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Abstract

Background: A common limitation in guard cell signaling research is that it is difficult to obtain
consistent high expression of transgenes of interest in Arabidopsis guard cells using known guard
cell promoters or the constitutive 35S cauliflower mosaic virus promoter. An additional drawback
of the 35S promoter is that ectopically expressing a gene throughout the organism could cause
pleiotropic effects. To improve available methods for targeted gene expression in guard cells, we
isolated strong guard cell promoter candidates based on new guard cell-specific microarray
analyses of 23,000 genes that are made available together with this report.

Results: A promoter, pGCI(Atlg22690), drove strong and relatively specific reporter gene
expression in guard cells including GUS (beta-glucuronidase) and yellow cameleon YC3.60 (GFP-
based calcium FRET reporter). Reporter gene expression was weaker in immature guard cells. The
expression of YC3.60 was sufficiently strong to image intracellular Ca2* dynamics in guard cells of
intact plants and resolved spontaneous calcium transients in guard cells. The GCI promoter also
mediated strong reporter expression in clustered stomata in the stomatal development mutant too-
many-mouths (tmm). Furthermore, the same promoter:reporter constructs also drove guard cell
specific reporter expression in tobacco, illustrating the potential of this promoter as a method for
high level expression in guard cells. A serial deletion of the promoter defined a guard cell
expression promoter region. In addition, anti-sense repression using pGC| was powerful for
reducing specific GFP gene expression in guard cells while expression in leaf epidermal cells was
not repressed, demonstrating strong cell-type preferential gene repression.

Conclusion: The pGCI| promoter described here drives strong reporter expression in guard cells
of Arabidopsis and tobacco plants. It provides a potent research tool for targeted guard cell
expression or gene silencing. It is also applicable to reduce specific gene expression in guard cells,
providing a method for circumvention of limitations arising from genetic redundancy and lethality.
These advances could be very useful for manipulating signaling pathways in guard cells and modifying
plant performance under stress conditions. In addition, new guard cell and mesophyll cell-specific
23,000 gene microarray data are made publicly available here.

Page 1 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18284694
http://www.plantmethods.com/content/4/1/6
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Plant Methods 2008, 4:6

Background

Stomata are located on the leaf surface and are the main
conduit for water transpiration and CO, influx into leaves.
The stomatal aperture is regulated by multiple physiolog-
ical factors such as light, CO,, and plant hormones includ-
ing abscisic acid (ABA) [1-5]. These stimuli regulate the
stomatal aperture by affecting the cellular activities of the
two adjacent guard cells, which form the stomata.

Many genes are important for guard cell function as dem-
onstrated by forward genetic screens and reverse genetic
functional analyses. To improve plant performance under
stress conditions, manipulating gene function specifically
in guard cells offers advantages over manipulation at the
whole plant level. For example, a dominant mutation or a
knock out mutation in an essential gene at the whole
plant level might be lethal. This problem could be
avoided by expressing the mutated gene or silencing the
specific gene in guard cells only. Secondary messengers,
such as calcium, reactive oxygen species, inositol phos-
phates, and sphingolipids, have been shown to play a crit-
ical role in guard cell signaling [6-11]. Molecular reporters
for some of these secondary messengers have been devel-
oped and used in mammalian cell biology, such as yellow
cameleon (YC) for calcium [12] and Hyper for H,0, [13].
Several calcium reporters have been used for studies in
plant biology, including indo-1, fura-2, aequorin, and yel-
low cameleon [14-19]. Single cell imaging of second mes-
sengers in intact plants could provide an approach to
analyze second messengers within the leaf and plant con-
text. Intact plant imaging of single cells requires specific
reporter gene expression in target cells with low back-
ground in the surrounding cells.

The widely used constitutive 35S cauliflower mosaic virus
promoter drives expression of an interested gene in most
parts of the plant [20]. The 35S promoter can also drive
gene expression in guard cells [15,21-23]. One copy of the
35S promoter, however, often drives weak expression in
guard cells while two tandem 35S promoters provides
approximately two-fold higher expression [21,22]. In
addition, gene expression driven by the 35S promoter is
not always uniform in guard cells even in the same leaf.
Furthermore, gene expression in many different T-DNA
insertion mutant lines using the 35S promoter has proven
to show an exceedingly low success rate for reporter detec-
tion in guard cells for unknown reasons (J.M. Kwak, G.A.
Allen and I.M. Mori unpublished observation).

The KST1 promoter can drive reporter gene expression in
guard cells and flowers in potato [24]. But the KST1 pro-
moter has not been used widely in research to drive spe-
cific expression in Arabidopsis or other plant guard cells. In
Arabidopsis, the KAT1 promoter drives primarily reporter
gene expression in guard cells though the expression of
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the reporter was also observed in the root vascular tissue
in some transgenic plants [25]. Furthermore, the KAT1
promoter is not sufficiently strong for high-level expres-
sion or repression in guard cells.

Here we used a guard cell specific microarray-based
approach to analyze putative strong guard cell specific
promoters. One candidate promoter, pGC1 (At1g22690),
drove very strong expression of reporter genes (GUS and
GFP-based calcium reporter) in guard cells of both Arabi-
dopsis and tobacco. Specific gene suppression in guard
cells was also achieved by pGC1 driving antisense repres-
sion.

