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Abstract

Background: Microsatellites are popular molecular markers in many plant species due to their
stable and highly polymorphic nature. A number of analysis methods have been described but
analyses of these markers are typically performed on cumbersome polyacrylamide gels or more
conveniently by capillary electrophoresis on automated sequencers. However post-PCR handling
steps are still required. High resolution melting can now combine detailed sequence analysis with
the closed-tube benefits of real-time PCR and is described here as a novel way to verify the identity
of plant varieties such as grapevine and olive.

Results: DNA melting profiles for various plant variety and rootstock samples were compared to
profiles for certified reference samples. Two closely related grapevine rootstocks differing by as
little as a single di-nucleotide repeat could be rapidly differentiated while there was high
reproducibility of melting profiles for identical cultivars.

Conclusion: This novel microsatellite analysis method allows high sample throughput with greatly
reduced time to results for varietal certification and is amenable to other microsatellite analyses.

Background

Certification of grapevine scion and rootstock varieties is
becoming an increasingly important issue in viticulture.
Many rootstocks are derived from the same parentage -
for example 5C, SO4, 125AA and 420A Mgt are all com-
monly used in New Zealand and are all derived from
crosses between Vitis berlandieri and Vitis riparia while
other popular rootstocks currently used are derived from
Vitis riparia and Vitis riparia X rupestris parentage (Riparia
Gloire du Montpellier, 3309C, 3306C, Schwarzmann and
101-14 Mgt). This use of limited genetic stock is not
uncommon when compared with other countries [1] and

means that cultivar determination based on ampelogra-
phy (using visual characteristics of grapevines to deter-
mine identity) can be difficult at times due to the high
similarities.

The use of microsatellite analysis has been well-character-
ised for grapevine scion [2,3] and rootstock varieties [3,4].
These markers are popular due to their highly stable and
ubiquitous nature as well as co-dominant transmission of
inheritance for parentage analysis. Various sets of micros-
atellites have been developed for the definitive resolution
of scion and rootstock varieties [2,4]. Traditionally micro-
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satellite analysis has relied on laborious polyacrylamide
gels followed by silver staining or, more conveniently, flu-
orescent resolution on automated sequencers. Nonethe-
less this higher automation using sequencers still requires
post-PCR handling and dilution steps as well as a fluores-
cently-labelled primer for each microsatellite which adds
to the time and costs involved. For the analysis of ampli-
fied DNA, the use of real-time PCR is becoming increas-
ingly common in viticulture - among other industries —
for virus and pathogen identification [5,6] as well as rapid
analysis of other reactions that require no further han-
dling of the amplified DNA. This has led to decreased con-
tamination risks and faster turnaround times in molecular
diagnostics, as well as providing quantification opportu-
nities for assessing pathogen levels.

Microsatellites and repeat sequence polymorphisms have
been studied previously using real-time PCR chemistries
such as hybridisation probes [7,8]. However in this
instance, sequence specific probes are required for each
microsatellite under analysis - again adding to the costs
involved when studying a number of loci for certification
purposes. In addition only the region under (or very near
to) the probes may be analysed.

We investigated a more recent development in fluorescent
analysis of PCR products; high resolution amplicon melt-
ing analysis, and applied this technique to the analysis of
microsatellite markers in a number of rootstock and
grapevine scion varieties commonly grown in New Zea-
land. High resolution melting analysis has been used pri-
marily for the discovery and genotyping of single
nucleotide polymorphisms (SNPs) [9], but it has also
been used for precise amplicon verification [10] and
sequence matching applications such as HLA identity
[11]. The method involves the gradual denaturation
(melting) of these PCR amplicons and detection of the
subsequent subtle fluorescent changes by so-called 3t
generation fluorescent double stranded DNA-binding
dyes present in the amplification reaction [12]. Problems
with SYBR Green melting curve analysis have been well
described with the dye's preference for intercalating in
GC-rich regions of amplicons and its tendency to translo-
cate during melting phases [13,14]. This is due to its rela-
tively low concentration in a PCR reaction to avoid
amplification inhibition. Dyes for high resolution melt-
ing curve analysis are used at a higher 'saturating' concen-
tration and thereby overcome these limitations. They
include LC Green PLUS (Idaho Technologies Ltd), Eva-
Green (Biotium), SYTOY (Invitrogen) and ResoLight dye
(Roche Applied Science).

