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Abstract
Background: Medicago truncatula is a model legume species that is currently the focus of an international genome
sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-
wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies
mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst
such genes are many encoding transcription factors (TFs), which are arguably the most important class of
regulatory proteins. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is the most
sensitive method currently available for transcript quantification, and one that can be scaled up to analyze
transcripts of thousands of genes in parallel. Thus, qRT-PCR is an ideal method to tackle the problem of TF
transcript quantification in Medicago and other plants.

Results: We established a bioinformatics pipeline to identify putative TF genes in Medicago truncatula and to
design gene-specific oligonucleotide primers for qRT-PCR analysis of TF transcripts. We validated the efficacy and
gene-specificity of over 1000 TF primer pairs and utilized these to identify sets of organ-enhanced TF genes that
may play important roles in organ development or differentiation in this species. This community resource will
be developed further as more genome sequence becomes available, with the ultimate goal of producing validated,
gene-specific primers for all Medicago TF genes.

Conclusion: High-throughput qRT-PCR using a 384-well plate format enables rapid, flexible, and sensitive
quantification of all predicted Medicago transcription factor mRNAs. This resource has been utilized recently by
several groups in Europe, Australia, and the USA, and we expect that it will become the 'gold-standard' for TF
transcript profiling in Medicago truncatula.
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Background
Legumes are second only to grasses in agricultural impor-
tance [1]. They are a mainstay of sustainable agricultural
systems because of their ability to reduce atmospheric
nitrogen (N2) to ammonia via a symbiosis with bacteria
called rhizobia. This provides legumes and subsequent
crops with a free and renewable source of nitrogen in lieu
of expensive, environmentally-unfriendly fertilizers.
Development and differentiation of root nodules, the
organ that accommodates nitrogen-fixing rhizobia in leg-
umes, is orchestrated by transcription factors [2-9]. Tran-
scription factors are DNA-binding proteins that regulate
the transcription of most, if not all genes [10]. As a result,
TFs play central roles in all aspects of plant biology,
including development and differentiation of organs and
adaptive responses to changes in the environment [11].
Transcription factors as a whole are an important target of
plant research because they are a key to understanding the
regulation of important plant processes as well as poten-
tial tools to optimize these processes for agriculture.

The importance of TFs in plant biology is reflected by the
fact that approximately 5% of all plant genes encode such
proteins [10]. Thus, even species with relatively small
genomes, such as Arabidopsis thaliana contain thousands
of TF genes [10]. This presents a real challenge for system-
atic approaches to decipher the function of TF genes in
plants. Classical, 'forward' genetics has uncovered the
roles of perhaps a hundred TF genes in Arabidopsis [12]
and far fewer in other species [11]. Reverse-genetic
approaches, using T-DNA insertion mutants for instance
[13], provide a means to decipher in a systematic and rel-
atively rapid manner the function of TF genes/proteins,
although gene-redundancy often stymies this enterprise
[12]. Another stumbling-block is that phenotypes associ-
ated with non-redundant TFs may be subtle in nature.

Transcript profiling can help to uncover the functions of
TF genes/proteins by revealing where and when in a plant
TF genes are expressed. This information can help direct
our attention to particular organs, developmental stages,
or conditions under which aberrant phenotypes might
become apparent in a TF mutant of interest.

Medicago truncatula is a model legume species that is cur-
rently the focus of an international genome sequencing
effort [14]. Several generations of cDNA [15] and oligonu-
cleotide arrays [16] have been developed for transcrip-
tome analysis of Medicago truncatula, including most-
recently an Affymetrix GeneChip that contains 51,000
probe-sets representing a large proportion of all the genes
in this species [17]. While these tools now provide a
means to measure the transcriptional output of a large
proportion of genes in Medicago, inherent limitations in
the sensitivity of hybridization-based technologies [18]

mean that transcripts of a substantial number of genes
cannot be detected even when probes for these transcripts
are present on the array/chip. Furthermore, expansion of
arrays to encompass novel genes uncovered by genome
sequencing is not a trivial task. An alternative to arrays
that is 2–3 orders of magnitude more sensitive and more
flexible in terms of expansion to encompass novel genes
is quantitative reverse transcription-polymerase chain
reaction (qRT-PCR). Platforms for qRT-PCR analysis of
thousands of Arabidopsis and rice TF genes have been
developed by us and others [19,20], and utilized to iden-
tify TF genes involved in Arabidopsis responses to nutrient
stress and pathogen attack [21-24]. Here we describe a
bioinformatics pipeline to identify putative TF genes in
Medicago truncatula and to design gene-specific oligonu-
cleotide primers for qRT-PCR analysis of all predicted TF
transcripts. Over 1000 TF primer pairs were tested and
used to identify sets of organ-enhanced TF genes that may
play important roles in organ development or differentia-
tion in this species.

