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Abstract
Background: The pH is an important parameter controlling many metabolic and signalling
pathways in living cells. Recombinant fluorescent pH indicators (pHluorins) have come into vogue
for monitoring cellular pH. They are derived from the most popular Aequorea victoria GFP (Av-GFP).
Here, we present a novel fluorescent pH reporter protein from the orange seapen Ptilosarcus
gurneyi (Pt-GFP) and compare its properties with pHluorins for expression and use in plants.

Results: pHluorins have a higher pH-sensitivity. However, Pt-GFP has a broader pH-
responsiveness, an excellent dynamic ratio range and a better acid stability. We demonstrate how
Pt-GFP expressing Arabidopsis thaliana report cytosolic pH-clamp and changes of cytosolic pH in the
response to anoxia and salt-stress.

Conclusion: Pt-GFP appears to be the better choice when used for in vivo-recording of cellular pH
in plants.

Introduction
Fluorescent proteins have revolutionized the understand-
ing of cellular event cascades, signal transduction, and
structure dynamics [1,2]. The green fluorescent protein
from Aequorea victoria (Av-GFP) is the most popular spe-
cies used by scientists to date. Av-GFP and its correspond-
ing cDNA has been altered many times to give fluorescent
proteins of higher quantum efficiency, different spectral
characteristics, less temperature sensitivity, improved sol-
ubility, and higher expression levels in other organisms
[e.g. [3,4]]. Enhanced variants of Av-GFP are frequently
used to decorate cellular structures and proteins in order
to observe shape, location and dynamics in vivo [e.g. [5-

12]] or to visualize gene expression and/or activity of pro-
moters or enhancers [13].

One of the advantages of GFPs is their ability to be engi-
neered to indicators for cellular signal transduction stud-
ies [e.g. [14-16]]. Engineered GFPs have been used in
plants to report cellular concentrations of Ca2+, H+, Cl-,
and NO3

- [e.g. [17-23]]. No loading of the indicator is nec-
essary with GFP-based probes and they can be precisely
targeted to almost any organelle, compartment or tissue
in question [e.g. [8,9,11,12,24]]. This potentially makes
GFP-derived probes superior to small molecular weight
fluorescent dyes used as ion indicators provided they can
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replicate the sensitivity and responsiveness of these
probes.

In particular two pH-sensitive variants of Av-GFP (so-
called pHluorins) have been engineered [25]. These two
reporters are called 'ratiometric' and 'ecliptic' pHluorin.
They both allow ratiometric in vivo-pH recording. Ratio-
metric pHluorin is a double excitation indicator whereas
ecliptic pHluorin has to be used in the double emission
mode [21]. The amendments necessary for sufficient
expression of Av-GFPs in plants (i.e. removal of the cryptic
intron, changes to A. thaliana codon usage and improve-
ment of solubility) have been combined with the proper-
ties of pHluorins. The resulting pH indicators have been
successfully expressed and used in Arabidopsis [21,26,27].

However, more and more fluorescent proteins (FPs) from
other marine organisms are being discovered with other
interesting properties [28-35]. Some of these newly dis-
covered FPs unveil advantages when compared with Av-
GFP variants. We have expressed the GFP from the orange
seapen (Ptilosarcus gurneyi) in bacteria and plants. Here,
we compare ratiometric properties of Pt-GFP with those of
pHluorins and also with conventional fluorescent dyes
often used for ratiometric pH measurements in vivo.

The spectrum of a fluorescent ratiometric indicator is in a
first approach mainly the sum or overlap of two spectra
[36]: First, the spectrum of the free indicator (in case of pH
indicators the de-protonated form) and second the spec-
trum of the bound (protonated) indicator molecules.
There are further two different effects on the fluorescence
of pH indicators which need to be distinguished when the
pH is lowered: First a fluorescence quenching at all wave-
lengths. Second, the spectral disproportionation (i.e. the
attenuation of the spectrum from de-protonated indicator
for the benefit of the fluorescence spectrum formed by the
protonated molecules). Ratiometric fluorescence meas-
urements have been established to cancel down all side-
effects based on variations in indicator concentration,
illumination intensity, detector sensitivity etc. [37,38]. So,
only the second effect, namely spectral disproportiona-
tion is essential and relevant for ratiometry and, in theory,
the ratio solely correlates with the analyte concentration
(here [H+]). A quenching at all wavelengths can be consid-
ered an apparent decrease in indicator concentration and
is thus irrelevant for ratiometry.

Here all spectra are presented normalized by their area for
three reasons: First, this is a way to uncover all spectral
effects relevant for ratiometric measurements. Second, it is
the optimal way to present the potential capabilities of the
indicator (i.e. best pair of wavelengths, dynamic ratiomet-
ric change etc.) when intended for ratiometry and/or ratio

imaging. Third, it does not require an a-priori-knowledge
of the isosbestic point.

