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Abstract

Strategies for robust quantitative comparison between different biological samples are of high
importance in experiments that address biological questions beyond the establishment of protein
lists. Here, we propose the use of 'SN-KNO; as the only nitrogen source in Arabidopsis cell
cultures in order to achieve a metabolically fully labeled cell population. Proteins from such
metabolically labeled culture are distinguishable from unlabeled protein populations by a
characteristic mass shift that depends on the amino acid composition of the tryptic peptide
analyzed. In addition, the metabolically labeled cell extracts are also suitable for comparative
quantitative analysis of nitrogen-containing cellular metabolic complement. Protein extracts from
unlabeled and from standardized 'N-labeled cells were combined into one sample for joined
analytical processing. This has the advantage of (i) reduced experimental variability and (i)
immediate relative quantitation at the level of single extracted peptide and metabolite spectra.
Together ease and accuracy of relative quantitation for profiling experiments is substantially
improved. The metabolic labeling strategy has been validated by mixtures of protein extracts and
metabolite extracts from the same cell cultures in known ratios of labeled to unlabeled extracts
(I:1, 1:4, and 4:1). We conclude that saturating metabolic '>N-labeling provides a robust and
affordable integrative strategy to answer questions in quantitative proteomics and nitrogen focused
metabolomics.

Background

Plants adjust to developmental and environmental varia-
bility with respective changes in protein abundance and
enzyme activity. Thus, protein expression and metabolite
pools in cells can be highly dynamic and the abundance
and activity of specific proteins can vary greatly during
growth and development or in response to biotic and abi-
otic stress. Therefore, it is of great biological interest to be
able to quantitatively compare the subproteomes of dif-

ferent developmental stages or to quantitatively examine
the dependent or independent responses of metabolic or
signaling pathways under specific conditions. Thus com-
bined analysis of metabolites and proteins may yield
novel information about regulatory processes in plants

[1].

Liquid-chromatography coupled mass spectrometry has
in the recent years become a widely applied tool in quan-

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16948866
http://www.plantmethods.com/content/2/1/14
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Plant Methods 2006, 2:14

titative proteomic approaches also in plant sciences [2-4].
Mass spectrometry is especially powerful to identify and
quantitate changes in post-translational modifications,
which often play important roles in protein function and
regulation [5,6]. However, quantitative comparisons
between independent samples remain a challenging task.
Label-free approaches termed 'protein correlation profil-
ing' rely on the relative quantitation of ion intensities
between independent LC-MS/MS runs require accurate
reproducibility of retention times in combination with
elaborate data analysis [7,8]. Other label-free techniques
use the number or recorded spectra for each protein as a
comparative measure [9,10].

Due to difficulties in peak assignments between inde-
pendent LC-runs of complex mixtures, many quantitative
proteomic strategies rely on the incorporation of stable
isotopes into proteins or peptides, which are then quanti-
tatively compared to an unlabeled control sample based
on their mass spectra [11]. Relative protein abundance
can be calculated from the intensities of the labeled versus
the unlabeled labeled forms of the same tryptic peptides
in the same mass spectrum (for review see [12,13]). Stable
isotope labeling of protein samples can in principle be
achieved by chemical modification of proteins and tryptic
peptides. Initially, 180 labeling was used to differentially
label peptides of protein samples during the digest with
trypsin [14]. This approach is still used today for relative
comparison between two samples [4,15]. Later, isotope
coded affinity reactive tags were developed which tag spe-
cific amino acid species and allow for specific enrichment
of the labeled tryptic peptides [16]. This variety of tags has
successfully been used in an number of comparative pro-
teomic studies involving comparisons of changes in pro-
tein abundances [17-19] or characterizing changes in
posttranslational modifications [20,21]. Furthermore, sta-
ble isotope labeled synthetic peptides are being used as
internal standard peptides for a variety of targeted assays
involving quantitative mass spectrometry [22,23]. How-
ever, the drawbacks of chemical labeling strategies are that
only a rather small subset of tryptic peptides are being
tagged and that experimental variability may be intro-
duced during the labeling processes.