Results

Isolation of pGCI, a strong guard cell promoter

Guard cell-specific microarray data were analyzed side by
side with mesophyll cell-specific microarray data [26] to
search for strong guard cell promoter candidates with low
expression levels in mesophyll cells. Additional guard cell
and mesophyll cell microarray experiments were con-
ducted covering 23,000 genes (ATH1 Affymetrix) (See
Additional files 1, 2, 3, 4, 5, 6, 7 and 8). Furthermore, can-
didate genes were analyzed using Genevestigator to select
genes with low expression levels in non-leaf tissues across
more than 2000 microarray experiments [27]. Guard cells
and mesophyll cells exposed to ABA were also analyzed,
as ABA synthesis is induced under several stress condi-
tions. The following criteria were used for selection of
strong guard cell promoter candidates. The raw signal in
guard cells was set above 10000, the raw signal in meso-
phyll cells was set below 1000, and the reduction or
induction fold by ABA was set to be less than two. Tran-
scriptional profiles of several genes passed these criteria
(Figure 1 and Additional file 9). The putative promoters
(1-2 kb upstream of the annotated ATG start codon) (Fig-
ure 2) were amplified by PCR and cloned into a GUS
reporter vector. GUS staining of the T1 transgenic plants
showed guard cell specific staining for one particular pro-
moter candidate (At1g22690), designated as pGClI.
At1g22690 is among the most highly expressed genes in
guard cells. It showed relatively high expression in guard
cells and low expression in mesophyll cells. At1g22690
encodes a small cysteine rich protein (119 amino acids).
It belongs to the GASA family (GA-stimulated transcript
(GAST1) protein homolog). A study by Wigoda et al. [28]
suggested that GIP2 (a GASA protein from Petunia hybr-
ida) exhibited in planta antioxidant activity. T-DNA inser-
tional line in At1g22690 did not yield any noticeable
stomatal phenotypes under our typical laboratory condi-
tions (unpublished data). Furthermore, our guard cell
microarray data showed that two other GASA genes also
showed high expression level in guard cells (GASA 1
(At1g75750) and GASA 4 (At5g15230)).
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Transcriptional profiles of guard cell expressed genes in both guard cells and mesophyll cells. Average transcript
levels of KATI (At5g46240), AtMYB60 (Atlg08810), AtMYB6 | (Atlg09540), RABI8 (At5g66400), GCI (Atlg22690), and AtACT7
(At5g09810) from two independent microarrays are displayed. While KAT [, AtMYB60 and GC/ all exhibited guard cell-specific
expression, the transcript level of GC/ was the highest among the three genes. RAB/8 also exhibited very strong guard cell
expression, but its expression level in mesophyll cells was strongly induced by ABA treatment.

We analyzed GC1 (At1g22690) gene expression in
response to different treatments in the microarray data
compiled by Genevestigator [27,29]. Among 96 treat-
ments, 8 treatments affected At1g22690 expression more
than two fold. Salt and osmotic stress dramatically
deceased At1g22690 gene expression (more than 10 fold)
[30]. Meanwhile, light, ABA, GA, cold or drought did not
induce more than a two-fold change in gene expression of
At1g22690. This suggests that GC1 (At1g22690) has a rel-
atively constant expression under most common situa-
tions.

Interestingly, the pGC1::GUS not only delivered strong
GUS expression in guard cells in leaves (Figure 3A,B), but
also in guard cells in petioles and hypocotyls (Figure
3C,D,E). GUS staining from other candidate promoter-
GUS fusions was either not very strong in guard cells and/
or showed reporter expression in other tissues (data not
shown). We therefore focused on pGC1 for the rest of this
study. The GC1 promoter was also fused to a second

reporter, a GFP-based calcium reporter, yellow cameleon
3.60 (YC3.60) [31]. Most T1 transgenic plants (approxi-
mately 75%) transformed with pGC1::YC3.60 exhibited
strong guard cell specific fluorescence, indicating a high
degree of guard cell expression efficiency per transform-
ant. Some plants also showed fluorescence in some leaf
epidermal cells (data not shown). However, younger or
immature guard cells showed no or much less GFP expres-
sion (Figure 3F,G). Furthermore, guard cells in sepals and
hypocotyls also showed GFP expression (Figure 3H,1],K).

We further examined whether the GC1 promoter could
drive guard cell specific reporter expression in a guard cell
development mutant, too many mouths (tmm) [32]. The
tmm mutant was transformed with either the pGC1::GUS
or the pGC1::YC3.60 construct. GUS staining showed
reporter gene expression in clustered stomata (Figure 3L).
Similarly, GFP expression was observed in clustered sto-
mata in tmm plants transformed with pGC1::YC3.60 (Fig-
ure 3M).
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AGTTGGATCGTC TAGTAGGTACAATTCGGG TCCTTGGCGAAGTATCCATTCAARATAGTGTTTAGTTTTGGACTTGAGAACTTGTTGTCTCTTTGATCTC
Vo1
TTTTATATARAACT TTGGACGTGTAGGACAAACT TG TCAACATAAGARACARAARATGGT TGCAACAGAGAGGATGAATTTATAAGTTTTCAACACCGCTTT
(+)ABRE-like
TCTTATTAGACGGACAACAATC TATAGTGGAGTAAATT TTTATT TT TGGTAAAATGGT TAGTGAAT TCAAATATCTARATTTTGTGACTCACTAACATTA

ACAAATATGCATAAGACATAAAAAAAAGAAAGAATAATTC TTATGAAACAAGARAAARARCCTATACAATCAATC TTTAGGAAT TGACGATGTAGAATTG
VYio2) (=) TAAAG motif
TAGATGATAAATTTTC TCARATATAGATGGGCCTAATGARGGGTGCCGCTTATTGGATCTGACCCATT TTGAGGACATTAATATTTTCATTGGTTATAAG