Results and Discussion
Identification of putative transcription factors
TF protein families are generally defined by the type(s) of
DNA-binding domain they contain and putative TF genes
are often identified on the basis of DNA sequences that
encode known DNA-binding domains [10,11,25,26]. We
utilized this approach to identify putative TFs of Medicago
amongst the set of proteins predicted from genomic
sequence by the International Medicago Genome Annota-
tion Group (IMGAG). Proteins of IMGAG release 1, which
contained over 40,000 predicted proteins, were screened
for the presence of known or presumed DNA-binding
domains (Table 1), using INTERPRO [27]. Medicago pro-
teins containing putative DNA binding domains and
other domains associated with TFs were then used as
query sequences in WU-BLASTX [28] which included
searches of both the non-redundant DNA database of
NCBI [29] and the well-curated protein database, UniProt
[30] to check annotations of related proteins in support of
tentative Medicago TF assignments. This process resulted
in a list of 1045 putative TF genes (see Additional file 1).
We utilized genomic sequences rather than the large col-
lection of partial cDNA sequences present in Expressed
Sequence Tag (EST) databases for Medicago as the starting
point for TF gene discovery because protein sequences
derived from genomic sequence are more complete and
the set of IMGAG proteins essentially contains no redun-
dancy. Although identification of the 'complete' set of
Medicago TFs from IMGAG-annotated proteins will only
be possible upon completion of genome sequencing, we
expect little or no redundancy in the protein set targeted
by our primer set. This approach avoids wasting money
on redundant primer sets and re-organization of primers
when redundancy is detected, both of which would have
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Table 1: Classification of putative transcription factors of Medicago into families and sub-families

TF Family No. of 
Genes

Characteristic Domain 
(InterPro No.)

Domain
Function

Domain Description

MYB/HD-like 76 IPR001005, IPR009057 D Myb, DNA-binding; homeodomain like
MYB 58 IPR001005 D Myb, DNA-binding
C2H2 (Zn) 64 IPR007087 NA Zn-finger, C2H2 type
AP2/EREBP 55 IPR001471 D Pathogenesis-related transcriptional factor and 

ethylene response factor
BHLH 49 IPR001092 D Basic helix-loop-helix dimerisation region bHLH
HD-like 50 IPR009057 D Homeodomain like
HD family IPR001356 D Homeobox

HD 25
HD-ZIP 5 IPR006712 P HD-ZIP protein, N terminus

HD-PHD finger 2 IPR001965 P Zn-finger like, PHD-finger
MADS 48 IPR002100 D TF, MADS-box
BZIP 41 IPR004827 D Basic Leu zipper (bZIP) TF
PHD 34 IPR001965 P Zn-finger like, PHD-finger
WRKY family IPR003657 D DNA-binding WRKY

WRKY 29
LLR WRKY 1 IPR001611 Leu-rich repeat

ABI3/VP1 29 IPR003340 D TF B3
NAC 29 IPR003441 D No apical meristem (NAM) protein
C3H-type1(Zn) 27 IPR000571 D Zn-finger, C-x8-C-x5-C-x3-H type
ARF 23 IPR003340, IPR010525, IPR011525 D
JUMONJI 20 IPR003347 D TF jumonji, jmjC
GRAS 19 IPR005202 P GRAS TF
HMG 15 IPR000637 D HMG-I and HMG-Y, DNA binding
AS2 14 IPR004883 P Lateral organ boundaries
C2C2 (Zn)

Dof 13 IPR003851 D Zn-finger, Dof type
GATA 7 IPR000679 D Zn-finger, GATA type

CO-like 6 IPR000315 D Zn-finger, B-box
YABBY 5 IPR006780 D YABBY protein

CCAAT-HAP3 type 12 IPR003958 D TF CBF/NF-Y/archaeal histone
GRF 8 IPR010666 D Zn-finger, GRF type
SBP 8 IPR004333 D SBP
EIL 7 IPR006957 D Ethylene insensitive 3
LIM 7 IPR001781 P Zn-binding protein, LIM
SNF2 6 IPR000330 D SNF2 family N-terminal domain
E2F/DP 5 IPR003316 D TF E2F/dimerisation partner (TDP)
TCP 5 IPR005333 D TCP TF
FHA 5 IPR000253 D Forkhead-associated
ARID 4 IPR001606 D AT-rich interaction region
HSF 4 IPR000232 D Heat shock factor (HSF)-type, DNA binding
AUX/IAA 3 IPR003311 D AUX/IAA protein
SRS 3 IPR006510 D Zn-finger, LRP1 type
TUB 3 IPR000007 D Tubby
ZIM 3 IPR010399 D ZIM
DDT 3 IPR004022 D DDT
ZF-HD 2 IPR006455 D Homeobox domain, ZF-HD class
MBF1 2 IPR001387 D Helix-turn-helix type 3
S1Fa-like 2 IPR006779 D DNA binding protein S1FA
CAMTA 2 IPR005559 D CG-1
LFY 1 IPR002910 D Floricaula/leafy protein
Nin-like 1 IPR003035 D Plant regulator RWP-RK
TAZ 1 IPR000197 P Zn-finger, TAZ-type