Samples are amplified in the presence of these newer dyes
in a similar manner to SYBR Green-based real-time PCR
and following the cycling process, the PCR amplicons are
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slowly melted with higher data acquisition levels than
with SYBR Green applications. Using an instrument with
precise temperature control and homogeneity among the
samples being analysed, slight sequence variation
between samples can be detected by denaturation at the
DNA polymorphism and subsequent fluorescent
decreases caused by the dissociation of the double
stranded DNA-specific dye. As these dyes are able to be
used at higher concentrations than SYBR Green I and are
therefore more sensitive to sequence variation during
melting, these fluorescent changes are reflected in the dif-
fering shapes of the melting curves. In this work we inves-
tigated whether the precision and reproducibility of the
high resolution melting curves could be used to verify
microsatellite identity of highly heterozygous plant varie-
ties such as grapevine by comparing the melting curves of
microsatellite amplicons for a suspected variety and a
known reference sample of the variety.

Results and Discussion

Reaction conditions

Initially, the amount of DNA per reaction was not stand-
ardised before amplification - up to 10-fold variation in
template concentrations may be used in high resolution
melting reactions [15] due to the lower dependence of Tm
on template concentration. In addition, fluorescent yield
variation that can be due to template concentration varia-
tion is accounted for in the normalisation steps after
amplification. However increased reproducibility of melt-
ing curves was observed by first quantifying and diluting
the samples to a uniform 20 ng.ul-! prior to amplification.
This was likely due to the slight polysaccharide variation
(and/or other inhibitors) of the undiluted grapevine sam-
ples and therefore dilution of samples to a standard tem-
plate concentration removed this variation as seen by the
similar amplification crossing points of the samples - the
crossing point being the threshold cycle number near
where the reaction enters the exponential phase of ampli-
fication (data not shown).

We developed a universal cycling protocol of touchdown
PCRto allow all tested grapevine microsatellites for a sam-
ple to be amplified and analysed within the same run.
This, together with simple analysis steps, permitted the
matching of queried samples with reference cultivars
within 90 minutes from start of amplification - or less
than 3 hours from sample to result. This represents an
order of magnitude increase in speed and decreased time
to results compared with other typically used analysis
methods for microsatellite amplicons. In many cases, the
melting plots of a single microsatellite allowed the differ-
entiation of a number of varieties - particularly in the case
of common rootstocks used in the New Zealand industry

(Figure 1).
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Figure |

Rootstock differentiation. Difference plot of the ZAG62 microsatellite for 6 closely related rootstocks derived from Vitis
berlandieri crosses and Vitis riparia crosses: 5C, SO4, 125AA, 161-49C, 3309C and 420A. 4 DNA extractions for each rootstock
were amplified in order to show the reproducibility of melting curves.

Reproducibility

While replicates are often performed for high resolution
melting analysis due to the technique being highly
dependent on salt and buffer conditions in a reaction, our
routine analyses were usually performed on individual
DNA extractions compared against extractions of certified
standards. Nonetheless, high reproducibility of melting
curves was observed between individual samples and ref-
erence standards run singly. This high level of reproduci-
bility was also shown by the analysis of multiple
individual DNA extractions for the same variety (Figures
1, 2). The melting point (Tm) standard deviation for each
genotype typically ranged from 0.009 to 0.06°C. This cor-
relates well with other reproducibility studies performed
for high resolution melting performance [16] The refer-
ence sample identities were previously verified through
ampelography or sourced from reference centres (e.g.
Etablissement National Technique pour 'Amélioration de
la Viticulture (ENTAV)).

Sensitivity

In order to test the differentiation ability of the microsat-
ellite high resolution melting, we examined two root-
stocks that have been historically confused [17]. Previous
analysis of rootstocks 5C and SO4 at microsatellite
VVMD32 showed they both shared an allele and differed

by 2 bp (i.e. a single CT di-nucleotide repeat) at the other
allele [3]. High resolution amplicon analysis was able to
clearly differentiate these samples (Figure 2) with high
reproducibility observed between the five samples of each
rootstock variety as indicated previously.

Discrepant samples

As mentioned, even for comparison of samples with sim-
ilar allele sizes, a distinct and reproducible difference
could be observed permitting the rapid resolution of
incorrectly identified varieties (Figure 3). A rootstock sam-
ple labelled as Schwarzmann was submitted for certifica-
tion testing. It was found to have a melting curve for
microsatellite VWVMD5 identical to that of a similar parent-
age rootstock: 101-14 Mgt. This discrepancy was high-
lighted in the difference plot (Figure 3B) and the sample
was confirmed as 101-14 Mgt using other microsatellite
markers (data not shown) as well as ampelography. Root-
stocks Schwarzmann and 101-14 Mgt are both derived
Vitis riparia X rupestris crosses, have one allele in common
for microsatellite VWMD5 and differ by 3 bp at the other
allele according to a previous analysis [4]. However the
distinctive melting profiles for each rootstock allowed the
rapid resolution of the incorrectly classified sample.
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Figure 2