By calculating the so-called minimax spectrum (i.e. the
spectrum that is obtained when the minimum fluores-
cence is substracted from the maximum fluorescence at
each wavelength within a scanned set of spectra) it is pos-
sible to derive two important indicator characteristics:
First, the real isosbestic point is the wavelength where the
fluorescence is independent from spectral disproportion-
ation. Here, the minimax spectrum, in theory, is zero with
discontinuous slope, but, in practice, approaches a mini-
mum close to zero. Second, the sensitivity of the indicator
which is defined here as the integral of the minimax spec-
trum. The sensitivity is a number in the range between
zero and two. It is two when there is no spectral overlap of
the protonated and the de-protonated form of the indica-
tor (ideal ratiometric indicator). It approaches zero when
the indicator is less suitable for ratiometry. Consequently,
the normalized spectra give the real isosbestic point while
in the raw data spectra (not given here) this point is
shifted by the superposed quench effect and is then distin-
guished here as 'apparent' isosbestic point.

Results & Discussion
Spectral properties of recombinant pH indicators
Ratiometric fluorescent indicators are typically character-
ized by a set of fluorescence spectra taken under different
analyte concentrations (here: different pH values) and
otherwise identical conditions. The normalized spectra
(coloured curves in Figure 1) allow to calculate the mini-
max spectrum (grey lines in Figure 1) and to extract a
number of characteristic parameters which give clues
about signal quality, signal-to-noise ratio, sensitivity, and
the best application range of the indicator and about the
optimal optical setting when used in vivo. The parameters
most relevant for practical work are:

1 The isosbestic points λiso (precisely, the isoexcitation
points in case of a double excitation probe or the isoemis-
sion points in case of a double emission probe) are the
wavelengths where the fluorescence is independent of the
indicated analyte (ion) concentration. Here, the real isos-
bestic point is distinguished from the apparent isosbestic
point.

2 Spectral peaks or shoulders left (λ1) and right (λ2) of the
isosbestic point λiso which vary in opposite direction
when the analyte concentration is changed.

3 The maximum fluorescence wavelength (λmax) is the
peak in the emission spectrum in case of a double excita-
tion indicator (such as ratiometric pHluorin and Pt-GFP)
and the maximum in the excitation spectrum in case of a
double emission indicator (such as ecliptic pHluorin).
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Fluorescence properties of genetically encoded pH-indicatorsFigure 1
Fluorescence properties of genetically encoded pH-indicators. Spectra taken at different pHs are given for Pt-GFP (A), ratio-
metric pHluorin (C) and ecliptic pHluorin (E). Corresponding ratio curves are on the right hand side (B, D, F). A: Excitation 
spectra of Pt-GFP at λem = 540 nm. The dotted line represents the emission spectrum (λex = 470 nm) corresponding to pH = 
7.4. B: Dependency of fluorescence excitation ratios R(475ex/390ex; 540em) of PtGFP on pH. C: Excitation spectra of ratio-
metric pHluorin at λem = 508 nm. The dotted line represents the emission spectrum (λex = 390 nm) corresponding to pH 7.5. 
D: Dependency of fluorescence excitation ratios R(395ex/475ex; 508em) of ratiometric pHluorin on pH. E: Emission spectra 
of ecliptic pHluorin taken at different pH (λex = 400 nm). The dotted line represents the excitation spectrum (λem = 508 nm) 
corresponding to pH 7.5. F: Dependency of fluorescence excitation ratios R(400ex; 511em/464em) of ecliptic pHluorin on pH. 
All spectra are normalized by their area. The grey curve in each set of spectra (A, C, E) represents the corresponding mini-
max spectrum (maximum fluorescence difference for each wavelength). Its minimum designates the isosbestic point. Ratio data 
(B, D, F) were fitted with a sigmoidal Boltzmann fit.
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4 The Stokes-shift of a fluorescent probe is defined by the
difference between the wavelength of its absorption peak
(Figure 2) and the wavelength of its emission peak (Figure
1).

5 The maximum and minimum ratios, Rmax and Rmin (i.e.
the ratios taken in the absence of the analyte or when the
indicator is saturated with analyte).

6 The apparent pK (i.e. midpoint of the calibration curve
where the ratio reaches half maximum between Rmin and
Rmax) is dependent on the ratiometric wavelengths chosen
(see supplemental data in additional file 1). Ideally, the
apparent pK is about the dissociation constant which is
defined by the analyte concentration where the indicator
is half-saturated.

7 The useful concentration range (x-axis range) in which
the indicator is reasonably applied and where the loga-
rithm of the ratio depends approximately linear on the
logarithm of analyte concentration. In the case of pH-
indicators this range is given by the pH values where the
straight line through the midpoint of the logarithmic cal-
ibration curve intersects with log(Rmax) and log(Rmin)
(Figure 3).