Potentially novel plant TFs and transcriptional regulators

CCHC (Zn) 112 IPR001878 NA Zn-finger, CCHC-type
RR 16 IPR001789, IPR011006 RD Response regulator receiver
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been inevitable if we chose to use ESTs in addition to
genomic sequences to identify Medicago TFs.

PCR primer design
To ensure maximum specificity and efficiency during PCR
amplification of TF cDNA under a standard set of reaction
conditions, a stringent set of criteria was used for primer
design. This included predicted melting temperatures
(Tm) of 58°C to 61°C, limited self-complementarity and
poly-X, and PCR amplicon lengths of 100–150 base pairs
(bp). Secondary hits were minimized by aligning primer
candidates to all known Medicago sequences via WU-
BLAST [28] and eliminating primer pairs with multiple
potential hits.

PCR primer testing: gene-specificity and amplification 
efficiency
PCR primers were tested on Medicago cDNA free of
genomic DNA contamination as follows. First, total RNA
was extracted from various organs using Trizol reagent
(Invitrogen GmbH, Karlsruhe, Germany), which yielded
high quality RNA as judged by gel electrophoresis and by
Agilent 2100 BioAnalyser using RNA 6000 Nano Chips
(Agilient Technologies, Waldbronn, Germany). Typical
RNA yields ranged from 0.5–1.0 μg RNA/mg fresh mass
for nodules and leaves, respectively. Isolated RNA was

treated with DNAse I (Ambion, product number 1907) to
remove all contaminating genomic DNA, and this was
always confirmed by PCR using primers to non-coding
regions of the Ubiquitin gene (TC102473; AC137828-
19.4). After inactivation of DNAse I, RNA was reverse tran-
scribed using SuperScript III reverse transcriptase (Invitro-
gen GmbH, Karlsruhe, Germany) and oligo-dT12–18 to
prime the reaction.

Specificity of PCR primers was assessed in three ways: by
melting curve analysis of PCR reaction products; by sepa-
rating the products of all reactions via electrophoresis in
3% agarose gels; and by sequencing a sub-set of PCR reac-
tion products (Figure 1). 94.5% (998/1045) of primer
pairs gave unique PCR products of the expected size. Only
3.3% (34/1045) of primer pairs yielded no product and
2.2% (23/1045) gave non-specific products. (see Addi-
tional file 1). Sequencing was performed on 178 ran-
domly-chosen PCR products amplified from a 1:1 mixture
of leaf and root cDNA. In the vast majority of cases
(92.7% or 165/178), the sequence of the PCR product was
identical to that of the intended target gene. In 5.1% of
cases, the amplicon sequence matched multiple related
genes, including the target gene, while in only 2.2% of
cases the amplicon sequence did not match the target gene
sequence.

DHHC (Zn) 14 IPR001594 D or P Zn-finger, DHHC-type
HTH

FIS 11 IPR002197 D Helix-turn-helix, Fis-type
AraC 2 IPR000005 D Helix-turn-helix, AraC type

BTB/POZ 7 IPR000210 P BTB
TTF-type (Zn) 6 IPR006580 D Zn-finger, TTF-type
BD 6 IPR001487 P Bromodomain
Lambda-DB 3 IPR010982 D Lambda_DNA_bd
TrpR 3 IPR010921 D Trp repressor/replication initiator
TPR 3 IPR001440 P Tetratricopeptide TPR_1
KRAB-box 2 IPR001909 P KRAB box
NRs 2 IPR008946 LBD Steroid nuclear receptor, ligand binding
R3H 2 IPR001374 NA Single-stranded nucleic acid binding R3H
YEATS 2 IPR005033 TA YEATS
U1-type (Zn) 2 IPR003604 NA Zn-finger, U1-type
A20-like 2 IPR002653 P Zn-finger, A20-type
Euk_TF 1 IPR008917 D Euk_TF, DNA binding
NGN 1 IPR006645 D NGN
p53-like 1 IPR008967 D p53-like TF, DNA binding
SSB protein 1 IPR011344 D Single-strand binding protein
ssDB TR 1 IPR009044 D Single-strand DNA binding transcriptional regulator
TCoAp15 1 IPR003173 D Transcriptional coactivator p15
BED-type (Zn) 1 IPR003656 D Zn-finger, BED-type predicted
TCoA 1 IPR009255 TA Transcriptional coactivation
Tc/PD 1 IPR001533 TA Transcriptional coactivator

