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Abstract

Background: In vivo detection of protein-bound genomic regions can be achieved by combining chromatin-
immunoprecipitation with next-generation sequencing technology (ChIP-seq). The large amount of sequence data
produced by this method needs to be analyzed in a statistically proper and computationally efficient manner. The
generation of high copy numbers of DNA fragments as an artifact of the PCR step in ChIP-seq is an important
source of bias of this methodology.

Results: We present here an R package for the statistical analysis of ChIP-seq experiments. Taking the average size
of DNA fragments subjected to sequencing into account, the software calculates single-nucleotide read-enrichment
values. After normalization, sample and control are compared using a test based on the ratio test or the Poisson
distribution. Test statistic thresholds to control the false discovery rate are obtained through random permutations.
Computational efficiency is achieved by implementing the most time-consuming functions in C++ and integrating
these in the R package. An analysis of simulated and experimental ChIP-seq data is presented to demonstrate the
robustness of our method against PCR-artefacts and its adequate control of the error rate.

Conclusions: The software ChIP-seq Analysis in R (CSAR) enables fast and accurate detection of protein-bound
genomic regions through the analysis of ChIP-seq experiments. Compared to existing methods, we found that our
package shows greater robustness against PCR-artefacts and better control of the error rate.

Background
Genome-wide identification of in vivo protein-bound
genomic regions is essential for a full understanding of
transcriptional regulation. DNA fragments that are
bound by proteins in vivo can be isolated by chromatin-
immunoprecipitation (ChIP) and subsequently identified
using microarrays (ChIP-chip) or high-throughput
sequencing technologies (ChIP-seq). Recent studies [1,2]
indicate that the ChIP-seq approach provides higher
resolution and statistical power than ChIP-chip. To date,
only two methods have been described for the analysis of
ChIP-seq experiments in plants, i.e. [3] and the method
developed by our group [2,4].
The common approach to analyze the millions of short

sequence reads obtained in a typical ChIP-seq

experiment is to map them to a reference genome using
one of several mapping tools available, for example
SOAPv2, Bowtie, or BWA [5-7]. Reads that map to mul-
tiple locations in the genome, so called ‘multireads’ [8],
are often discarded to avoid the ambiguity of their geno-
mic origin. To account for varying sequencing depths
among the different samples in an experiment, current
methods typically standardize the number of mapped
reads across all samples by a scaling factor. However, it is
becoming evident that more sophisticated normalization
procedures are needed, since differences in coverage dis-
tribution among samples not only depend on the sequen-
cing depth, but also on other properties of the sample
[9], including methodological differences in library pre-
paration, as well as biological differences in the chroma-
tin state of the samples. We are aware of only two
published ChIP-seq analysis methods that normalize the
data to obtain the same coverage distribution across sam-
ples. The PeakSeq method [10] applies a scaling factor
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that is obtained from the linear regression between IP
and control sample coverages, while in [11] a quantile
normalization method is proposed. Here we describe the
implementation of the approach introduced by our group
[2], in which the statistical method of moments is used
for the normalization process.
Subsequent to normalization, enrichment of genomic

regions is commonly evaluated with a test statistic based
on the Poissson or Binomial distribution. To control the
false discovery rate (FDR) of such a test, it is necessary
to obtain the distribution of the test statistics under the
null hypothesis. Some methods, e.g. CisGenome [12],
assume this distribution as known a priori, given the
statistical properties of the test. However, this assump-
tion strongly depends on how well the distribution used
to construct the test statistics (e.g. Poisson distribution)
can represent the real data. Another strategy is to try to
empirically estimate the distribution of the test statistic
under the null hypothesis; the most common method is
to assume that the score values obtained in the compar-
ison of the IP sample against the control will be a good
estimation of the desired distribution. Examples of soft-
ware that implement this approach are PICS [13],
MACS [14] or QuEST [15]. A second problem with the
use of the Poisson test is that the comparison of differ-
ent ChIP-seq experiments is not straightforward, since
the obtained scores or p-values will depend on the sta-
tistical power of each particular experiment (e.g. number
of replicates, number of reads obtained, etc.). A review
of existing algorithms is given in [8].
ChIP experiments typically yield low amounts of DNA

and therefore require a high number of PCR amplifica-
tion cycles prior to sequencing. This increases the prob-
ability of experimental artefacts, most importantly the
uneven generation of high copy numbers of PCR frag-
ments [16-18]. This effect in a given experiment can be
estimated by measuring the percentage of non-unique
sequence reads (hereafter referred to as “duplicate