8 The sensitivity S of the indicator is defined here (see
introduction section) by the area or integral of the mini-
max spectrum. The sensitivity is excellent when S > 0.5
(Table 1) and it is negligible when S < 0.1 (Table 4).

The parameters for the three pH-reporter proteins dis-
cussed here, namely Pt-GFP, ratiometric, and ecliptic
pHluorin are given for comparison in Tables 1 and 2.
Spectra and calibration curves are depicted in Figure 1.
Parameters of some chemical fluorescent dyes often used
as ratiometric in vivo pH indicators are given for further
comparison in an additional file (Table).

When doing ratio imaging, a maximum dynamic fluores-
cence ratio range (i.e. a maximum fold fluorescence ratio
increase Rmax/Rmin) is desired in order to gain an optimal
signal to noise ratio. However, the experimental condi-
tions – in particular the spectral characteristics of the
available filter set and/or dichroic mirror – are often not
optimised for the ratiometric probe in use or the Stokes-
shift of the indicator is too small for reliably separating
fluorescence emission from excitation light. In case of Pt-
GFP, for instance, the Stokes-shift is just 6 nm (i.e. right
excitation peak λ2 = 502 nm; maximum emission λmax =
508 nm; see Table 1). This is too close to be separated by
conventional microscopic filter sets. Hence, wavelengths
other than those giving the maximum dynamic ratio
range are compulsorily chosen. Thereby, it should be kept
in mind that responsiveness and midpoint of the calibra-
tion curve (apparent pK) depend on the two wavelengths
chosen for ratio measurements. This effect is demon-
strated as supplemental data in additional file 1 (Figure
S1, Table S2).

For in vivo comparison of ratiometric pHluorin and Pt-
GFP we used the F475 nm/F390 nm pair for excitation

Comparison of all three recombinant pH-probes on a log-log scaleFigure 3
Comparison of all three recombinant pH-probes on a log-log 
scale. The areas of best responsiveness are highlighted by 
coloured rectangles: ecliptic pHluorin in red (emission ratio 
Rem = F511/F465 at λex = 400 nm); ratiometric pHluorin in 
green (excitation ratio Rex = F390/F475 at λem = 508 nm), and 
Pt-GFP in blue (excitation ratio Rex = F475/F390 at λem = 540 
nm).

Absorption spectra of pH sensitive GFPsFigure 2
Absorption spectra of pH sensitive GFPs. The spectra were 
taken in phosphate buffer (pH = 7.4) and normalized by 
A280. The absorption spectra coincide with the excitation 
spectra shown in Figures 1.
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with an emission range between 510 nm ≤ λem ≤ 560 nm.
In Table 2 the optical properties for this particular pair are
listed for comparison.

Both, ratiometric and ecliptic pHluorins do not differ sig-
nificantly in their spectra when other proteins are fused to
the N- and/or the C-terminus [21]. This is also true for Pt-
GFP (unpublished observations). This property is impor-
tant since fusions with transit or signal peptides are often
used to specifically target the indicator to subcellular loca-
tions.

For direct comparison of all three pH-probes the ratios
where plotted on a log-log-scale (Figure 3). This allows to
determine the area of best indicator responsiveness
(dynamic ratio range vs. dynamic pH range). The diagram
(Figure 3) clearly shows that Pt-GFP has the best respon-
siveness (∆log(R)·pH = 9.8) and the broadest pH-applica-
tion range. The responsiveness is lower with ratiometric

pHluorin (2.9) and ecliptic pHluorin (2.0). Pt-GFP
responsiveness also exceeds that of conventional pH-indi-
cators (Table S1 in 1). However, Aequorea GFPs have a bet-
ter sensitivity than Pt-GFP (Table 1) but the sensitivities of
all three recombinant indicators are of similar magnitude
(0.65 < S < 1) when compared with conventional dyes
(Table S1).

pH-stability of GFPs
The fluorescence quench at all wavelengths by low pH has
already been mentioned above. This is due to reversible
protonation of Av-GFPs in the range 7 > pH > 5 and by
irreversible conformational changes leading to protein
instability in the range pH < 5 [39,40]. The latter effect is
undesirable when GFPs are used as pH-probes in plants.
The apoplast of plant cells is usually acidic (pH < 6.5)
[21,41,42], and also some vacuoles have low pH. Thus,
cytoplasmic pH changes can be drastic in plants (see e.g.
in vivo experiments below). Therefore it is good to have a
pH indicator with high acid stability and ratiometric
responsiveness in the lower pH range.