Detecting a single di-nucleotide repeat difference. Two closely-related rootstocks (5C and SO4) share one allele size
(259 bp) and differ by a single CT repeat at the other allele (236 bp for 5C and 234 bp for SO4) for microsatellite locus
VVMD32. Five individual extractions for 5C and SO4 show the differentiation of these two rootstocks

Analysis means

There are a number of convenient analysis methods for
high resolution melting - either temperature-shifted melt-
ing curves (Figures 2, 3a, 4a, 5 and 6) or difference plots
(Figures 1, 3b and 4b) which serve to highlight differences
between individual curves relative to one of the sample
melting curves plotted as a baseline. For individual reac-
tions we found that the temperature-shifted melting
curves were sufficient to rapidly determine a match
although difference plots also proved useful for clustering
larger numbers of samples and allowing more distinct
separation of varieties (Figure 4).

Reference DNA addition

Further resolution of genotypes in SNP typing may be
gained by the addition of a reference DNA of known gen-
otype to the sample under query prior to amplification
[11,18]. Typically, if the query sample and reference have
identical sequences then there is no difference in melting
curves between the mixed query/reference sample and the
reference sample alone, due to lack of heteroduplex for-
mation. If there is a sequence difference then heterodu-
plex formation between the query and reference
amplicons will generate a melting curve able to be better
distinguished from the reference and query samples

amplified individually. Our preliminary trials of this ref-
erence addition approach in this microsatellite analysis
method proved useful for further confirmation of match-
ing between sample and reference (i.e. no variation was
observed between query sample, reference sample and
query/reference mixed sample as the case with melting
curves 1, 2 and 3 in Figure 5). However there was no
increase in resolution of non-matching query and refer-
ence mixed sample (melting curve 5) over comparing the
query (melting curve 4) and reference (melting curve 1)
amplified individually. We surmised this was likely due to
the heteroduplex formation already formed between the
two alleles of the microsatellite locus in the individual
sample. The addition of a reference DNA will only lead to
a more complex heteroduplex mix in this instance. How-
ever this approach may prove useful for microsatellite
analyses in the case of null or homozygous alleles where
only one amplicon size may be generated, as in the case of
rootstock St. George at the VVS2 allele [4].

The varying 'bulges' or looping out of the non-hybridised
repeats of the longer alleles in the heteroduplexes charac-
terise the specific melting curves. This may be due to near-
est neighbour thermodynamics with the non-hybridised
base sequence affecting the stability and melting of the
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Rapid detection of incorrectly identified rootstock. A rootstock sample (*) stated as Schwarzmann matched 10114
Mgt at microsatellite VVMD5 when melting curves were adjusted along the temperature axis (A). The differences in the melt-
ing curves are highlighted in the difference plot (B) using the plot for Schwarzmann as the baseline reference (horizontal line).
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Figure 4

Scion variety differentiation. Temperature-shifted melting curves (A) and difference plots (B) for the differentiation of
scion varieties for Pinot (allele sizes 238:244 bp), Syrah (244:250 bp), Sauvignon blanc (244:246 bp) and Chardonnay (242:244
bp) at microsatellite locus ZAG79. Duplicate samples for two clones of each variety were extracted and amplified. Allele sizes

from [28].
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Figure 5

Addition of reference cultivar to query samples. Reference DNA was added to query samples and amplified together
with the reference and query samples amplified individually. (1) reference Riesling (2) query Riesling | (3) query Riesling |/ref-
erence Riesling mixed sample (4) query Riesling 2 (5) query Riesling 2/reference Riesling mixed sample.

perfectly matched bases adjacent to the bulges [19], the
physical influence of the loop size influencing the second-
ary structure of the DNA [20] and thus the amplicon melt-
ing, or a combination of both and more.

There is a drawback to this method compared with other
methods, at least at time of writing. This high resolution
melting method currently cannot be used to establish a
database for unknown cultivar determination, as the melt-
ing curves cannot be saved for external reference. There-
fore the method can only be used for comparison
purposes at this time; comparing test samples with refer-
ence samples of the suspected variety/varieties. However
high resolution melting should prove useful as a prelimi-
nary screen with any subsequent discrepant samples
undergoing capillary electrophoresis for database
matches. A database utility of melting plots is envisaged in
the future for this methodology.