CCTTTTAATCARAATTGTCATTAAAT TGATGTCTCCCTCTCGGGTCATTT TCCTTTCTCCCTCACAAT TAATGTAGHC TTTAGCAATTTGCACGCTGTGE
(-)TARAG motif
TTTGICTITATATT TAGTAACACAARCATT TTGACT TG TC TTGTAGAG TTTT TCTC TT TTAT TTTTCTATCCAATATGAAAACTAAAAGTGTTCTCGTAT
{~)TARAG motif
ACATATATTAAAATITAAAGAAACC TATGAAAACACCAATACARATGCGATAT TG TT TTCAGT TCGACG TT TCATGTTTG TTAGAARATTTC TAATGACGT
(+)TAAAG motif (*) (D2)
TTGTATAAAATAGACAAT TAAACGCCAAACACTACATCTG TG TT TTCGARCAATAT TGCGTC TGCGTTTCCTTCATC TATCTCTCTCAGTGTCACAATGT

CTGAACTAAGAGACAGCTGTAAACTATCAT TAAGACATAAACTACCAAAGTATCARAGCTAATGTARAAAT TACTCTCATTTCCACGTAACARATTGAGTT
(D4) (=)ABRE=like
AGCTTAAGATATTAGCTGAAACTAGCTTTGAATTTTCTTCTTCTTCT TCCATGCATCCTCCCAAAAAAGCGAACCAATCAAAACTCTTTCGCATATCAAACT

CCRACACTTTACAGCARATGCAATCTATAATC TG TGAT TTATCCAATAAAAACC TG TGAT TTATG T TTGGC TCCAGCGATGAAAGTC TATGCATG TGATC
(=)TAARG motif S
TCTATCCAACATGAGTAATTGTTCAGAAATAAAAAGTAGCTGAAATG TATCTATATANAGAATCATCCACAAGTACTATTTTCACACACTACTTCARAR
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+7 TCACTACTCAAGAAATATG

Figure 2

{(+)TAAAG motif

Putative promoter sequence of GCI. The transcriptional start site is denoted as +1, and the putative start codon (ATG) is
located at +23/+25 bp. The Dof target sites, 5'-TAAAG-3' (+) or 5'-CTTTA-3'(-), which have been shown to contribute to
guard-cell specific gene expression [24], are boxed. The ABRE, abscisic acid-response element, 5'-ACGTG-3' (+) or 5'-
CACGT-3' (-), are underscored and labeled. The TATA box (5'-TATATAA-3') and the start codon (ATG) are shown in bold
with dotted boxes. The arrowheads mark the positions for promoter deletion analyses in Figure 4.

To test if the GC1 promoter can drive guard cell specific
reporter gene expression in plants besides Arabidopsis, we
also transformed pGC1::YC3.60 into tobacco plants. Inter-
estingly, strong guard cell GFP expression was observed in
tobacco leaves (Figure 3N).

Serial promoter deletions define a region for guard cell
specificity and strength

A promoter region may contain both enhancer and repres-
sor elements. To probe which part of the original 1716 bp
promoter (full length, FL, -1693 bp/+23 bp) is required
for strong guard cell specific reporter expression, four 5'
truncated versions of the GC1 promoter were generated as
D1 (-1140 bp/+23 bp), D2 (-861 bp/+23 bp), D3 (-443
bp/+23 bp), and D4 (-224 bp/+23 bp) (Figure 4). These
truncated promoters were fused to the GUS reporter to
generate the following constructs: pGC1(D1)::GUS,
pGC1(D2)::GUS, pGC1(D3)::GUS and pGC1(D4)::GUS.

These GUS reporter constructs were transformed into
Columbia wild type plants side-by-side with the original
pGCI(FL)::GUS construct. T1 seedlings (n = 50-100)
from each transformation event were pooled and stained.
The truncated pGCI1(D1) drove similar or stronger GUS
expression in seedlings than the original full-length pro-
moter (Figure 4A), suggesting that elements in the region
from -1693 bp to -1140 bp might repress promoter activ-
ity in guard cells. Promoters pGC1(D2) and pGC1(D3) led
to weaker reporter gene expression in guard cells than
pGC1(FL), suggesting elements in the region from -1140
bp to -443 bp might enhance the promoter activity in
guard cells. The shortest promoter, pGCI1(D4), drove
reporter gene expression in tissues other than guard cells,
such as roots and seed coats, suggesting the region from -
861 bp to -224 bp was required for guard cell specific
activity. This region contains 8 (T/A)AAAG elements that
have been shown to be required for guard cell specific
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Figure 3

The GCI promoter mediates strong reporter expression in guard cells of wild-type Arabidopsis seedlings, too
many mouths mutant and also in tobacco. A. A two-week-old pGC/::GUS transgenic seedling. B. Different stages of guard
cells exhibited different levels of GUS expression. C. Upper part of the hypocotyl. D. Young leaf and petiole. E. Leaf edge and
petiole. F. & G. pGC/::YC3.60 was mainly expressed in mature guard cells, very weak in young or immature guard cells (white
arrows in (f) & (g)). H. & I.pGCI::YC3.60 was expressed in guard cells on the hypocotyl. J. & K.pGCI::YC3.60 was expressed in
guard cells on the sepal. L. & M. pGCI mediated GUS (L) and GFP (M) reporter expression in clustered stomata in too many
mouths. N. pGC| mediated strong reporter gene expression in tobacco guard cells.
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Serial deletion of the pGCI promoter defines regions for guard cell expression. A. Representative T1 plants from
different promoter:GUS transgenic lines. The pGCI/(D1) (-1140/+23) promoter mediated stronger GUS expression in guard
cells than the original full-length promoter (FL) (-1693/+23). GUS expression of pGCI(D2)::GUS and pGC|(D3)::GUS was weaker
than that of the pGCI (FL)::GUS and pGCI (D 1)::GUS. The shortest promoter pGCI(D4) (-224/+23) drives reporter expression in
tissues and cells besides guard cells. B. Serial deletion of the pGCI promoter defines regions for guard cell expression. The black
arrowheads stand for TAAAG elements while the smaller gray arrowheads stand for AAAAG elements. Arrowheads on the
top of the promoter line are on the sense strand while arrowheads below the promoter line are on the antisense strand. The
central TAAAG on the sense strand was also marked by a star and was chosen for block mutagenesis. The region from -1693
to -1 140 contains repressor elements for guard cell expression and the region from -1 140 to -224 contains elements for guard
cell specificity and also enhancer elements for guard cells expression.

activity of the KST1 promoter in potato [24]. The trun-
cated promoter, pGC1(D1), showed strong guard cell
expression, suggesting that it contains elements for both
guard cell specificity and promoter strength.