To quantify indicator stability at low pH we recorded GFP
fluorescence and its reversibility during low pH-treatment
(Figure 4). GFPs from Aequorea victoria (Av-GFPs) do not
recover from a treatment with pH lower than 4 (Figure
4B) whereas Ptilosarcus GFP is more stable at low pH and
does recover to approx. 40% even after 30 min at pH = 2.5
(Figure 4A). This acid stability of Pt-GFP is a special
advantageous feature that will allow to overcome difficul-
ties that have been experienced when Av-GFP was used for
labelling plant vacuoles [8,12]. Together with the broader
pH application range Pt-GFP can also be used to monitor

Table 2: Comparison of ratiometric pHluorin an Pt-GFP when 
excitation ratios R(F475; F390) are taken. The optimal pH-range 
is calculated here from a double log-plot as shown in Figure 3

GFP-species
parameter ratiometric pHluorin Pt-GFP

Rmax 2.65 37.4
Rmin 0.3 1.5
Rmax/Rmin 8.8 25
Rmax - Rmin 2.35 36
apparent pK (390 nm; 475 nm) 6.9 7.3
optimal pH-range 4.8 < pH < 7.6 3.8 < pH < 

8.2

Table 1: Spectral characteristics of recombinant pH-probes. The real isosbestic point is derived from normalized spectra whereas the 
apparent isosbestic point is from the raw data. The Stokes-shifts are defined here by the difference between the wavelength of the 
major (and the minor) absorption peak and the wavelength of the emission peak. Index 'x' of S designates sensitivity calculated from 
excitation spectra, and index 'm' values are calculated from emission spectra. 'em', 'ex', and 'abs' designate wavelengths in the 
emission spectrum, the excitation spectrum, and in the absorption spectrum, respectively.

GFP-species
parameter ratiometric pHluorin ecliptic pHluorin Pt-GFP

real isosbestic point λiso 426 nm (ex) 495 nm (em) 437 nm (ex)
apparent isosbestic point 428 nm (ex) 489 nm (em) 430 nm (ex)
left peak WL (λ1 < λiso) 395 nm (ex, abs) 464 nm (em) 390 nm (ex)
right peak WL(λ2 > λiso) 475 nm (ex) 511 nm (em) 502 nm (ex)
Stokes-shift (λem - λabs) 113 nm (33 nm) 114 nm (35 nm) 6 nm
maximum WL (λmax) 508 nm (em) 397 nm (ex, abs) 508 nm (em)
Rmax (F(λ1)/F(λ2)) 2.75 14 107
Rmin (F(λ1)/F(λ2)) 0.3 0.5 4.2
Rmax - Rmin 2.44 13.5 103
Rmax/Rmin 8.7 27 26
apparent pK (λ1; λ2) 6.9 7.6 7.3
Responsiveness (∆log(R)·∆pH) 2.9 2.0 9.8
pH sensitivity (Sx) 0.77 0.41 0.69
pH sensitivity (Sm) 0.34 1.05 0.09
Page 5 of 13
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pH changes in vacuoles and other acidic compartments or
in the cytoplasm under conditions when the cellular envi-
ronment is switched towards the acidic.

Mass properties of recombinant pH indicators
The predicted protein masses of Pt-GFP and pHluorins are
approximately 27 kDa. We confirmed this by denaturat-
ing SDS PAGE (data not shown). However, when native
proteins were run on FPLC different masses were detected.
Pt-GFP exhibited a mass of approx. 105 kDa, whereas
pHluorins were detected at around 55 kDa. This indicates
the formation of dimers in case of pHluorins and of
tetramers in case of Pt-GFP.

Cross-sensitivities of recombinant pH indicators
Cross-sensitivities are often major drawbacks when fluo-
rescent proteins are engineered to indicators for cellular
signal transduction studies [19,43]. Therefore fluores-

cence spectra of all three pH-probes were taken in vitro
with purified protein to check for possible chloride and
redox cross-sensitivities. The chloride sensitivities found
(Table 3) in the range of 0 < [Cl-] < 1 M (at pH = 7.5 in 50
mM Hepes) are negligible (i.e. S << 0.1) and there are also
no noteworthy spectral differences between reduced and
oxidize probes (i.e. 20 mM DTT in degassed PBS vs. 50
mM H2O2 in PBS).

In vivo properties of recombinant pH indicators
When cDNA encoding Pt-GFP is transferred into the
genome of Arabidopsis under the control of the CaMV 35S
promoter, the fluorescent protein is readily expressed in
all cells of the plant and distributes well in the cytoplasm
(Figure 5). From Av-GFP it has been experienced that this
is not a matter of course. First, the Av-GFP gene was not
entirely accepted by Arabidopsis and was expressed only
after a cryptic intron was removed from the cDNA [3]. Sec-
ond, the quantum efficiency was poor in the beginning
and mutations were introduced to increase the brightness.
Third, the distribution in the cytoplasm was found to be
inhomogeneous and further amendments were necessary
to increase the cytoplasmic solubility of the protein [4].
Both, the high quantum efficiency of Pt-GFP [35] (US Pat-
ent No. 6,232,107) and its good expression in plants (Fig-
ure 5) do not make any alterations of aminoacid sequence
or codon usage necessary.