IMGAG (International Medicago Gene Annotation Group)-proteins were classified as putative TFs if they contained characteristic DNA-binding or 
other characteristic TF domains and if annotations of matching proteins obtained by BLAST searches were consistent with such a classification. TF 
families previously identified in plants are presented in the first part of the table while potentially novel plant TF families, which were identified by 
the presence of domains associated with TFs and other transcriptional regulators outside the plant kingdom, are presented in the latter part of the 
table. D = DNA binding domain; P = protein-protein interaction domain; NA = nucleic acid (DNA and RNA) binding domain; RD = receiver 
domain; LBD = ligand binding; transcriptional co-activator. Plant-specific TF families and sub-families are indicated in bold (according to [12])

Table 1: Classification of putative transcription factors of Medicago into families and sub-families (Continued)
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Ideally, PCR results in an exact doubling of the amount of
dsDNA after each temperature cycle. In practice, however,
this is generally not the case because the reactions are less
than 100% efficient. Primer sequences can affect PCR effi-
ciency, so we determined the efficiency of each TF primer
pair from amplification plots, using LinRegPCR software
[31]. First, the correlation coefficient derived from linear
regression analysis of each amplification plot (e.g. see Fig-
ure 2) was used to assess the 'quality' of each reaction, and
all reactions with an R2 < 0.990 were excluded from fur-
ther analysis (10.6% of reactions). Next, average PCR effi-
ciencies (E) were computed for each individual primer
pair across all analyzed samples. 53.4% (558 TF genes)
displayed PCR efficiencies greater than 0.80, while 39.7%

(415 TF genes) had efficiencies between 0.51–0.80. Only
2.6% (27 TF genes) had mean E values below 0.4; these all
yielded R2 < 0.99 in LinRegPCR analysis and mostly repre-
sented reactions that lacked detectable fragment amplifi-
cation (CT > 40) or that generated unspecific PCR products
(Figure 2; see Additional file 1). A similar range of PCR
efficiencies were determined for Arabidopsis and rice TF
primers previously [19,20].

Selection of reference genes
Reference genes with stable expression/transcript levels
throughout development and in the face of environmen-
tal challenge are crucial for the normalization of expres-
sion data of other genes. Potentially useful reference genes

Specificity of transcription factor PCR primersFigure 1
Specificity of transcription factor PCR primers. Specificity was confirmed by dissociation curves with a single peak (A) 
while double peaks (B) indicated off-target ampification. The derivative of fluorescence intensity is shown on the y-axis. Separa-
tion of PCR products on 3% (v/w) agarose gels following electrophoresis (C) confirmed the presence of unique amplicons of 
the expected size for most reactions. Few reactions yielded no products (indicated by arrow).
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were chosen based on published data for Medicago (e.g.
Msc27 [32]) and Arabidopsis thaliana [33]. The closest
Medicago homologues of Arabidopsis genes were identi-
fied by BlastN [29]. Gene-specific primer pairs for the
genes encoding elongation factor 1α (EST317575), glycer-
alaldehyde-3-phosphate dehydrogenase (MtC00030_GC;
CT573421_3.4), β-tubulin (TC106341), Pentatricopep-
tide repeat protein (TC96273), actin2 (TC107326;
AC137836_27.5), Ubiquitin (TC102473; AC137828-
19.4), Helicase (CB892427), and the genes PDF2
(TC107161), UPL7 (TC111218), PTB (TC111751), UBC
(AW686873), bHLH (CX538576), and UBC9
(TC106312) were designed using the criteria described
above (Table 2). The specificity of PCR primers was tested
using 18 first-strand cDNAs from six different organs of
Medicago (three biological replicates each). All primer
pairs produced a single PCR product of the expected size,
as shown by gel electrophoresis and unique dissociation
curves generated by the PCR machine after 40 cycles (Fig-
ure 3). To determine which reference genes were best
suited for transcript normalisation, we used the software
geNORM [34], which uses pair-wise comparison and geo-
metric averaging across a matrix of biological samples to

determine gene expression stability (M; [35]). The genes
PDF2, PPRep, Ubiquitin, and PTB had the lowest M (great-
est transcript stability) and, therefore, were judged to be
the best reference genes for this diverse set of developmen-
tal samples (Figure 4; Table 2).