The first studies making use of metabolic labeling for pro-
tein quantitation by mass spectrometry relied on growth
of bacterial or yeast cells on 15N-enriched medium
[24,25]. However, since the mass shift introduced by >N
labeling depends on the amino acid composition of each
tryptic peptide, knowledge of the peptide sequence is nec-
essary to calculate the expected mass difference to the
labeled or unlabeled partner. Thus, full metabolic labe-
ling has recently been widely replaced by labeling of only
specific amino acids (SILAC), such as lysine, arginine or
leucine to introduce a fixed mass shift between labeled
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and unlabeled peptide pairs [26-28]. SILAC works espe-
cially well with mammalian cell cultures to which essen-
tial amino acids can easily be supplied in a stable isotope
labeled form and full incorporation into the proteome of
the cells is ensured. In yeast, auxotrophic mutants inhib-
ited in the synthesis of arginine or lysine have been used
for full incorporation of stable isotope labeled amino
acids. The SILAC approach has successfully been applied
to quantitative proteomic studies of the formation of sig-
nal-dependent protein complexes [29], in modification-
dependent protein-protein interaction screens [30,31],
and to analyses of the dynamics of signal-dependent
phosphorylation events [32-34]. In plants, labeling of
arginine, lysine or leucine has also been achieved using
cell cultures [35], and an average of 70% to 80% incorpo-
ration of the metabolic label was obtained. Possibly, by
using auxotrophic mutants in certain amino acid synthe-
sis pathways, higher degrees of labeling may be feasible.
In general it has to be considered that SILAC labeling is a
costly exercise, especially if high concentrations of amino
acids need to be supplied, such as for plant cell cultures.

Therefore, in plant biology, quantitative proteomic
approaches so far mainly relied on chemical modification
of proteins to study membrane lipid rafts [36], on 180
labeling in tryptic digests, e.g. to characterize purity of
plant plasma membrane purifications [4], or on label-free
quantitation by spectrum count as comparison between
independent samples [2]. More recently, the iTRAQ rea-
gent can be used in studies comparing more than two
samples [37]. However, metabolic labeling strategies of
whole proteomes have the advantage over chemical labe-
ling that samples to be compared can be processed
together through the complete analytical process from
extraction of combined biological samples, isolation of
metabolic or proteomic complements to quantitative
analysis. Since biochemical techniques, such as the isola-
tion of proteins, their fractionation and enrichment intro-
duce much more heterogeneity than what is known from
analyses of mRNA, reduction of sample variability is of
great importance [13]. Also for metabolites, comparative
quantitation to date relies on the analysis of a large
number of replica samples [38]. Only recently has the use
of 13C-labeling been proposed as a strategy for quantita-
tive analysis of metabolite profiles [39,40]. In addition N
labeling in plants has been successfully applied to flux
studies and tracer analysis indicating the feasibility of gen-
erating saturated N labeled metabolomes [41,42].

In complementation to metabolic N-flux analysis, we pro-
pose the use of full 5N-labeling of plant cell cultures in
comparative quantitative proteomics and metabolomic
approaches as a cheaper alternative to SILAC labeling and
a more robust and accurate method for quantitation com-
pared to label-free protein correlation profiling. For the
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reasons noted above, !5N-labeling of intact plant has yet
only been applied to analysis of proteins by NMR [43] or
metabolic flux studies [41,42], which do not require full
incorporation of the label. In addition, the approach
described here is the first example of a labeling strategy
that can be robustly applied to the protein and metabolite
complement of the same sample.

Results and discussion

Since first proteomic experiments involving metabolic
labeling with 15N involved growth of yeast cells in !*N and
15N medium for the quantitation of phosphorylation
[24], the technique of !5N-labeling for proteomic research
had mostly remained in the field of microbiology. Excep-
tions are studies using !>N-labeled microorganisms as a
food source for metabolically labeling Drosophila [44]
and !>N-labeling of rats by the use of !>N-labeled algal
food [45]. In this proof-of-principle study, we use 15N-
labeling to quantify protein and metabolite abundance in
known mixtures of labeled and unlabeled cells.

Quantitative analysis of known mixtures of protein
extracts

Metabolic 1>N-labeling introduces the stable isotope in
each nitrogen atom in the labeled organism. Therefore,
every observable peptide from mixtures of unlabeled
(14N) and '5N-labeled samples should occur in pairs and
thus be suitable for quantification. In a first step, labeled
protein extracts were analyzed for full incorporation of
15N into all proteins after 14 days of continuous growth in
presence of KI5NO;. Comparison of protein identifica-
tions in database searches with and without 15N as a
parameter for fixed modification (Tab. 1) showed that
98.3% of all proteins of the labeled cells were identified
only in their labeled form, while for 2% of the proteins, a
residual minor peak was observed also for the 14N form.
This indicates that 15N incorporation into the proteome of
plant cell cultures is as complete as it can be achieved with
98 atom% enriched KNO;. Most importantly, we
observed no significant protein to protein variation for
the incorporation of the label.