reads”) obtained after sequencing. A high percentage of
duplicate reads is an indication of potential problems
due to PCR artefacts. Cell culture ChIP experiments
yield larger amounts of DNA and can minimize the pro-
blem, but this approach can only rarely be used in
plants. A typical Illumina-sequenced plant IP library
usually yields around 30%-40% duplicate reads (Table 1,
[2,3,19]), while cell culture samples in other organisms
typically yield a low fraction of duplicate reads (5%-10%
[20,21]). A possible approach to handle this problem is
to identify and discard duplicate reads. However, in
plant experiments, this can lead to a 30%-40% data
reduction in a standard ChIP-seq experiment [2] (Table
1) and, consequently, to a decrease of the statistical
power of the experiment. Also, it is expected that
regions with a high read coverage will contain more
duplicate reads than other regions of the same length,
independently of PCR-artefacts. Therefore, the elimina-
tion of duplicate reads may incorrectly change the score
ranking of these regions.
We present here an R package that implements the sta-

tistical methodology previously outlined by our group
[2,4]. The method was developed to efficiently handle
high-copy numbers of reads that result from PCR artefacts
without the need of eliminating duplicated sequences. The
coverage distribution of samples is normalized to obtain
the same mean and variance across samples. Users can
choose between Poisson or ratio-based testing. FDR con-
trol is achieved through the well-known method of per-
mutations [22]. The most time-consuming functions are
implemented in C++ and are fully integrated in the pack-
age. A comparison with three other publically available
methods is presented in the context of plant ChIP-seq
analysis.

Implementation
The software accepts any plain text, tabular data format
containing the following information for each mapped

Table 1 Summary of read statistics for the ChIP-seq libraries analysed

Library
name*

No. of sequenced
reads

No. of mapped
reads

No. of non-duplicated
mapped reads

Percentage of duplicated
mapped reads

SRA ID

Sc 4,065,558 1,640,977 1,047,009 37% SRX004992

S1 3,112,455 992,908 525,779 47% SRX004990

S2-S5 NA 1,192,908 525,779 56% NA

S6 614,236 124,619 56,619 55% E-MTAB-587

S7 1,474,956 310,888 79,996 75% E-MTAB-587

S8 4,105,326 1,558,098 78,434 95% E-MTAB-587

Ac 20,983,004 11,703,244 5,323,373 54% SRX018394;
SRX018395

A1 15,941,703 13,293,909 9,708,068 27% SRX018392;
SRX018393

* For library description see text
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read: chromosome, location (bp), strand (+/-), read
length (bp), and number of times mapped on the gen-
ome. Users can define specific input table formats in
addition to the default option of the package, which
expects the standard AlignedRead format supported by
Bioconductor or the output of the mapping program
SOAPv2. The average length of the DNA fragments sub-
jected to sequencing must be provided by the user.
In an ideal ChIP-seq experiment, sequence reads that

truly originate from a protein-bound genomic region
should map in a 1:1 ratio to both strands of the chromo-
somal DNA (Figure 1B). However, because some
sequences are represented by an artificially high number
of duplicate reads due to PCR artefacts, this ratio can be
distorted (Figure 1C). In the default setup of our package
(Figure 1A), uniquely mapped reads are virtually
extended to match the average length of the DNA frag-
ments subjected to sequencing. The number of extended
reads that overlap each nucleotide position i is then
counted for both strands independently, and the mini-
mum value for both strands is taken, providing counts
xis, where s = 1,2 for control and IP sample, respectively
(Figure 1B). Other setups allow the user to merge the

information of both strands, or to just consider one of
the strands in the analysis.
Prior to the estimation of read-enrichment in an IP

sample relative to a control sample, the data need to be
normalized to obtain equal read-coverage distributions.
The two main factors affecting read coverage are:

1) Variable number of mapped reads among sequen-
cing experiments. As commonly handled in the lit-
erature, the CSAR package allows normalization of
the data by reporting the number of hits per θ mil-
lions of reads, where θ is an arbitrary number.
Namely, the counts xis are transformed to

yis =
xis × θ∑
i
xis

2) Variable number of regions sequenced. In the IP
sample, reads will come preferentially from true
positive and false positive protein-bound regions,
while in the control sample, reads will come prefer-
entially from false positive regions. This will result
in different coverages in the IP and control samples

Load mapped read positions

Count number of hits for sample
and control as explained at Fig.1B

Normalize read-coverage distribution
between sample and control

Apply ratio- or Poisson-based score 
for each nucleotide position

Define candidate 
enriched regions

Obtain test statistic 
thresholds using permutation

(A) (B)