Identification of organ-enhanced TFs of Medicago
To get an overview of TF gene expression in Medicago trun-
catula and to identify TFs induced in specific organs, we
used the real-time RT-PCR platform described above.
Transcript profiling was performed on six different organs
of Medicago (leaves, stems, flowers, pods, roots, and nod-
ules) with three independent biological replicates for each
(see Additional file 2). The fraction of genes for which
transcripts were detected within 40 cycles ranged from
77.2% in leaves to 90.8% in pods. Transcripts from nearly
all putative TF genes (96.8% or 1011/1045) were detected
in at least one organ. Genes were called detected if they
were expressed in at least two biological replicates with a
CT < 40. Approximately half of all TF genes exhibited dif-
ferential expression during plant development, based on
significant differences (p ≤ 0.05) in transcript levels
between organs. Few TF genes (1.19% or 12/1011) were

Amplification efficiency of transcription factor-specific primer pairsFigure 2
Amplification efficiency of transcription factor-specific primer pairs. Typical real-time RT-PCR amplification plots of 
384 TF genes (left) and distribution of PCR efficiencies for all 1045 TF primer pairs (right).
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expressed exclusively in vegetative organs (leaves, stems,
roots or nodules), and even fewer (0.5% or 5/1011) were
expressed only in reproductive organs (flowers or pods).
A relatively small number of TF genes exhibited greater
than ten-fold ratios in expression level in one organ com-
pared to any other organ (Table 3). For comparison, we
have included gene expression ratios derived from
Affymetrix array data from the same RNA samples. While
there is reasonable qualitative agreement between gene
expression ratios obtained using the two methods, the
lack of quantitative agreement is likely due to the limited
sensitivity and low signal to noise ratio near the detection
limit of Affymetrix arrays [19]. The genes listed in Table 3
may control development and/or differentiation in Medi-
cago and are interesting targets for future research.

Conclusion
We have established a flexible platform for high-through-
put qRT-PCR analysis of Medicago TF gene expression that
is based on gene-specific primers arrayed in 384-well
plates and SYBR® Green detection of gene-specific PCR
amplicons. Currently, the platform has primer pairs for
1045 TF genes and we have plans to extend this to all pre-

dicted Medicago TF genes as genome sequencing
progresses. At this stage, the resource has been utilized by
several groups in Europe, Australia, and the USA, and we
expect it will become the 'gold-standard' for TF transcript
profiling in Medicago truncatula.

Methods
Plant material and growth conditions
Medicago truncatula cv. Jemalong, line A17 wild type
plants were vernalized for 3 days in the dark at 4°C on
sterile, wet filter paper. Germinated seedlings were trans-
ferred to pots containing Turface (BWI Texarcana, Texar-
cana, TX). Plants were grown in growth chambers under a
16 h day and 8 h night regime, at 200 μE light intensity,
24°C and 40% relative humidity.

Vegetative organs (leaves, stems, roots, and nodules) were
harvested 28 days after planting. Leaf material did not
include petioles and stems did not include buds. Roots
consisted of the entire root system with laterals. Several
plants grown at the same time were pooled for each of the
three biological replicates. Biological replicates were
planted on separate days. Nodules were harvested from

Table 2: Medicago reference genes and primers for qRT-PCR

Gene Name TC Accession
Number

Forward/Reverse Primer (5'-3') PCR 
Product

 Size (bp)

PCR 
efficiency

 (E)