However, quantum efficiency or brightness of GFPs can-
not be directly compared in vivo since a lower quantum

pH-stability of Pt-GFP (A) and ratiometric pHluorin (B)Figure 4
pH-stability of Pt-GFP (A) and ratiometric pHluorin (B). Agarose beads decorated with GFP and sandwiched between sheets 
of cellophane were dialysed against buffers of different pH as indicated by the top bars of the graphs and fluorescence (Fem = 
535 ± 25 nm) was recorded with a fluorescence microscope. (Buffer composition: 50 mM Hepes, 50 mM Mes, 200 mM NaCl 
adjusted with NaOH or HCl to the desired pH).
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Table 4: Comparison of camera exposure times needed for 
ratiometric pHluorin and Pt-GFP when excitation ratios R(F475; 
F390) are taken in plants under otherwise identical settings.

GFP-species
parameter ratiometric pHluorin Pt-GFP

390 nm 180 300
475 nm 150 100
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efficiency could be compensated by a higher expression
level. But, the excitation energy or dose is crucial for prac-
tical work because it may lead to photodamage or -bleach-
ing when too high. Therefore, we compared exposure
times necessary to reach a reasonable signal at the two
wavelengths used for in vivo ratiometry (Table 4). CCD
camera-based in vivo ratio imaging systems allow wave-
length-independent adjustments of exposure times.

In Figure 2 absorption is normalized by the protein con-
centration (i.e. by A280). This allows direct comparison of
absorption in the visible and demonstrates that Pt-GFP
has a higher peak absorption here than pHluorins. This
promises the need of lower excitation energy. But its very
low absorption at 390 nm requires the F390 nm signal
having threefold the exposure time of the F475 nm signal
to be in the optimal range (Table 4). Fluorescein deriva-
tives like BCECF and FITC have similar asymmetric spec-
tra like Pt-GFP and also require appropriate adjustments.
For AtpHluorins in contrast such asymmetric adjustment
of exposure times is not needed because of the greater
symmetry in their spectra. Hence, the higher quantum
efficiency of Pt-GFP does not necessarily carry forward in
a lower excitation energy needed for balanced signals. A
way to circumvent this may be to choose instead of 390
nm a wavelength at or closer to the isosbestic point.

'In situ'-calibration
For converting fluorescence ratio data taken from living
cells into pHcyt values, an 'in-situ' calibration procedure
was performed using the same optical set-up as for in vivo
measurements. Therefore, agar beads were decorated with
fluorescent protein, sandwiched between sheets of cello-
phane and dialysed on the microscope against buffers of
different adjusted pH (Figures 6A, B). Ratios were plotted
over pH and a sigmoidal curve (Boltzmann function) fit-
ted to the data. The low excitation peak of Pt-GFP at 390
nm (Figure 1) could be argued to lead to increased vari-
ance in the ratio in particular at physiological pH values
when F390 is used as denominator. Such spectral imbal-
ance between the two excitation wavelengths used for
ratioing is also found with conventional fluorescein deriv-
atives used for pH measurements like BCECF or FITC.
However, the errorbars in Figures 6C and 6D show that
the scatter of Pt-GFP ratios is negligibly increased when
compared with ratiometric pHluorin.

Microenvironmental parameters such as viscosity, hydro-
phobicity, protein mobility, and binding interactions [44]
as well as spectral imbalance can be attributed to shifts in
the response of an indicator when going from in vitro
(spectrometer) to in situ or to in vivo (microscope) record-
ing. Noticeable here is a shift of the apparent pK when
comparing Figures 1B and 6C. However, this is not disas-

Arabidopsis line expressing Pt-GFPFigure 5
Arabidopsis line expressing Pt-GFP. A: Confocal image of Ara-
bidopsis guard cells expressing Pt-GFP in the cytoplasm. The 
red fluorescence is chlorophyll autofluorescence from chlo-
roplasts. B: Confocal optical sections and C: corresponding 
bright-field image of a root segment. Excitation with Argon 
laser line 476 nm; emission at 500–540 nm (green channel) 
and 600–660 nm (red channel); Leica TCS SP confocal laser 
scanning system; HC PL APD objective (40× oil).