(D)

(C)

Figure 1 CSAR analysis workflow. (A) Typical analysis workflow using CSAR. (B) Mapped reads (continuous line) are virtually extended (dashed
line) for each strand directionally. Number of extended reads that overlap each nucleotide position is counted for both strands independently,
and the minimum value for both strands is taken as “number of hits”. (C) Consequently, regions with duplicated reads mapping to only one
strand will not be considered significant. (D) CSAR output can be visualized in a typical genome browser.
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that should be taken into account in the analysis [9].
In contrast to other packages, CSAR will normalize
the read-coverage distribution in the IP sample to
have the same mean and variance as the control
sample. Namely, the observed yi2 are transformed to

zi2 =
σ̂1

(
yi2 − μ̂2

)
σ̂2

+ μ̂1,

where μ̂s and σ̂s denote the mean and standard devia-
tion of yis.
After normalization, a score (ti) is calculated for each

nucleotide position i on the basis of the Poisson-based
or ratio (default) test.
For the Poisson-based test:

ti = −loge

(
1−

zi2−1∑
k=0

e−max(yi1,β) ×max
(
1, yi1,β

)k
k!

)

For the ratio test:

ti =
zi2

max
(
1, yi1,β

)
The parameter b represents the background coverage

level of the IP sample after the value is scaled and nor-
malized as any other value from the IP sample (see
below). Usually, the coverage distribution of the control
sample is not uniform with large regions showing no or
very low coverage. These regions can be incorrectly
declared significant since no good estimation of their
coverage in the control can be obtained. To avoid this
problem, the transformed counts in the regions with a
coverage below b in the control sample are set to the
value of b. The value of b is calculated as:

β =
σ̂1

(
cθ − μ̂2

)
σ̂2

∑
i
xi2

+ μ̂1

where c is a parameter representing the coverage level
of the IP sample before scaling and normalization. The
value of c can be given by the user, or calculated auto-
matically (default option) as:

c =
1
n0

∑
i

xi2,

where n0 denotes the number of genomic positions for
which xi2 > 0. In our experience, the ratio test gives
more comparable results among different experiments,
which is due to the fact that its score value is less
dependent on the statistical power of the experiments as
for the Poisson test.
Candidate peaks are defined as genomic regions with

score values (ti) higher than a given cut-off. Candidate

peaks separated by less than 100 bp (default parameter
value) are merged. The maximum score value of the
candidate peak is used as the test statistic value to test
its significance.
In contrast to other packages, CSAR subsequently uses

a permutation method to obtain the test-statistic thresh-
old corresponding to a desired FDR level. Individual
mapped reads are labeled as “control” or “IP” if they
belong to either the control or IP sample, respectively.
The labels are then randomly permuted between the
mapped reads, and the new permutated datasets are
subjected to the previously described ChIP-seq analysis.
Since this permutation process removes any relationship
between the mapped reads and the sample they came
from [22], the score values obtained over a sufficient
number of permutations will provide an accurate esti-
mation of the score distribution under the null hypoth-
esis that can be used to control the error rate, for
example FDR.
CSAR can generate results regarding genomic posi-

tions of significantly read-enriched regions and their dis-
tance to annotated genomic features (e.g. genes, other
annotated binding events) in tabular format. These can
be directly used by other R functions or packages for
further analysis or for graphical representation. The
read-enriched genomic regions can be written to a
UCSC web-browser compatible wiggle (wig) file and
visualized (Figure 1D) with, for example, the Integrated
Genome Browser [23]. The default parameters in CSAR
are optimized for Arabidopsis ChIP-seq data, but they
can easily be adjusted for other organisms.