R2

β Tubulin TC106341 N TTTGCTCCTCTTACATCCCGTG / 
GCAGCACACATCATGTTTTTGG

100 1.08 1.0
0

PPRrep TC96273 N GGAAAACTGGAGGATGCACGTA / 
ACAAGCCCTCGACACAAAACC

100 0.93 1.0
0

PDF 2 TC107161 N GTGTTTTGCTTCCGCCGTT / 
CCAAATCTTGCTCCCTCATCTG

100 0.99 1.0
0

bHLH CX538576 N TAGCGAGTACCATGATGCCAGA / 
GCGCCTCTTTTGTTTTCAGC

100 0.89 1.0
0

UBC AW686873 N CTGACAGCCCACTGAATTGTGA / 
TTTTGGCATTGCTGCAAGC

100 0.96 1.0
0

PTB TC111751 N CGCCTTGTCAGCATTGATGTC / 
TGAACCAGTGCCTGGAATCCT

100 0.85 1.0
0

Ubiquitin TC102473 AC137828_19.4 GCAGATAGACACGCTGGGA / 
AACTCTTGGGCAGGCAATAA

100 0.95 1.0
0

UBC9 TC106312 AC137602_2.4 GGTTGATTGCTCTTCTCTCCCC / 
AAGTGATTGCTCGTCCAACCC

100 1.13 0.9
9

Helicase CB892427 N GTACGAGGTCGGTGCTCTTGAA / 
GCAACCGAAAATTGCACCATAC

100 0.91 1.0
0

ELF1α EST317575 N GACAAGCGTGTGATCGAGAGATT / 
TTTCACGCTCAGCCTTAAGCT

100 0.68 0.9
8

UPL7 TC111218 N CCAGTTGTTCTCGTGGTCCATT / 
CCTCCAATTGTCGCCCAAA

100 0.93 1.0
0

GAPDH MtC00030_GC CT573421_3.4 TGCCTACCGTCGATGTTTCAGT / 
TTGCCCTCTGATTCCTCCTTG

100 1.04 0.9
9

Actin2 TC107326 AC137836_27.5 TCAATGTGCCTGCCATGTATGT / 
ACTCACACCGTCACCAGAATCC

100 1.12 0.9
9

MSC27 X63872 (M. sativa) N GTTGAAGTAGACATTGGTGCTAACG / 
AGCTGAGTCATCAACACCCTCAT

100 0.76 0.9
9

Mean PCR efficiency (E) was determined from three biological replicates of each of six organs, using LinRegPCR [31], which also yielded mean R2. 
N, no corresponding GenBank accession number.
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Specificity, efficiency, and reproducibility of PCR primers designed to amplify reference gene transcriptsFigure 3
Specificity, efficiency, and reproducibility of PCR primers designed to amplify reference gene transcripts. Spe-
cificity of primers was confirmed by the presence of unique amplicons of the expected size following electrophoresis on 3% (v/
w) agarose gels (A) and by dissociation curves with a single peak (B to D). Typical real-time RT-PCR amplification plots of three 
reference gene transcripts (E to G).
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plants inoculated with Sinorhizobium meliloti strain 1021
one and seven days after sowing. Reproductive organs
were harvested from plants that were vernalized for two
weeks to decrease the time to flowering. Flowers were har-
vested on the day of opening. Pods were harvested from 1
to 21 days after the appearance of the floral bud to cover
a wide range of developmental stages. Harvested plant
material was frozen in liquid nitrogen before storage at -
80°C.

RNA isolation and cDNA synthesis
Total RNA was extracted using Trizol reagent [36], follow-
ing the manufacturer's instructions (Invitrogen GmbH,
Karlsruhe, Germany). RNA was quantified using a Nano-
drop Spectrophotometer ND-100 (NanoDrop Technolo-
gies, Wilington, DE). Sixty μg of total RNA were digested
with RNase free DNase1 (Ambion Inc., Houston, TX),
according to manufacturer's protocol. RNA integrity was
checked using an Agilent 2100 BioAnalyser and RNA
6000 Nano Chips (Agilient Technologies, Waldbronn,
Germany), and by electrophoresis on a 3% (v/w) agarose
gel before and after DNase I treatment. The absence of
contaminating genomic DNA after DNase I treatment was
verified by PCR analysis, using primer pairs designed to
amplify a 107 bp genomic fragment of the control gene,
Ubiquitin (TC102473intronF, 5'-GTCCTCTAAGGTTTAAT-
GAACCGG-3'; TC102473intronR, 5'-GAAA-
GACACAGCCAAGTTGCAC-3').

First-strand complementary DNA was synthesized by
priming with oligo-dT12–18 (Qiagen, Hilden, Germany),
using SuperScript III reverse transcriptase (Invitrogen
GmbH, Karlsruhe, Germany) following the instructions
of the provider. To assess cDNA synthesis efficiency, qPCR
was used to amplify segments in the 5' and 3' regions of
Ubiquitin cDNA approx. 1600 and 400 bp from the 3'-end,
respectively (primers: TC102473_5'F, 5'-TTGGAGACG-
GATTCCATTGCT-3'; TC102473_5'R, 5'-GCCAATTCCT-
TCCCTTCGAA-3; TC102473_3'F, 5'-
GGCCCTAGAACATTTCCTGTGG-3'; and TC102473_3'R,
5'-TTGGCAACCAAAATGTTCCC-3'). If ΔCt (Ct3'-Ct5') <
2, then cDNA synthesis efficiency was judged to be satis-
factory, and the cDNA was considered suitable for qRT-
PCR analysis.

PCR primer design
The primer design pipeline was implemented in object-
oriented PERL modules supported by a MySQL relational
database. Primers iterated through three phases before
approval: design, specificity, and selection.

The design phase interrogated TF genes with a sliding win-
dow 250 bp across that stepped 50 bp along the entire tar-
get sequence, generating primer candidates at each
window. Experimental conditions, as outlined in the
Results section above, were enforced by the following MIT
Primer3 parameters: PRIMER_MIN_TM 58,
PRIMER_OPT_TM 60, PRIMER_MAX_TM 61,
PRIMER_SELF_ANY 6, PRIMER_SELF_END 2,
PRIMER_MAX_POLY_X 3, and
PRIMER_PRODUCT_SIZE_RANGE '100–150' [37]. The
specificity phase aligned primer candidates via WU-Blast
to a database of all known Medicago sequences. The selec-
tion phase sorted primer candidates by the number of
possible secondary hits, self-complementarity, and poly-X
characteristics. Secondary hits were defined as specificity
alignments that contained at least one of the terminal
ends of the primer and achieved 80% or greater identity
over the length of the primer. The sequences of each
primer pair are given in Supplementary Material (see
Additional file 1).