Further applications

In order to investigate wider applicability of this method
for microsatellite analysis, we have also investigated olive
cultivars. Using the methods described here, cultivars
Frantoio and Koroneiki could be easily differentiated at
two tested microsatellite loci (Figure 6). In addition, early

work has shown the differentiation of pine tree cultivars
(data not shown). We see this method therefore as a gen-
eral purpose method for comparison of microsatellites in
query samples to known reference identifier samples.

Conclusion

High resolution melting is a recent development on prod-
uct verification via dye melting from amplicons. However
compared to typical amplicon melting using SYBR Green
dye, the method provides significant benefits in sequence
specificity and resolution sensitivity. Its speed and closed-
tube nature provide similar benefits as with other real-
time PCR applications; in this instance higher sample
throughput is achieved along with ease of microsatellite
comparisons for our grapevine certification and other
crop programs. This new analysis method is amenable to
other microsatellites being investigated especially for
those laboratories without immediate access to a capillary
sequencer.

Methods

DNA extraction

100-150 mg young unexpanded leaf material from each
sample was homogenised in 1.5 ml AP1 buffer from the
DNeasy® Plant Mini kit (Qiagen) using a homogeniser
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Figure 6
Analysis of Olive cultivars. Five DNA extractions for each olive cultivar 'Frantoio' and 'Koroneiki' showing distinctive melt-
ing profiles with the microsatellites DCA-3 (A) and UDO-12 (B).
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mounted on a drill press. 400 pl of the homogenate was
further processed and genomic DNA extracted using the
DNeasy” Plant Mini kit according to the manufacturer's
protocol. DNA was eluted in a final volume of 200 pl,
quantified on a Nanodrop ND-1000 (Nanodrop Technol-
ogies) and diluted to a concentration of 20 ng.ul-! in PCR-
grade water. DNA from olive varieties Frantoio and Koro-
neiki were extracted using a modified CTAB protocol [21],
quantified and diluted as for grapevine samples.

Microsatellite amplification

We analysed the following microsatellites for grapevine:
VVS2 [22], VVMDS5, 7 [23], VVMD24, 27, 32, 36 [24],
ZAG62 and ZAG79 [25]. These are di-nucleotide repeat
sequence motifs with allele sizes ranging from 129 bp (the
smallest with VVS2) through to 315 bp (the largest for
VVMD36). Amplification and high resolution melting
analysis were performed on the LightCycler® 480 system
(Roche Applied Science) using 10 or 20 pl reactions in 96-
well multiwell plates (Roche Applied Science). PCR reac-
tions consisted of 1X LightCycler® 480 High Resolution
Melting Master (Roche Applied Science); supplemented
with 2 mM MgCl,, 0.25 pM each primer and 50 ng
genomic DNA. Samples with added reference DNA con-
sisted of 7 ng certified reference DNA and 43 ng query
sample DNA - i.e. a 15% proportion of reference DNA as
used in [18].

The cycling program for all tested microsatellites consisted
of a touchdown protocol: 5 minutes initial denaturation
followed by 45 cycles of denaturation at 96°C (8 sec-
onds), annealing from 56°C to 54°C (8 seconds) and
extension at 72°C (12 seconds). The annealing tempera-
ture decreased in subsequent cycles by 0.5°C per cycle
after the first 56° C annealing step to 54 °C. The amplifica-
tion cycles were immediately followed by the high resolu-
tion melting steps of 95°C for 1 minute, cooling to 40°C
for 1 minute, raising the temperature to 65°C and then
raising the temperature to 95°C with 25 fluorescent
acquisitions per degree Celsius at this step. Olives were
analysed with microsatellites DCA-3, DCA-16 [26] and
UDO-12 [27] and were amplified in a similar touchdown
protocol but with annealing temperatures decreasing
from 60°C to 55°C.

High resolution melting curve analysis

After the verification of robust amplification curves and
the presence of a specific melting peak for the microsatel-
lite amplicon, the melting curve stage was further ana-
lysed with the gene scanning software module on the
LightCycler® 480 instrument. Absolute fluorescent levels
pre- and post-melt were normalised to 100% and 0%
respectively to account for any varying fluorescent yields
from different reactions. As high resolution melting anal-
ysis is based on the shape of the melt curves rather than

http://www.plantmethods.com/content/4/1/8

absolute melting Tm derived from the negative derivative
(as traditionally seen with SYBR Green amplifications),
the melt curves are then normalised along the tempera-
ture axis ('temperature shifting') to permit easy differenti-
ation of DNA curves (more information on these analysis
algorithms can be found in [15]). Query samples were
compared with certified reference plots for each variety.
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