15µm 

A

B C

Table 3: Cross-sensitivities of recombinant pH-probes. Index 'x' 
designates sensitivity calculated from excitation spectra, and 'm' 
calculated from emission spectra

GFP-species
parameter ratiometric 

pHluorin
ecliptic pHluorin Pt-GFP

Sx (Chloride) 0.03 0.04 0.04
Sm (Chloride) 0.02 0.02 0.02
Sx (red/ox) 0.04 0.05 0.03
Sm (red/ox) 0.01 0.01 0.02
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trous as long as recordings of calibration data and in vivo
data are identical.

pH-clamp
The cytoplasmic pH in plants is well buffered [45] and
strictly regulated [46]. However, it is possible to adjust
cytoplasmic pH values different from the cell's set-point
by using weak acids [44,45] or weak bases. Here we per-
formed pH-clamp experiments with Arabidopsis expressing
Pt-GFP and ratiometric pHluorin and recorded the cyto-
plasmic pH (pHcyt) under identical conditions (Figure 7).

Anoxia – an abiotic stimulus that heavily affects 
cytoplasmic pH
Anoxia is a typical abiotic stress factor that appears for
instance in clayey or waterlogged soils. Anoxia is known
to produce massive acidification of the cytoplasm. Here
we demonstrate how Arabidopsis expressing Pt-GFP report
this effect (Figure 8). Cytoplasmic pH shifts in response to

low oxygen have been reported many times and quanti-
fied by different methods [46,47]. Felle [48] used pH-spe-
cific microelectrodes and recorded in Medicago sativa
under anoxia a fall of pHcyt down to 6.8. This is approxi-
mately half a pH unit below the normal cytoplasmic level.
A shift of similar magnitude was reported from maize
roots [49] and from sycamore cells [50] by 31P-NMR. The
results presented here (Figure 8) match well with the
experiments from Felle [48], Ratcliffe [49], and Gout et al.
[50].

Salt stress – an abiotic stimulus that hardly affects 
cytoplasmic pH
Salt stress is a major stress factor leading to massive cuts in
crop yield worldwide ([51]; http://www.plantstress.com).
One way to combat this problem is to produce crop plants
with improved salt tolerance [52-54]. A pre-requisite for
this is to understand ion-transport and the mechanisms
underlying salt tolerance on cellular and subcellular level.

'In situ' calibration procedureFigure 6
'In situ' calibration procedure. A, B: Fluorescence ratio time series of agar beads decorated with Pt-GFP (A) or ratiometric 
pHluorin (B) during dialysis against buffers of different pH as indicated by the top bar. C, D: Resulting calibration curves. Error 
bars indicate standard deviation. Data in C are averages of 9 from 7 individual experiments and data in D are averages of 14 
from 4 individual experiments.
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We started to study changes in cellular ion relations under
salt stress [21,23]. Here we use Pt-GFP expressing Arabi-
dopsis to demonstrate how the cytoplasmic pH is affected
by increasing concentrations of NaCl (Figure 9). The
result coincides well with a similar experiment performed
with ratiometric pHluorin [21]. Arabidopsis seems to
strictly control pHcyt when confronted with salt stress.

Here (Figure 9) NaCl concentrations above 100 mM leads
to slight acidification of approx 0.04 pH units. However,
a more pronounced acidification of about 0.2 pH units is
observed when saltstress is released. This latter effect can
be attributed to H+ coupled Na+ export via Na+/H+ anti-
porter [55]. Other studies on different plant species and
conducted with different methods show inconsistent
results [55-60]. However, all clearly confirm that salt
stress (Figure 9) if at all only slightly (i.e. ∆pHcyt < 0.3)
affects pHcyt when compared to anaerobiosis (Figure 8).

Summary
Advantages have been found when comparing Pt-GFP
with pHluorins:

1 Pt-GFP is readily expressed by Arabidopsis without any
cDNA modifications (Figure 5). Although the cDNA is
derived from a distinct and totally unrelated organism,
the codon-usage is accepted by Arabidopsis and the plant
constitutively expresses the protein with high yield under
the control of a single 35S-promotor. The use of Av-GFP
in higher plants, in contrast, was initially limited. Altera-
tions of the codon usage and the removal of a cryptic
intron were found necessary to express Av-GFP in Arabi-
dopsis [3].

2 Pt-GFP is readily soluble and distributes well when
expressed in the cytoplasm of plants (Figure 5) whereas
for Av-GFPs modifications where found beneficial to
increase protein solubility in the plant cytoplasm [4].