In the following experiments, protein extracts of unla-
beled (14N) cell cultures were mixed with extracts of 1>N-
labeled cell cultures at known mixing ratios of 1:1, 1:4 and

Table I: Proteins and the corresponding peptides identified in
unlabeled protein extract ('4N extract) and '°N labeled extract
(SN extract) in two consecutive database searches without ('“N
search) and with ('5N search) 5N as a fixed modification.

Proteins Peptides

14N search 5N search 14N search 15N search
14N extract 195 | 536 2
I5N extract 4 167 6 415

http://www.plantmethods.com/content/2/1/14

4:1. Quantitative analysis of the intensity ratios of labeled
and unlabeled peptide pairs indeed corresponded to the
mixing ratios (Fig. 1). Taking the doubly-charged peptide
ALGVDTVPVLVGPVSYLLLSK as an example, the quantita-
tion revealed that in unlabeled cell extracts no pairing
peak was found at the expected position of the labeled
peptide (Fig. 1A). In contrast, the !5N-labeled extract con-
tained no visible peak at the expected position of the 14N-
form of the respective peptide (Fig. 1B). In the 1:1 mixture
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Mass spectra of the peptide ALGVDTVPVLVGPVSYLLLSK in
protein extracts form unlabeled cells (A), 'N-labeled
extracts (B), and in mixtures of unlabeled and labeled extract
at a ratio of |:1 (C), a ratio of 1:4 (D), a 4:1 ratio (E). The
expected mass to charge ratios of unlabeled and labeled pep-
tides are indicated by arrows.
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of the two protein extracts, labeled and unlabeled form of
the peptide were clearly identified and quantified with a
ratio of 0.92 (Fig. 1C), in the 1:4 mixture the intensity
ratio of labeled and unlabeled form was 2.5 (Fig. 1D),
while in the 4:1 mixture the ratio was found to be 0.18
(Fig. 1E). In average in all of the above protein extract mix-
tures, 85% of all identified proteins were quantified, and
the average intensity ratios of all quantified proteins were
not significantly different (j2-test) from the expected val-
ues (Tab. 2). However, it has to be kept in mind, that ratio
quantitation can become limited by the signal-to-noise
ratio of the mass spectrometer [26] especially if there are
large differences between the two samples. In those cases,
it will not be possible to accurately reproduce the precise
mixing ratios in the measured ratios of the peak pairs.

There are two main reasons why proteomic quantification
using full 15N-labeling is not as straight forward for auto-
mated high-throughput analysis. Firstly, the pairs of tryp-
tic peptides are separated by a mass difference that
depends on the number of 15N atoms in the respective
peptide sequence. Therefore, the peptide sequence has to
be determined by a database search before the mass differ-
ence to the labeled or unlabeled partner can be calculated,
and this mass difference is different for each unique pep-
tide (Tab. 3). This is actually the most critical disadvan-
tage of the !>N-labeling method as it makes automated
peak pair recognition impossible during data-dependent
acquisition of mass spectra or in automated analysis of the
raw files. Secondly, the isotopic distribution of the mass
spectrum of a 15N-labeled peptide is slightly altered. This
is so because the labeling substance, in this case KNO;,
was used only in an isotopic enrichment of 98 atom%
15N. As the number of nitrogen atoms as a proportion of
the total number of atoms in a peptide is rather high, the
isotopic distribution of the peptide ion is influenced by
the degree of enrichment of !>N. Similarly to previous
work using full 15N- labeling as a method for quantifica-
tion in proteomics [24,44], we do not account for this
effect. However, other research groups have developed
algorithms that correct for isotope enrichment effects [46]
or make use of it for quantitative analysis [47]. Despite
some drawbacks in the automated analysis, full 1>N-labe-
ling is a cheaper alternative to metabolic labeling with
SILAC (Tab. 5). With the concentrations of amino acids
used for SILAC labeling of plant cell cultures [35] and the
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concentrations of nitrate used in the labeling medium in
this study, the K15NO, labeling method is up to 10-times
less expensive than SILAC labeling.

Quantitative analysis of known mixtures of metabolic
extracts

For metabolites, quantitation was based on the ion inten-
sities of characteristic fragment ions [39]. In total, among
the nitrogen-containing compounds, 14 amino acids (ala,
asp, cys, glu, gly, ile, lys, met, phe, pro, thr, trp, tyr, val)
and two polyamines (spermidine, putrescine) were ana-
lyzed. We estimated an average of 91% incorporation of
15N-label into metabolites, ranging from 70% for alanine
to the maximally achievable 98% for tryptophan and
putrescine.