Real-time PCR conditions and analysis
PCR reactions were carried out in an ABI PRISM® 7900 HT
Sequence Detection System (Applied Biosystems, Foster
City, CA, USA). SYBR® Green was used to quantify dsDNA
synthesis. Reactions (5 μl total volume) were performed
in an optical 384-well plate containing 2.5 μl 2 × SYBR®

Green Power Master Mix reagent (Applied Biosystems,
Warringen, UK), 5 ng cDNA and 200 nM of each gene-spe-
cific primer. Primer pairs were aliquoted using a pipetting
robot (Evolution P3 liquid handling system, Perkin
Elmer, MA, USA) to minimize pipetting errors. cDNA was
aliquoted as a master mix of cDNA and 2 × SYBR® Green

Ranking of 8 reference genes in M. truncatulaFigure 4
Ranking of 8 reference genes in M. truncatula. Tran-
script levels of all 8 genes were measured by qRT-PCR, using 
18 independent cDNA preparations from six different organs 
with three replicate measurements of each cDNA prepara-
tion. A low value for the average expression stability M, as 
calculated by geNORM software, indicates more stable 
expression throughout the various organs.
Page 9 of 12
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Table 3: Organ-enhanced TF genes

A Root-enhanced TF genes identified by real-time RT-PCR

Real-time RT-PCR Expression Ratio Affymetrix Expression Ratio

Accession Number R/L R/S R/F R/P R/N R/L R/S R/F R/P R/N Affymetrix Chip ID

AC140721_12.1 121.5 320.1 1623.4 2676.5 64.4 161.2b 144.5b 219.2b 158.1b 99.9 Mtr.50075.1.S1_s_at
AC135101_25.1 312.2 438.0 291.6 787.0 61.3 n n n n n n
AC140721_14.1 1204.9 751.2 956.6 6296.6 32.6 n n n n n n
AC140031_3.1 275.4 1157.3 923.4 258916.9a 31.1 0.4 0.7 0.8 0.9 2.2 Mtr.47227.1.S1_s_at
AC140721_13.1 39.9a 179.8 614.8 935.1a 26.5 35.9 48.1b 41.2 44.2b 39.5 Mtr.50074.1.S1_at
AC140031_7.1 360.2a 830.6 1542a 6868.8 19.7 0.7b 1b 1.1b 1b 0.9b Mtr.47229.1.S1_at
AC146574_6.1 1095.7 11.9a 48.8 51.8 88.8 1.2b 1.1b 1.3b 1.1b 1.2b Mtr.40781.1.S1_s_at
AC125478_13.7 1117.4 7008.0 3264.9a 7256.6 11.6 211.5b 248.8b 296.4b 228.7b 45.3 Mtr.15416.1.S1_at
AC125478_7.2 1052.3 503.3 938.4a 2754.5 11.2 n n n n n n

AC122726_21.111 50.0 48.0 20943.9 2658.6 10.4 74.3b 76.4b 72.8b 82.8b 26.6 Mtr.15568.1.S1_s_at

B Nodule-enhanced TF genes identified by real-time RT-PCR

Real-time RT-PCR Expression Ratio Affymetrix Expression Ratio

Accession Number N/L N/S N/F N/P N/R N/L N/S N/F N/P N/R Affymetrix Chip ID

AC148816_3.2 9966.7 1826.2 6262.9 21709.1 662.7 434.6b 516.8b 455b 521.7b 551.4b Mtr.14503.1.S1_at
AC147774_3.2 55.2a 466.7 726.3 881.2 498.5 17.7b 16b 17.8b 19.1b 16.1b Mtr.19554.1.S1_at

AC138056_33.241 43.9 93.2 18.3 17.3 13.1 0.9b 0.8b 0.8b 1.1b 1.1b Mtr.17993.1.S1_at
AC124214_39.2 121.8 92.1 44.8 64.9 10.5 n n n n n n

C Pod-enhanced TF genes identified by real-time RT-PCR

Real-time RT-PCR Expression Ratio Affymetrix Expression Ratio

Accession Number P/L P/S P/F P/N P/R P/L P/S P/F P/N P/R Affymetrix Chip ID

AC143340_4.7 154.1 44.8 173.3 180.3a 407.3 1.6b 1.8b 1.7b 1.7b 1.7b Mtr.17931.1.S1_at