Anoxia-induced pH-deprivation in roots cells (elongation zone near the root tip) of Arabidopsis expressing Pt-GFPFigure 8
Anoxia-induced pH-deprivation in roots cells (elongation 
zone near the root tip) of Arabidopsis expressing Pt-GFP. 
Given is the average of 7 from 5 individual experiments. 
Error bars indicate standard deviations. The dotted line gives 
a first order exponential fit to extrapolate the new predicted 
steady state pH value (6.95) under anoxia.
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pH-clamp in Arabidopsis root cells (hairy zone near the hypocotyl) expressing Pt-GFP (A) and ratiometric pHluorin (B)Figure 7
pH-clamp in Arabidopsis root cells (hairy zone near the hypocotyl) expressing Pt-GFP (A) and ratiometric pHluorin (B). Perifu-
sionbuffers were MES-buffer (i.e. KCl, CaCl2, MgCl2 0.1 mM each, 5 mM MES/NaOH pH 5.4) and supplemented with Na-
Butyrate of mM-concentrations as indicated by the top bar of the graphs. Curves are averages of 5 from 3 individual experi-
ments. Error bars indicate standard deviation.
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4 The fluorescence excitation ratio of Pt-GFP has a maxi-
mum dynamic range (Rmax - Rmin) 15 times and a maxi-
mum ratio increase (Rmax/Rmin) three times higher than
that of ratiometric pHluorin when using excitations at
390 nm and 475 nm (Table 2). It further has a broader
area of responsiveness (Figure 3) and thereby also exceeds
conventional fluorescein derivatives used for ratiometric
in vivo pH-measurements (supplemental data in 1 Table
S1).

5 Pt-GFP is much more robust at low pH (Figure 4). This
makes it also suitable for monitoring pH in acidic subcel-
lular compartments or under conditions when the cellular
pH is shifted towards the acidic.

Taken together, Pt-GFP is an excellent pH indicator for
excitation fluorescence ratio imaging and in some respects
superior to pHluorins when used in plants.

Materials and methods
Standard PCR and cloning techniques [61,62] were
employed to engineer all constructs described below.
cDNAs coding for pHluorins have been cloned and
expressed as described [21].

Bacterial expression, purification, and in vitro-analyses of 
GFPs
DNA coding for Pt-GFP (Acc.No. AY015995) has been
subcloned from a pUC18 vector (Nanolight Technologies,

Pinetop, AZ, USA) into the bacterial expression vector
pRSETb (Invitrogen GmbH; Karlsruhe, FRG). Protein pro-
duction was induced with 1 mM IPTG when OD600 = 0.6
and expressed at 20°C/300 rpm over night (i.e. 15 h). For
protein isolation bacteria were cracked by sonification
(HD2200&MS73, Bandelin, Berlin, Germany) in 200 mM
phosphate buffer (pH 7.5). Bacterial lysate was pre-
cleared at 4,000 × g for 2 h at 4°C. Remaining debris was
removed from the supernatant by filtering through a 0.45
µm nylon filter. The 6xHis-tagged fluorescent protein was
purified and concentrated through a Ni2+/NTA-agarose
column (Qiagen, Hilden, Germany). Gel filtration
through a NAP-25 column (Pharmacia Biotech, Freiburg,
Germany) was performed to remove imidazol from the
eluted protein. The purified indicator proteins were
assessed spectroscopically. Fluorescence spectra (Figure 1)
of the proteins were taken with a fluorescence spectrome-
ter (F-2500, Hitachi) in 150 mM KCl and 50 mM appro-
priate organic buffers (Mes, Pipes, Hepes, Taps) adjusted
to the desired pH with NaOH. Absorption spectra (Figure
2) were taken in phosphate buffer (pH = 7.5) with an
absorption spectrometer (2100, Hitachi).

Size exclusion chromatography (FPLC)
For FPLC protein was bound to a 0.5 ml column of Toyo-
pearl resin (AF-Chelate-650 M; Tosoh Bioscience) washed
with Tris/HCl-buffer (50 mM Tris/HCl pH = 8) and
treated with Enterokinase (EKMax, Invitrogen) for 24 h at
RT. Protein with His-Tag cleaved was washed from the col-
umn with 2 ml 1 × PBS and used for fast protein liquid
chromatography (FPLC). Briefly, proteins were subjected
to FPLC at 4°C with an HiLoad-16/60 Superdex200 col-
umn (Amersham Biosciences), equilibrated with 1 × PBS
(Medicago AB; Uppsala, Sweden), pre-fitted with a col-
umn guard, and driven by a HPLC pump (Äkta-Explorer;
Amersham Biosciences) at a flow rate of 1 ml/min. The
column was calibrated using a mixture of four proteins of
known molecular mass, i.e. catalase (232 kDa), aldolase
(158 kDa), chymotrypsinogen A (25 kDa), and ribonucle-
ase A (13.7 kDa).

Expression in plants
pHluorins for expression in plants were constructed as
described in Gao et al. [21]. Pt-GFP cDNA (Nanolight
Technologies, Pinetop, AZ, USA) was expressed in ecotype
Columbia-0 of Arabidopsis thaliana under the control of
the CaMV 35S promoter using the pART7/pART27 clon-
ing/expression system [63]. Full functionality of Pt-GFP in
pART7 was assessed by biolistic bombardment and tran-
sient expression of young Arabidopsis plants (ecotype Col-
0) before subcloning the cDNA cassette from pART7 into
the binary vector pART27. For agrobacterium-mediated
transformation of Arabidopsis thaliana (Col-0) the floral
dip method [64] was applied.