Calcium imaging in guard cells of intact plants

Many physiological stimuli in plant cells induce changes
in the intracellular calcium concentration. Calcium acts as
a secondary messenger in many signal transduction cas-
cades [33]. Cytosolic calcium concentrations can be mon-
itored either by chemical reporters such as the ratiometric
Ca?+-sensitive fluorescent dye fura-2 [34,35], the geneti-
cally encoded calcium sensitive luminescent protein
aequorin [14] or the fluorescent ratiometric calcium
reporter yellow cameleon [12,15,36]. Stomatal closing

signals, such as ABA and CO,, have been shown to induce
calcium elevations in guard cells [16,18,19,37-42]. Spon-
taneous calcium transients in leaf epidermal samples have
also been observed without any ABA treatment
[15,43,44]. It is not clear whether spontaneous calcium
transients occur in guard cells in intact plants as fura-2
injected Vicia faba guard cells did not show such transients
[45]. A new generation calcium indicator, yellow came-
leon, YC3.60, shows an enhanced calcium-dependent
change in the ratio of YFP/CFP by nearly 600% compared
with yellow cameleon 2.1 [31]. By combining the GC1
promoter with YC3.60, pGC1::YC3.60, as described
before, we could observe strong guard cell expression of
the YC3.60 in intact leaves, hypocotyls, and sepals (Figure
3).
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We first measured calcium transients in intact leaf epider-
mis from plants transformed with pGC1::YC3.60 by
imposing calcium oscillations as described previously
[11,46]. Robust calcium transients with ratiometric
changes of up to a factor of 4 relative to the baseline ratio
could be observed in guard cells (Figure 5B). Ratiometric
changes of approximately 0.5 were observed using
358::YC2.1 in response to imposed calcium transients
[15,43,44,46]. This further confirmed the robust ratio-
metric signal to noise efficiency of YC3.60. Next, we per-
formed calcium imaging in intact Arabidopsis seedlings by
mounting leaves to a microscope cover glass. Two differ-
ent methods were tested: the first one was to submerge
only the root with water and leave the shoot in air, and the
second one was to submerge the entire plant in water.
Spontaneous calcium transients were detected under both
conditions (Table 1). A representative calcium transients/
time course is shown in Figure 5D. Interestingly, the spon-
taneous calcium transients of two guard cells from the
same stomate were often not synchronized (Figure 5C,D
and additional files 10 and 11). These experiments clearly
demonstrate that spontaneous calcium transients
occurred in guard cells of intact plants and were not an
artifact of imaging excised epidermis and illustrate the
potential of the pGC1 promoter as a method for driving
transgene and reporter expression in guard cells.

The use of pGCI to manipulate specific gene expression in
guard cells

Manipulation of specific gene expression in guard cells,
either by highly expressing the wild-type gene or a domi-
nant mutant form, or reducing its expression in guard
cells, would be very powerful to probe a specific gene
function in guard cells. To further explore the application
of the GC1 promoter, we took the antisense approach to
analyze reduction of gene expression in guard cells. For
this purpose, a 35S::GFP transgenic line with stable GFP
expression in both guard cells and epidermal cells (Figure
6A,B) was transformed with a pGC1(D1)::anti-GFP con-
struct (anti-GFP fused to the truncated GC1 promoter
pGC1(D1)). 34 out of 40 T1 plants of 35S::GFP plants
transformed with pGC1(D1)::anti-GFP showed greatly
reduced GFP expression in guard cells while the GFP

http://www.plantmethods.com/content/4/1/6

expression level in epidermal cells was unchanged (Figure
6C,D). These observations suggest a remarkable antisense
repression efficiency using pGC1(D1). Interestingly, less
suppression of GFP expression was observed in immature
guard cells (yellow arrow in Figure 6D). This is consistent
with the observation that pGC1 drove less reporter gene
expression in immature guard cells (Figure 3G). This
experiment strongly indicates that an antisense approach
can be used to reduce expression of selected genes in
guard cells without affecting its expression in other cell

types.

Discussion

We report the identification of a strong Arabidopsis guard
cell promoter, pGCI1. Promoter::reporter fusion analyses
showed strong guard cell specific reporter gene expression
in wild-type Arabidopsis plants and the guard cell develop-
ment mutant, too many mouths [32] and also tobacco
plants. Serial deletions of the GCI promoter defined
regions for guard cell expression. Calcium imaging in
guard cells in intact plants was made possible via the com-
bination of the GC1 promoter and a new generation of
calcium reporter, YC3.60 [31]. The GC1 promoter was
also powerful for knocking down specific gene expression
in guard cells using an antisense approach.