Mass isotopomer analysis of the saturated !>N-labeled
cells indicated the expected portion, namely approxi-
mately 2% of residual 14N in all observed 15N-containing
metabolite preparations (Fig. 2A-D, 13N samples). The
observed mixing ratios of the unlabeled and labeled
metabolite extracts show the expected tendencies. For
example, 15N/14N ratios for glycine were found to be 1.0,
4.3 and 0.3 in 1:1, 1:4, and 4:1 mixtures (Fig. 2A). How-
ever, all 4:1 ratios were over-estimated without correction
for the contribution of natural abundances of 13C (Fig.
2A-D, higher isotope peak in 4N-extracts). Natural abun-
dance of nitrogen and carbon isotopes as well as discrim-
ination effects during metabolism may account for these
observations and the differences between metabolites
[48,49]. In contrast to peptide analysis, we therefore con-
clude that when analyzing mixing ratios of compounds
with one or few N-atoms the natural isotope abundance
of 13C (1.10%) needs to be considered, whereas the con-
tribution of natural abundance of >N (0.37%) may be
neglected (Fig. 2 A-D). In addition two further sources of
errors were tested: (1) The two original cell cultures,
labeled and unlabeled may have different metabolite
pools and (2) equal combination of labeled and non-
labeled samples might be inaccurate. Exemplary metabo-
lites which do not contain nitrogen, demonstrate slight
non-significant changes in pool size and negligible errors
in the 1:1, 1:4, and 4:1 mixtures (Fig. 2 E-F). While gly-
cine, inositol or fumarate levels were unchanged in the
two original cell cultures (Fig. 2.A, E-F), threonine (Fig.
2B), glutamate (Fig. 2C), and to a minor extent spermi-

Table 2: Overview of the intensity ratio of 4N and !5N tryptic peptide pairs and the number of proteins identified in the two database

searches.
mixing ratio mean ratio ID in '“N search ID in 5N search % quantified
M 0.89+0.2 87 53 87.4
1:4 5.69+2.0 29 145 93.1
4:1 0.29 £ 0.1 149 18 75.0
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Table 3: A subset of tryptic peptides from glyceraldehyde-3-phosphate dehydrogenase C subunit (At3g04120) that were identified by
mass spectrometry and subsequent database search (4N-search, see methods for details). For each peptide the expected mass
difference was calculated based on the measured mass to charge ratio (MCR). Asterisks mark those peptides that have also been
identified in the database search with !5N as fixed modification ('N-search, see Methods for details)

Sequence measured mass MCR 14N [Th] Charge calculated mass calculated mass MCR I5N [Th]
14N difference I5N

AASFNIIPSSTGAAK 1434.42 71822 2 16.95 1451.37 726.69
DAPMFVVGVNEHEYK 1733.42 867.72 2 18.94 1752.36 877.18
FGIVEGLMTTVHSITATQK *  2033.69 1017.85 2 18.94 2052.63 1027.32
GILGYTEDDVVSTDFVGDNR  2170.55 1086.28 2 23.93 2194.48 1098.24
LVSWYDNEWGYSSR 1760.47 881.24 2 19.94 1780.41 891.20
SDLDIVSNASCTTNCLAPLAK  2248.71 1125.36 2 23.93 2272.64 1137.32
VPTVDVSVVDLTVR * 1497.55 749.78 2 16.95 1514.50 758.25
YDSVHGQWK 111839 560.20 2 13.96 113235 567.17

dine (Fig. 2D) had accumulated in the 5N-labeled cells.
Although the two cell cultures were grown in the same
medium composition and under the exact same growth
conditions, changes in metabolite contents may have
resulted from slight differences in handling during har-
vesting (e.g. intensity of washing, speed of freezing). As a
consequence, we propose that those pool-size changes in
the originating cells need to be experimentally considered
for the purpose profiling experiments of the N-containing
metabolic complement.

