the hot-staining protocol with Coomassie
R350 tablets (PlusOne Coomassie tablets PhastGel Blue
R-350, GE Healthcare) [47] and digitized with an Epson
Perfection V700 Photo scanner (Epson, http://www.
epson.com).

LC-MS-based protein identification

Dialyzed protein extracts were precipitated by chloro-
form/methanol method and about 30 pg of protein were
resolubilized in 50 pl 0.1% Rapigest (Waters Corpora-
tion, http://www.waters.com) in 50 mM ammonium
bicarbonate. Protein concentrations were determined
using the Bradford method [48] and bovine serum albu-
min as standard protein. Five pg of protein were
reduced, alkylated and digested with trypsin over night
at 37°C as described earlier [49]. The enzymatic reaction
was stopped with 1IN HCI and peptide solutions were
adjusted to 0.1 pg/pl final concentration.

Three pl of protein digest were used for LC-separation
on a nanoAcquity UPLC system (Waters) followed by
mass spectrometry analysis on a Q-TOF Premier MS
instrument (Waters) in a data directed analysis (DDA)
mode, as described in Agrawal et al. [50].

Peptide separation was performed on a 180 um x 20
mm Symmetry (5 um) C18 precolumn (Waters) coupled
to a 150 mm x 75 pm BEH130 (1.7 pm) C18 column
(Waters), with a gradient of 3-40% actonitrile over 90
min. The MS operated in a positive ion mode with a
source temperature of 80°C, a cone gas flow of 50 1/h,
and a capillary voltage of approximately 3 kV. Mass
spectra were acquired in a continuum V-mode and
spectra integrated over 1 s intervals using MassLynx 4.1
software (Waters). The instrument was calibrated using
selected fragment ions of the CID (collision-induced dis-
sociation) of Glu-Fibrinopeptide B (SIGMA-ALDRICH,
http://www.sigmaaldrich.com). Automatic data directed
analysis (DDA) was employed for MS/MS analysis on
doubly and triply charged precursor ions. The MS
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spectra were collected from m/z 400 to m/z 1600, and
product ion MS/MS spectra were collected from m/z 50
to m/z 1600. Lock mass correction of the precursor and
product ions was conducted with 500 fmol/pl Glu-Fibri-
nopeptide B in 0.1% formic acid in AcN/water (50:50, v/
v) respectively, and introduced via the reference sprayer
of the NanoLockSpray interface. ProteinLynx Global-
SERVER v2.3 software was used as a software platform
for data processing, deconvolution, de novo sequence
annotation of the spectra, and database search. A 10
ppm peptide, 0.1 Da fragment tolerance, one missed
cleavage, and variable oxidation (Met) and carbamido-
methylation (Cys) were used as the search parameters.

The resulting mass spectra were searched against the
protein index of the UniProt viridiplantae database
(release: July 2010 with 722.718 protein sequences) for
protein identification applying the algorithm implemen-
ted in the ProteinLynxGlobalServer software (PLGS,
Waters Cooperation). All samples were run as technical
triplicates. Protein identifications consistent in two out
of three LC-MS runs were considered as present in that
sample. The false discovery rate was set to 4% of pro-
teins included in the database.

Hierarchical clustering of protein abundances was per-
formed using Gene Expression Similarity Investigation
Suite Genesis v1.7.6 [51]. Average linkage clustering was
applied for LC-MS experiments and protein abundances.

Additional material

Additional file 1: Biological reproducibility of protein profiles from
the maize leaf apoplast as resolved by 1-DE. Apoplastic proteins were
extracted with water (i) or 100 mM sodium phosphate buffer (i). Two
independent experiments were performed to assure consistent protein
patterns.

Additional file 2: Identification of proteins from the apoplast of
maize leaves. UniProt database identifiers, along with molecular weight
(mW) and isoelectric point (pl) are shown. The cellular localisation was
assigned using Expasy tools Target P (http://www.cbs.dtu.dk/services/
TargetP/) and WoLF PSORT (http://wolfpsort.org/). The identification of
the respective proteins using different extraction solutions is indicated (i:
water, ii: 100 mM sodium phosphate buffer, iii: 25 mM Tris-HCl, iv: 100
mM sorbitol, v: 20 mM ascorbic acid/20 mM CaCl,, vi: 50 mM Nacl).

Additional file 3: Identification of proteins from the apoplast of
maize leaves. Provided are the UniProt database identifiers, the PLGS
score, probability score for identification, number of identified peptides,
protein coverage and the peptide sequence.

Additional file 4: Proteins identified in apoplast extracts of all six
infiltration solutions.

Additional file 5: Example of protein identification from apoplastic
extracts using nanoLC-ESI-Q-TOF MS. The database search against the
protein index of UniProt led to the identification of exhydrolase I
[Q9XE93]. The amino acid sequence of the corresponding protein is
shown on top with the detected peptides underlined. The de novo
sequence of a selected peptide with precursor mass m/z 859.4698
(charge 3) is shown. This peptide is marked in bold within the protein

sequence.
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