Comparison between the GC| promoter and other known
guard cell promoter

As the central regulator of water transpiration and CO,
uptake, guard cells have been developed as an integrative
model system to investigate interplay among ion channel/
transporter activities, light, plant hormones, secondary
messengers, the cytoskeleton and membrane trafficking in
regulating the physiological output: the stomatal aperture
[2,4,5,47,48]. Several guard cell promoters have been
reported. The KAT1(At5g46240) promoter delivered spe-
cific reporter expression in guard cells even though it
sometimes induced reporter expression in other cells and
tissues such as roots and inflorescences [25]. AtMYBG60
(At1g08810) also showed specific expression in guard
cells based on promoter::GUS and promoter::GFP study
[49]. AtMYBG61(At1g09540) has also been shown to be
mainly expressed in guard cells [50]. Based on our guard

Table I: Summary of calcium imaging in guard cells of intact pGC1::YC3.60 transgenic Arabidopsis plants.

Experiments Plants GCs analyzed GCs with Spontaneous Ca2+ transients Percentage %

| 5 24 18 75
Il I 52 36 62.23
n I 55 36 65.45
v 9 54 24 44.44

Total 36 185 114 61.78%

Only roots were submerged in water in experiment |. Both leaves and roots were submerged in water in experiments Il, Ill, and IV.
Page 7 of 15
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Imposed intracellular calcium transients in pGCI::YC3.60 expressing guard cells and spontaneous calcium tran-
sients occur in guard cells of intact pGCI::YC3.60 transgenic plants. A. Fluorescence image of leaf epidermis of
pGC1::YC3.60 transgenic plant. Note the surrounding epidermal cells were not fluorescent. B. The 6 guard cells in panel A all
produced intracellular calcium transients in response to imposed calcium oscillations. The arrows mark the switch point from
the depolarizing buffer to the Ca?*-containing hyperpolarizing buffer (see Methods). C. A pseudo-colored ratiometric image of
a leaf from an intact Col plants transformed with pGCI::YC3.60. The orange-yellow color indicates higher [Ca2*] and the blue
color indicates lower [Ca?*]. Spontaneous calcium transients occurred in leaves of intact Arabidopsis plants (movies are shown
as additional files 10 and I 1). D. A time course (25 minutes) of the emission ratios of the two guard cells marked by an arrow
in C shows that spontaneous calcium transients occur in intact Arabidopsis plants. The ratio was calculated for individual cells by

dividing the YFP emission intensity by the CFP emission intensity.

cell-specific microarray data, we estimated the average
transcription levels in Figure 1 and additional file 9. The
AtMYBG1 gene expression signal was the lowest among
these genes. In the case of KAT1, its expression in guard
cells was much higher than that in mesophyll cells. But its
raw signal was approximately 5 to 10 fold lower than that
of GC1. AtMYBG0 also exhibited highly guard cell specific
expression compared with its expression in mesophyll
cells. However, the raw signal of AtMYB60 was only
approximately one third of that of GCI. Furthermore,
AtMYBG0 is also highly expressed in seeds based on Gen-
evestigator microarray analyses [27,29,51-54]. Similarly,
RAB18 (At5g66400) is also highly expressed in seeds

besides its strong expression in guard cells. pGCI drove
very strong and specific reporter gene expression in guard
cells (expression is very low in non-leaf tissues/organs),
although reporter gene expression was observed in epider-
mal cells in some plants transformed with the
pGC1::YC3.60 (data not shown). In summary, the GCI
promoter is a very strong guard cell promoter among
those analyzed.

Spontaneous calcium transients in guard cells

Our current study with intact Arabidopsis plants using the
genetically encoded calcium reporter YC3.60 driven by
the GC1 promoter showed that spontaneous calcium tran-
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Figure 6

pGCI(DI)::anti-GFP caused reduction of GFP expression in guard cells of 355::GFP plants. A. Leaf epidermis of a
35S::GFP transgenic plant (bright field with GFP filter). The arrows mark stomata. B. The fluorescence imaging of same leaf epi-
dermis shown in A. Stomata are marked by yellow arrows. Note that both the guard cells and surrounding epidermal cells are
fluorescent. C. Leaf epidermis of a T transgenic plant expressing pGCI (D 1)::anti-GFP in the 355::GFP background. All stomata
are marked by yellow arrows. D. The fluorescence imaging of the same leaf epidermis shown in C. Note that 7 (marked by
blue arrows) out of 8 stomata showed reduced GFP expression compared with the surrounding epidermal cells. One pair of
guard cells (marked by the yellow arrow) still exhibited moderate GFP expression. This stomate was relatively immature

compared with the other 7 stomata.

sients occurred in guard cells in intact Arabidopsis plants.
This is consistent with previous observations of spontane-
ous calcium transients in Arabidopsis guard cells
[15,43,44]. However, the mechanisms causing spontane-
ous calcium transients are not yet characterized in depth.
Several lines of evidence suggest a connection between
hyperpolarization of the guard cell plasma membrane
and spontaneous calcium transients in guard cells. In
experiments where membrane potential and [Ca’*],
were measured simultaneously, hyperpolarization caused
ABA-induced [Ca?*], increases. Maintaining guard cells
in a more hyperpolarized state produced spontaneous
[Ca?*]y, oscillations in Vicia faba guard cells [38], in a sub-
population of Commelina guard cells [39] and in Arabidop-
sis guard cells [43]. Calcium imaging analyses in intact
Arabidopsis plants using pGC1::YC3.60 show that sponta-
neous calcium transients also occur in intact plants. These
spontaneous Ca2* transients may also be the result of inte-
grated signaling by multiple stimuli converging in guard

cells, such as light conditions, CO, and water balance. In
Vicia faba no spontaneous calcium transients were
observed in guard cells in intact plants [45]. In this case
fura-2 (ca. 100 uM) was injected into guard cells. High
concentrations of fura-2 may inhibit spontaneous cal-
cium elevations, as loading the close fura-2 analogue,
BAPTA, into Arabidopsis guard cells effectively inhibits
these calcium transients [44]. By contrast, the estimated
yellow cameleon concentration in guard cells of
pGC1::YC3.60 transgenic plants was approximately 1 uM
(see Methods). The lower concentration of yellow came-
leon should interfere less with guard cell calcium homeos-
tasis and could monitor more faithfully calcium
concentration dynamics. Note that low concentrations of
injected fura-2 also allowed resolution of repetitive cal-
cium transients in guard cells [38,39]. Note that BAPTA-
derived fluorescent dyes such as fura-2 and indo-1 have
certain complementary advantages to cameleon, as they
can be loaded into cells that are not easily transformed
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[55] and these dyes can report rapid millisecond scale
Ca2?+ transients that occur in neurons[56], but have pres-
ently not yet been reported in plants using fura-2 or indo-
1.