Salt stress-induced pH-changes in roots cells (hairy zone near the hypocotyl) of Arabidopsis expressing Pt-GFPFigure 9
Salt stress-induced pH-changes in roots cells (hairy zone near 
the hypocotyl) of Arabidopsis expressing Pt-GFP. Roots were 
perifused with unbuffered standard medium (SM = KCl, 
CaCl2, MgCl2 - 0.1 mM each) and millimolar NaCl concentra-
tions as indicated by the top bar of the graph. Given is the 
average of 5 from 4 individual experiments. Error bars indi-
cate standard deviations.
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Confocal laser scanning microscopy (CLSM)
Transient and stable expressions of GFPs (Figures 6) were
assessed by CLSM as described [21] using a Leica TCS SP
confocal laser scanning system. For Pt-GFP excitation the
476 nm beamline of the Argon laser was chosen; emission
at 500–540 nm (green channel) for GFP fluorescence and
600–660 nm (red channel) for chlorophyll autofluores-
cence; HC PL APD objective (40× oil).

In situ-calibration of pH probes
For assessment of acid stability (Figure 4) and for in situ-
calibration of the pH-indicators (Figure 6) protein was
bound to Ni2+-agarose beads (Qiagen, Hilden, FRG). Flu-
orescent beads were sandwiched between two layers of
cellulose (Cellophane) and dialysed on the microscope
against the buffer solutions indicated in figures.

In vivo pH-recording
For in vivo recording of fluorescence ratios (Figures 7, 8, 9)
transgenic Arabidopsis were grown in 9 cm Petri dishes on
vertical agar as described [65] and used when 6 to 14 days
old. Cytoplasmic pH was measured in the hairy root seg-
ments near the hypocotyl. Experimental conditions, peri-
fusion technique, and fixation of plant material were
described previously [44]. Roots were placed in a volume
of 1.6 ml and perifusion flow was adjusted to 2.4 ml/min.
The perifused buffer contained KCl, MgCl2, and CaCl2, 0.1
mM each and 5 mM MES/NaOH adjusted to pH = 5.4. For
pH-clamp this buffer was supplemented with different
concentrations of sodium butyrate as indicated by the top
bar of Figure 7.

Fluorescence ratio imaging
Fluorescence imaging was performed essentially as
described [21,23]. Briefly, fluorescence images at excita-
tion wavelengths of 475 nm and 390 nm were taken every
12 s with a ratio imaging system from TILL-Photonics
http://www.TILL-photonics.de fitted to an inverted micro-
scope (Diaphot, Nikon) using light from a monochroma-
tor (Polychrome IV, TILL). For the emission path a filter
block with beamsplitter 500 dcxr and emission filter
HQ535/50 (AHF-Analysentechnik, Tübingen, Germany)
was used. TILL software (TILLVision 3.3) was used for
processing raw data. The fluorescence ratio F475/F390
was taken with Pt-GFP and the ratio (F390/F475) was
taken with ratiometric pHluorin as a measure for pH.

Data analysis
Each spectrum is normalized by its integral (i.e. the sum
of fluorescence values over all wavelengths λ). The mini-
max spectrum Fminimax(λ) of a set of spectra is determined
by substracting the minimal fluorescence from the maxi-
mal fluorescence at each wavelength within the obtained
set of spectra (i.e. within the scanned analyte concentra-
tion range). The isosbestic point (λiso) is determined by

looking for the minimum in the minimax spectrum. Ide-
ally, the minimax spectrum is zero at the isosbestic point
(i.e. Fminimax(λiso) = 0). The sensitivity S is defined here by
the integral of the minimax spectrum. The sensitivity S of
each reporter protein is calculated for the set of its excita-
tion spectra (Sx) as well as for its corresponding set of
emission spectra (Sm). The Boltzmann fit has been chosen
here for fitting sigmoidal curves to calibration data since
the Boltzmann equation can directly be derived from the
Grynkiewicz equation [66] describing the relation of ana-
lyte concentration on fluorescence and fluorescence
ratios. The fit parameter of the Boltzmann include Rmin,
Rmax, and the apparent pK of the calibrated indicator. Fit-
ting has been performed using Origin 7.0 (OriginLab
Corp., Northhampton, MA, USA).

Availability of materials
Seeds from Pt-GFP expressing Arabidopsis are freely availa-
ble from the European Arabidopsis Stock Centre (Not-
tingham, UK; http://arabidopsis.info/). All other novel
material described in this studies can be obtained for non-
commercial purposes from the corresponding author on
request.
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