D Flower-enhanced TF genes identified by real-time RT-PCR

Real-time RT-PCR Expression Ratio Affymetrix Expression Ratio

Accession Number F/L F/S F/P F/N F/R F/L F/S F/P F/N F/R Affymetrix Chip ID

AC129092_13.1 40.3 383.3 65.1 1683.9 318.1 24.2 47.1b 38.2 45.4b 55.1b Mtr.16432.1.S1_at
AC148485_10.1 476.2 203.7 27.2 174.6 44.5 36.5b 32.9b 22.0 34.7b 29.7b Mtr.20392.1.S1_at
AC140915_20.1 169.5 101.1 18.6 481.0 178.7 1.4b 1.4b 1.3b 1.3b 1.6b Mtr.51688.1.S1_at
AC141107_50.2 38.2 33.0 17.9 114.0 97.4 n n n n n n
AC144731_15.21 64.4 44.3 33.6 61.5 16.3 0.6b 0.6b 0.8b 0.8b 0.8b Mtr.19093.1.S1_at
AC150978_12.1 235.3 198.5 48.4 14.0 16.9 n n n n n n
AC141107.5.61 261.1 127.8 13.3 96.4 71.5 0.9b 0.9b 0.8b 0.1b 1.1b Mtr.51651.1.S1_at
AC157472_19.1 60.2a 92.1 13.2 61.5a 113.6 n n n n n n

AC148527_19.141 188.4 42.1 17.3 26.5 13.0 n n n n n n
AC144726_6.1 254.7 55.2 10.9 112.7a 754.7 59.2 73.7b 7.6 89.2 97.9b Mtr.19024.1.S1_at
AC157488_16.1 7053.2a 141.1 18.7 81.8 10.7 n n n n n n

AC123899_15.181 10.2 92.2 19.1 62.8 24.9 0.9b 0.5b 0.8b 0.1b 0.8b Mtr.52015.1.S1_at

A TF gene was considered organ-enhanced if transcript levels for that gene were more than 10-fold higher in one organ than in any other organ. 
Transcript ratios were calculated using the mean of three biological replicates for each organ. Data from qRT-PCR are compared with data for the 
same RNA samples obtained from Affymetrix Gene chips [38]. Affymetrix data were normalized using the Robust Multiarray Average (RMA) 
method, as described by [38], prior to calculation of ratios. Data in bold represent the lowest transcript ratio of the corresponding gene across all 
organs. n = not present on Affymetrix chip; a = Ct > 40 in two or three biological replicates of denominator organ; b = transcript called 'absent' by 
Affymetrix software in two or three biological replicates of denominator organ. L = leaf; S = stem; P = pod; F = flower; R = root; N = nodule.
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reagent, using an electronic Eppendorf multipipette. Reac-
tion plates were sealed with a transparent adhesive cover
before proceeding (Applied Biosystems, Foster City, CA,
USA). All templates were amplified using the following
standard PCR protocol: 50°C for 2 min; 95°C for 10 min;
40 cycles of 95°C for 15 sec and 60°C for 1 min, and
SYBR® Green fluorescence was measured continuously.
Melting curves were generated after 40 cycles by heating
the sample up to 95°C for 15 sec followed by cooling
down to 60°C for 15 s and heating the samples to 95°C
for 15 sec.

Data analysis was performed with the SDS 2.2.1 software
(Applied Biosystems). To determine the threshold cycle

value (CT) for each PCR reaction, the threshold (ΔRn) was

set within the logarithmic amplification phase. All ampli-

fication plots were analyzed with an ΔRn of 0.2. PCR effi-

ciency (E) was estimated using LinReg software with data
obtained from the exponential phase of each individual
amplification plot and the equation (1+E) = 10slope [31].
To compare data from different PCR runs and different
cDNA samples, CT values were normalized against the

geometric mean of four reference genes (Ubquitin, PPRep,
PDF2, and PTB), whose transcript levels were most stable
across the biological samples analyzed. The average of the
geometric mean of these four genes for all 18 samples was
CT 21.23 ± SD1.15. For normalization, the mean reference

gene CT value was substracted from the CT value of the TF

gene of interest, yielding a ΔCT value. The expression

ratios for the identification of organ-enhanced genes were
obtained using the following formula on all 30 organ

combinations: , where ΔΔCT was calculated by

ΔCTA minus ΔCTb, A and B are averages of three biological

replicates of the two organs being compared, and E is the
PCR efficiency. Dissociation curves were analysed using
SDS 2.2.1 software (Applied Biosystems). RT-PCR prod-
ucts were resolved on 3% (w/v) agarose gels (LE Agarose,
Biozym, Oldendorf, Germany) run at 4 V cm-1 in TAE Tris-
Acetate-EDTA buffer, along with a 200-bp DNA-standard
ladder (Promega GmbH). A subset of 178 RT-PCR prod-
ucts was sequenced at the JC Venter Institute (Rockville,
MD, USA).
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