Circadian calcium oscillations at the whole plant leaf level
with a daily rhythm have been demonstrated by several
groups using aequorin as the calcium reporter [57-59].
Most likely this circadian calcium oscillation results from
synchronous changes in baseline cytosolic calcium in a
cell population [60]. As the circadian calcium oscillation
is related to the baseline of intracellular calcium, the rapid
spontaneous calcium transients in individual guard cells
likely would be filtered from circadian calcium measure-
ments [60]. Repetitive calcium transients may reflect func-
tions that include continuous calcium homeostasis
between extracellular calcium, cytoplasmic calcium, and
intracellular calcium stores. Spontaneous calcium tran-
sients in guard cells also correlate with the recent pro-
posed calcium sensor priming hypothesis for calcium
specificity in signaling, in which the stomatal closing sig-
nals ABA and CO, are proposed to prime (de-inactivate)
calcium sensitive steps that mediate stomatal closing
[44,61].

(TIA)AAAG cis elements and guard cell specific expression
(T/A)AAAG, a binding motif for Dof zinc finger transcrip-
tion factors, has been suggested to play a critical role for
guard-cell specific expression of KST1 promoter activity in
potato based on block mutagenesis [24]. However, the
putative promoter regions (1800 bp before ATG start
codon) for AtACT7 (At5g09810), KATI1 (At5g46240),
RAB18 (At5g866400), AtIMYBGO (At1g08810), AtMYBG61
(At1g09540) and GC1 (At1g22690) all contain a similar
number of Dof factor binding motifs, the (T/A)AAAG ele-
ments, even though some of them do not show guard cell
expression preference (see additional file 12). AtMYBG61,
which showed low expression in guard cells (Figure 1),
contains 29 (T/A)AAAG elements in its putative promoter
region, while the AtACT7 promoter contains 23 (T/
A)AAAG elements. Promoter truncation suggests that the
region from -861bp to -224 bp in the GC1 promoter con-
tains elements for guard cell specific promoter activity
(Figure 4). This region contains 8 (T/A)AAAG elements.
However, block mutagenesis of the central TAAAG motif
on the sense strand (marked by a star in Figure 4B) in this
region did not affect reporter expression in guard cells
(data not shown). Thus the (T/A)AAAG element alone
may not explain why GC1 and other guard cell-specific
genes exhibited guard cell-specific expression.

Conclusion

In this report, we pursued microarray (ATH1) analyses of
guard cell expressed genes and used the information to
isolate and characterize a strong guard cell promoter,

http://www.plantmethods.com/content/4/1/6

pGC1. We analyzed the potential of pGC1 as a tool for
manipulating gene expression in guard cells. The GC1
promoter was used to test several experimental manipula-
tions. The GC1 promoter was used to express the calcium
reporter YC3.60 in guard cells. This enabled us to perform
calcium imaging experiments in guard cells of intact Ara-
bidopsis plants. Our previous research has shown that for
T-DNA insertional mutants, hundreds of transformants
often needed to be generated to obtain at best a few lines
expressing a reporter gene in guard cells when using the
35S promoter. Use of the GCI promoter provides a
method to dramatically increase the success rate of
reporter gene expression. Furthermore, guard cell-specific
antisense GFP expression using the GC1 promoter effi-
ciently silenced GFP expression in guard cells of 35S::GFP
transgenic plants. These data and the high transformation
efficiency together suggest that the GC1 promoter pro-
vides a powerful tool for manipulating the expression of
guard cell signaling components and for expressing
reporters of diverse secondary messengers. Thus the GC1
promoter provides a method to enhance monitoring of
signaling events in guard cells in response to different
treatments and to study whole plant responses in guard
cell specific transgenic mutants.

Materials and Methods

Plant material

Arabidopsis thaliana (Columbia ecotype) plants were used
for transformation experiments unless otherwise speci-
fied. The 35S::GFP transgenic line was generated for a pre-
vious study [62]. The guard cell development mutant, too
many mouths, was a kind gift from Dr. Fred Sack at the Uni-
versity of British Columbia, Vancouver.

GeneChip microarray experiments

Plant growth, ABA treatment, guard cell protoplast isola-
tion, and RNA extraction were performed as previously
described [26]. Affymetrix Arabidopsis ATH1 genome
arrays (Santa Clara, CA) were used, representing approxi-
mately 23,000 genes. Transcripts were amplified, labeled,
and hybridized at the University of California, San Diego
Gene Chip Core facility. For each condition (with or with-
out ABA treatment, guard cell or mesophyll cell), two
independent hybridizations were performed. Transcrip-
tional inhibitors (33 mg/L actinomycin D and 100 mg/L
cordycepin) were added during protoplast isolation for
RNA samples for four chip hybridizations as described
[26]. ATH1 microarray data were deposited at MIAMEx-
press [63] with an accession number E-MEXP-1443 and
also on our laboratory's website for public downloading
(see Additional files 1, 2, 3, 4, 5, 6, 7 and 8).