Results and Discussion
CSAR has been successfully used to analyze several
plant ChIP-seq experiments and was shown to be com-
putationally efficient and accurate [2,19]. Table 1 sum-
marizes characteristics of Illumina sequence libraries
that were reanalyzed in this study in order to compare
the performance of CSAR (v1.4.0) with four other pub-
licly available methods, i.e. QuEST (v2.4), PICS (v1.4.0),
MACS (v1.4.0rc2) and Cisgenome (v1.2) [12-15].
SEPALLATA3 (SEP3) and APETALA1 (AP1) are two
MADS-domain transcription factors involved in the reg-
ulation of floral development in Arabidopsis thaliana.
Datasets S1 and Sc represent an experimental IP and
control libraries for a SEP3 ChIP-seq experiment [2]. S6,
S7 and S8 represent sequencing libraries from the same
IP experiment, except that low amounts of DNA were
recovered from the ChIP step. Standard Illumina proto-
col was used for the library preparation. S6, and S7 were
prepared according to the standard protocol and PCR
amplified in 20 cycles. An additional second PCR ampli-
fication step (+10 cyles) was performed to the library S8.
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The amplification produced high numbers of duplicate
reads (Table 1), with library S8 most affected. We used
these libraries to evaluate the robustness of our method
against PCR artefacts. Datasets S2-S5 represent in silico
modifications of the S1 library. At random, 2000
uniquely mapped reads from S1 were amplified one hun-
dred times each and added to the original S1 dataset.
This process was repeated four times to generate the
four dataset S2-S5. Datasets A1 and Ac represent the IP
and control libraries, respectively, combining two biolo-
gical AP1 ChIP-seq replicates [19]. Libraries A1 and Ac

were sequenced on the Genome Analyzer II, the others
on the Genome Analyzer I; all libraries were sequenced
to a 36 bp read length. Table 1 summarizes the number
of mapped reads, as well as the percentage of duplicate
reads present in each dataset.
SOAPv2 (default parameters) was used to uniquely

map reads to the Arabidopsis genome (ATH1.1-
con.01222004; ftp://ftp.arabidopsis.org/). Reads mapping
to the chloroplast or mitochondrial genomes were dis-
carded. Remaining reads were analyzed with default
parameters at an FDR level <0.05 by CSAR, QuEST,
PICS, MACS and Cisgenome [12-15] using the appro-
priate dataset as a control.
Figure 2A shows the proportion of significant SEP3

peaks declared by each method and for which a CArG
box motif was present at a maximum distance of 50bp.
Note that the CArG box is the known DNA binding
motif of MADS-domain transcription factors and can
thus be used as a validation criterion. CSAR shows a
stronger enrichment than other methods.
For AP1, publically available gene expression data

could be used to validate peak calling. The expression
data was generated in AP1 induction experiments on
the same tissue that was used in our AP1 ChIP-seq
experiment [19]. Figure 2B shows the percentage of sig-
nificant AP1 peaks declared by each method close to at
least one potential direct target gene, where the target
genes were as the ones which were differentially
expressed in the time-series gene expression data [19].
CSAR shows a stronger enrichment than other methods.
In order to study the robustness of each method

against PCR artefacts, we considered the regions
declared as significant in the comparison S1 to Sc for
each evaluated method as its gold standard. A high per-
centage of regions declared significant in the analysis of
the in silico (S2-S5) or experimentally (S6-S8) modified
S1 libraries but not present in the gold standard for
each method will indicate a lack of robustness. Table 2
gives the number of significant regions in the different
datasets as detected by each method. The number of
significant regions in common in the comparison of S1
to Sc is shown, as well as the percentage of False Posi-
tives. A “common region” is defined as a significant

region (FDR < 0.05) located within 250 bp of a signifi-
cant region (FDR < 0.05) in the comparison of S1 to Sc,
using the same software; these common regions are
considered as True Positives to allow for calculation of
the percentage of False Positives. On average, 2,365
regions were declared as significant in the comparison
of S1 to Sc by the five methods. CSAR declares more
regions significant than the other methods do.
In the analysis of the in silico modified libraries S2-S5,

MACS, CSAR and QuEST are the most robust methods
with respect to the presence of high numbers of dupli-
cate reads, as indicated by the low percentages of False
Positives, an error rate below the 5% FDR control
desired. A possible cause for the high percentage of
False Positives obtained by Cisgenome in our in silico
modified datasets might be in its FDR estimation step.
Cisgenome assumes a Negative Binomial or a Poisson
distribution for the score distribution under the null
hypothesis. However, the presence of high numbers of
duplicate reads will modify its original distribution and
will have a strong effect on the FDR estimation.
In the case of the experimental libraries which had high