Construction of recombinant plasmids
To amplify the GC1 (At1g22690) promoter from the Col
genomic DNA by PCR, primers YZ27 (5'-CATGCCAT-
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GGatttcttgagtagtgattttgaag-3', right before the ATG start
codon with Ncol site) and YZ28 (5'-ACGCGTCGACgag-
taaagattcagtaacccg-3', 1693 bp upstream of the transcrip-
tional start (Figure 2) with Sall site) were utilized. The
PCR product was cloned into pGEM-Teasy vector (Invitro-
gen, Carlsbad, CA) to create pGEM-T-pGCl.

To clone the GCI1 promoter into the pBI101 vector,
pGEM-T-pGC1 was first cut by Ncol. The sticky end was
then filled-in by T4 DNA polymerase (New England
BioLabs) to create a blunt end. The pGC1 fragment was
then released by Sall digestion. Meanwhile, the destina-
tion vector, pBI101, was cut sequentially by Smal and Sall.
The pGC1 fragment was then inserted upstream of the
GUS reporter gene in the pBI101 vector to create pBI101-
pGC1::GUS construct (simplified as pGC1::GUS).

To create the 5'-deletion series of the pGC1 promoter,
primer YZ27 was used with primers YZ159 (5'-GCGTC-
GACatggttgcaacagagaggatga-3', 1141 bp upstream of the
transcriptional start, D1), YZ160 (5'-GCGTCGACctaat-
gaagggtgccgcttattg-3', 861 bp upstream of the transcrip-
tional start, D2), YZ161 (5'-
GCGTCGACcaatattgcgtctgegtttect-3', 466 bp upstream of
the transcriptional start, D3) and YZ162 (5'-GCGTCGAC-
gaaccaatcaaaactgtttgcata-3', 224 bp upstream of the tran-
scriptional start, D4) respectively for genomic PCR to
amplify pGC1(D1), pGC1(D2), pGC1(D3) and pGC1(D4)
respectively (Figure 4). The PCR fragments were then
cloned into pGEM-T-easy vector and then subcloned into
pBI101 vector to create pBI101-pGC1(D1)::GUS, pBI101-
pGC1(D2)::GUS, pBI101-pGC1(D3)::GUS, and pBI101-
pGC1(D4)::GUS.

To create pBI101-pGC1::YC3.60 construct, YC3.60 was
first released from pcDNA3-YC3.60 [31] by EcoRI/BamHI
double digestion. Then the BamHI-5'-YC3.60-3'-EcoRI
fragment was cloned into pSK vector (prepared by EcoRI
and BamHI digestion) to create pSK-YC3.60 construct.
The pSK-YC3.60 was then digested with Notl and Ncol to
receive Notl-5'-pGC1-3'-Ncol fragment from pGEM-T-
pGC1. This ligation resulted in the pSK-pGC1::YC3.60. The
pGC1::YC3.60 fragment was released by Sall/Sacl double
digestion, meanwhile the pBI101 vector was digested with
Sall/Sacl to remove the GUS reporter gene. The
pBI101(Sall/Sacl) was ligated with Sall-5'-pGC1::YC3.60-
3'-Sacl to create pBI101-pGC1::YC3.60 construct.

To create pGreenll 0179-pGC1(D1)::anti-GFP binary vec-
tor with hygromycin selective marker in plant, the 35S ter-
minator was  amplified with  YZ439 (5'-
AAGAGATCTATCTAGAGTCCGCAA-3', with Xbal) and
Y7440 (5'-GCACGCTCGAGCTCgtcactggattttggttttagg-3',
with Sacl site) from vector pAVA319 [64]. The PCR prod-
uct was then subsequently digested with Xbal and Sacl.

http://www.plantmethods.com/content/4/1/6

The 5'-Xbal-35S terminator-Sacl-3' was ligated into pGree-
nll 0179-Xabl...Sacl to create pGreenll 0179-terminator.
The pGC1(D1) was released from pGEM-T-pGC1(D1) by
Notl digestion, then filled-in, then cut by Sall to create 5'-
Sall-pGC1(D1)-Notl(filled-in blunt end). Meanwhile, the
pGreenll 0179-terminator was doubled digested with Sall
and EcoRV. These two fragments were ligated to generate
pGreenll 0179-pGCP(D1)-terminator vector. The antisense
GFP was amplified with primers YZ449 (5'-ACATGCCAT-
GGttacttgtacagctcgtccatgee-3', reverse end of GFP with
Ncol) and YZ513 (5'-ctagTCTAGAatggtgagcaagggcgagg-3',
start of GFP with Xbal). The PCR fragment was double
digested with Ncol and Xbal. The pGreenll 0179-
pGC1(D1)-Terminator was also double digested with Ncol
and Xbal. The pGeenll 0179-pGC1(D1)-Terminator frag-
ment was ligated with 5'-Ncol -anti-GFP-Xbal-3' to pro-
duce pGeenll 0179-pGC1(D1)::anti-GFP binary construct.

The central TAAAG motif (-579-->-575) on the sense
stand was changed to CGGGA by block mutagenesis using
the QuickChange Site-Directed Mutagenesis Kit from
Stratagene (La Jolla, California).

Arabidopsis transformation and selection

The binary constructs, pBI101-pGC1::YC3.60, pBI101-
pGC1::GUS, pBI101-pGC1(D1)::GUS, pBI101-
pGC1(D2)::GUS, pBI101-pGC1(D3)::GUS and pBI101-
pGC1(D4)::GUS were transformed into the Agrobacterium
tumefaciens strain GV3101 by electroporation. The trans-
formants were selected on LB plates with both kanamycin
(selective marker for the construct) and gentamycin
(selective marker for the Agrobacterium). Arabidopsis
plants were then transformed by Agrobacterium GV3101
hosting respective constructs following the dipping
method as described by Clough and Bent [65]. The TO
seeds were selected on 1/2 MS plates with 50 pg/ml kan-
amycin.