levels of duplicate reads (S6, S7 and S8), CSAR clearly
shows a lower percentage of False Positives than all other
packages, with an error rate close to the desired 5% FDR
control. Because one might argue that this is done at the
cost of having a relatively small number of significant
regions declared in comparison to other packages, we
repeated computations in CSAR with a more relaxed
error control that gave 80% of false positives (a rate simi-
lar to the one actually obtained for MACS). In this way,
717 true positive (common) regions were found for S6
(out of 3,597 significant regions), 771 for S7 (out of
3,737), and 655 for S8 (out of 3,307), which is comparable
with the number of true positives obtained with MACS.
It is interesting to note that although MACS shows 0% of
False Positives in the in silico libraries, in the experimen-
tal libraries, the error increases to an average of 79%.
MACS (default options) eliminates reads that map to the
exact same positions and strand above a maximum num-
ber. For this reason, MACS eliminates the reads added in
silico since these have the same sequence and therefore
the same position and strand. In the experimental
libraries, this strategy apparently did not work out. We
hypothesize that due to degradation of the DNA frag-
ments subjected to sequencing or due to sequencing
errors, the short reads obtained from fragments with the
same sequence will not always have the exact same posi-
tions, preventing MACS from eliminate them. In the
CSAR approach this is not a problem because it requires
both strands to support the binding event independently.
Since the percentage of duplicate reads can be easily

calculated, we advise to always report it as a measure of
quality in future ChIP-seq experiments. In this study we
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used the libraries S6 - S8 as extreme examples of the
effect of PCR artefacts, but we advise in general against
working with high levels of duplication in a normal
ChIP-seq experiment. Further study should establish
more precisely which levels of duplication are still
acceptable. This should be done in combination with
evaluating other parameters such as the number of

mapped reads. When working with proteins that bind
preferentially to promoter regions, we found it useful to
graphically represent for each experimental library the
distribution of distances (bp) between the position of
read-enriched regions and the start position of genes; in
such graphs one should typically see enrichment in the
expected positions (e.g.: promoter regions for SEP3 and
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Figure 2 ChIP-seq method comparison. (A) Proportion of peaks with a CArG-box (CCW6GG or CCW7G) within a distance of 50 bp among the
significant regions detected by each method in the comparison of S1 to Sc. (B) Proportion of peaks detected by each method in the
comparison of A1 to Ac with at least one target gene differentially expressed. Only peaks near a gene (3 kb upstream or 1kb downstream)
represented in the microarray experiments were considered. The list of genes which expression is affected by AP1 was downloaded from [19],
we used the list denoted “Agilent and_or Operon_BH-0h”. Default options for QuEST results in the identification of only 66 significant peaks,
therefore we used the option “Relaxed peak calling parameters” for Figure 2B. For comparison purposes, all scores reported by the different
methods were transformed into rank scores with zero as the rank of the most significant peak.

Table 2 Number of significant regions detected

S1 vs Sc S2-S5 vs Sc* S6 vs Sc S7 vs Sc S8 vs Sc

CSAR Total 3,235 3,306(5) 57 150 126

Common 3,235 3,226(2.6) 52 130 104

False Positives - 2% 9% 13% 17%

QuEST Total 985 989(11) 5,663 4,724 5,709

Common 985 971(4.2) 440 433 422

False Positives - 2% 92% 91% 92%

CisGenome Total 2,030 14,632(30) 9 91 169

Common 2,030 1,633(4) 1 24 23

False Positives - 89% 89% 74% 86%

PICS Total 2,846 1,952(24.7) 1,256 1,575 153

Common 2,846 1,253(5.9) 382 435 51

False Positives - 36% 70% 72% 67%

MACS Total 2,728 2,728(0) 2,821 3,687 3,624

Common 2,728 2728(0) 631 761 716

False Positives - 0% 78% 79% 80%

*Results for the in silico-modified libraries (S2-S5) are summarized with its average and standard deviation (in parenthesis)
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AP1 TFs). If this is not the case, this might be an indi-
cation of a problem in the experimental IP enrichment.
CSAR provides functions to easily calculate and visualize
this distribution and to report the number of duplicate
reads.
In conclusion, the CSAR package, implemented in the

popular R language, provides an accurate and efficient
tool for the analysis of plant ChIP-seq data. It shows
better accuracy compared to other methods in the two
plant ChIP-seq experiments considered, and, in particu-
lar, it shows a high level of robustness against PCR-arte-
facts. A good error rate control is one of the most
important features of any statistical process, and CSAR
shows a good control even with a high percentage of
duplicate reads.

Availability and requirements
• Project name: CSAR
• Project home page: http://bioconductor.org/
packages/release/bioc/html/CSAR.html
• Operating system(s): Platform independent
• Programming language: R
• Other requirements: R version 2.8.1 or superior
• License: Artistic-2.0
• Any restrictions to use by non-academics: None
• The software (source code) and examples are
attached in Additional file 1. It can also be down-
loaded via the project home page.

Additional material

Additional file 1: CSAR R package source. The R package source for
CSAR (version 1.4.0) is included as additional file.
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