In the case of pGreenll 0179-pGC1(D1)::anti-GFP, the
GV3101 with the helper plasmid pSOUP was used as the
host strain, and the selection for Agrobacterium transform-
ants was carried on LB plates with Kanamycin, gentamy-
cin, and tetracyclin. This was used to transform 35S::GFP
transgenic plants (kanamycin resistant). The TO seeds
were selected on 1/2 MS plates with 25 pg/ml hygromycin
(Roche).

GUS staining
Seedlings were stained following a previously described
protocol [62].

Epi-fluorescence image acquisition

Transgenic Arabidopsis seedlings or sepals of pBI101-
pGC1::YC3.60 were simply placed between a microscope
slide and a cover glass. A Nikon digital camera was
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attached to the microscope. Exposure time for the bright
image is 5 seconds and 15-25 seconds for fluorescence
image (excitation wavelength is 440 nm). For 35S::GFP
plants and 35S::GFP plants transformed with pGreenll
0179-pGC1(D1)::anti-GFP, intact leaf epidermis were
used for epi-fluorescence image acquisition.

Tobacco plant transformation

In vitro sterile shoot cultures of Nicotiana tabacum cv. SR1
were maintained on 1/2 MS agar medium containing 15
g/l sucrose. The pH was adjusted to 5.5 before autoclav-
ing. The tobacco culture was grown at 25°C, with a light/
dark cycle of 16/8 h (light intensity was approximately 70
pmol m2s-1). Stable transformation of Nicotiana tabacum
SR1 with pBI101-pGC1-YC3.60 was performed as
described previously [66]. Transgenic regenerated tobacco
shoots were selected by kanamycin (100 pg/ml) resistance
and were then transferred on 1/2 MS agar medium con-
taining 15 g/l sucrose supplemented with kanamycin
(100 pg/ml) and cefotaxime (200 pg/ml). T1 regenerated
plants, which were able to set up root organogenesis in
presence of kanamycin, were then analyzed for cameleon
expression.

Confocal analysis of transgenic tobacco

The tobacco leaves of plant transformed with pBI101-
pGC1-YC3.60 were observed with a Leica TCS SP2 laser
confocal microscope (Leica Microsystems). For cameleon
detection, excitation was at 514 nm and emission
between 525 and 540 nm. The images acquired from the
confocal microscope were processed using Image J [67].

Calcium imaging and imposed Ca?* Transients

All calcium imaging in this work was performed with a
TE300 inverted microscope using a TE-FM Epi-Fluores-
cence attachment (Nikon Inc. Melville, NY). Excitation
from a 75 W Xenon lamp (Osram, Germany) was always
attenuated 97% by using both 4x and 8x neutral density
filters (3% transmission) to reduce bleaching of reporters
during time-resolved imaging. Wavelength specificity was
obtained with a cameleon filter set (440/20 excitation,
485/40 emissionl, 535/30 emission2, 455DCLP dichroic;
filter set 71007a Chroma Technology, Rockingham, VT).
Filter wheel, shutter and CoolSNAP CCD camera from
Photomerics (Roper Scientific, Germany) were controlled
with Metafluor software (MDS, Inc., Toronto, Canada).

Intact leaf epidermes of pGC1::YC3.60 transgenic plants
were prepared for microscopy as described in Mori et al.
(2006) [11]. On the microscope, intact epidermis was per-
fused with depolarization buffer (10 mM MES-Tris buffer,
pH 6.1 containing 25 mM dipotassium imminodiacetate,
and 100 uM BAPTA) for 10 minutes to obtain a back-
ground. Subsequently hyperpolarizing buffer containing
Ca?* (10 mM MES-Tris buffer, pH 6.1, 1 mM dipotassium
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imminodiacetate, and 1 mM CaCl,) was applied for 2
minutes intervals, followed by 5 minutes of depolarizing
buffer.

Calcium imaging in guard cells of intact plants

Both intact leaves and intact plants were used in this
study. Medical adhesive (Hollister Inc., Libertyville, IL)
was used to attach leaves to microscope cover glasses. A
paintbrush was used to gently press the leaf to the cover-
slip. In the case of intact plants two different methods
were followed. The first method was to submerge only the
root with water while the shoot was left in air. The second
method was to completely submerge entire seedlings in
water. Sometimes submerging only the root but not the
shoot caused the leaf attached to the cover slip to show
wilting in less than 10 minutes with subsequent closure of
the stomata. Most of the intact plant imaging experiments
were therefore carried out by submerging both the shoot
(leaves) and the root in water. The submersion of the
entire plant prevented the leaf from drying out and no sto-
matal closure was observed for more than 50 minutes. The
imaging protocol was the same as in Mori et al., 2006
[11].

Estimation of yellow cameleon concentration in guard
cells

Recombinant yellow cameleon protein was isolated after
expression in E coli. Recombinant cameleon protein was
then added at defined concentrations to a glass cover slip
for fluorescence imaging. Then two additional cover slips
were used to create a slanted gradient of cameleon solu-
tion thicknesses. This enabled analysis of various solution
thicknesses in the range of stomatal guard cell thicknesses.
Diluted yellow cameleon protein solutions at different
concentrations were analyzed and the florescence inten-
sity was measured for each concentration at various thick-
nesses. Calibration curves were generated for protein
concentrations and florescent intensities at different thick-
nesses. This was utilized to estimate the yellow cameleon
protein concentration in guard cells of pGC1:YC3.6
transgenic plants.
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