Using the unmixed extracts (14N-extract and !5N-extract,
Fig. 2) to estimate the contribution of natural abundance
of 13C to higher isotope fragmentation peaks, we calcu-
lated the expected ratios of 1>N/14N for all metabolites in
the 1:1 mixture (Tab. 4). The calculation also takes into
account that pool sizes (ion intensities) for certain metab-
olites were significantly different in the unmixed original
cells. It becomes apparent that in most cases the measured
ratios in the 1:1 mixture are rather accurate (deviation <
10%), and only for those metabolites, which display large
differences in concentration in the original unmixed cells,
measured ratios were over- or underestimated. Alanine
was found in higher concentrations in unlabeled cells and
therefore the expected mixing ratio was strongly underes-

timated due to signal-to-noise limitation of the 15N/14N
ratios. The contrary holds true for methionine and
putrescine which show higher concentrations in the 1°N-
labeled cells leading to a strong over-estimation of
expected ratios. These examples underline the importance
of including the unmixed extracts in the analysis. It has
been described also for quantitative protein analysis that
large ratios lead to larger relative errors, basically because
the ratio is then defined by the signal to noise ratio of the
mass spectrometer [26].

The examples of different metabolite pool sizes (ala, met,
glu, putrescine) in the 14N-cells compared to the 15N-cells
actually reflect the true experimental situation, in which
two cell extracts of unknown concentrations would be
mixed in a 1:1 ratio, and those compound differing signif-
icantly from a 1:1 ratio of the ion intensities are con-
cluded to be of different pool size in the original cells. The
same experimental strategy generally also applies to pro-
teins, and has already been successfully been used to
detect proteins specifically interacting with a bait protein
or peptide from background interaction partners or to
describe temporal changes in protein abundance
[29,30,32]. However, in the experiments described here,
no variation between proteins was observed, since protein

Table 5: Overview of the costs of SILAC labeling and full 5N-labeling for plant cell cultures2. Depending on the compounds and
concentrations used in the medium, K'5NO; labeling is 7 to 12 times cheaper per liter medium.

Compound Amount in Cost per Cost per g (€) Final Price per L (€) Cost Factor
package (g) package (€) concentrationin
medium (mM)
BC¢-R 0.100 750 b 7500 08¢ 972 13
1BC,-K 0.100 800 b 8000 08¢ 1037 13
D;-L 0.100 550 b 5500 08¢ 590 8
K'SNO, | 75° 10d 77 |

afor comparison, the iTRAQ Multiplex Kit costs approximately 1000 € (Applied Biosystems, Germany), allowing for 10 pairwise labelling reactions.

bapproximate prices according to SigmaAldrich, Germany
¢ most efficient concentration used in Gruhler et al. 2005, MCP [35]
das used in this study
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Figure 2
lon intensities of characteristic fragment ions for 14N and 15N isoforms of metabolites in unlabeled cells (14N), '>*N-labeled
cells (I5N) and in extracts of |:1, I:4, and 4:1 mixtures of unlabeled to labeled cells is shown for the amino acid glycine (A), the

amino acid threonine (B), the amino acid glutamic acid (C), and the polyamine spermidine (D). Non-N-containing compounds
inositol (D) and fumarate (E) were used as a control for equal extract material. Each mixture was measured in five independent
samples, mean of five replica + standard deviation are shown, and ratios between '5N-form and '*N-form for each cell mixture
are shown above the bars. Average labeling efficiency of all N-containing metabolites was 91.32% as estimated from the >N to
14N ratios in the '*N-labeled extract.
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Table 4: Measured ratios of '5N/!'“N forms of metabolite fragment peaks in 1:1 mixtures of labeled and unlabeled extracts compared to
their expected values. Expected ratios were calculated based on the fragment spectra ratios in the unmixed extracts ('4N-extract, '5N-
extract). The difference of the measured values to the expected values is expressed as percentage of the expected value.

measured ratios expected ratios

difference to expected (%)

ala 0.31 0.11
asp 7.52 7.29
cys 1.29 1.51
glu 1.05 0.86
gly 1.04 0.93
ile 243 2.36
lys 1.27 1.24
met 391 44.54
phe 231 2.28
pro 2.54 2.49
thr 0.53 0.44
trp 2.51 2.55
tyr 1.82 1.97
val 1.54 1.43
put 7.16 9.48
spe 1.03 0.97

191.3
32
-14.4
22.1
1.9
3.0
2.8
912
1.5
1.9
19.8
-1.7
-7.8
7.5
-24.5
7.0

extracts were mixed based on total protein content, while
for metabolite analysis, frozen cell material was mixed on
a fresh weight basis (see Methods for details). Thus, the
labeling and mixing strategy described here is well suita-
ble for accurate detection of small changes and also ideal
for screening for large deviations from an expected ratio,
e.g. in presence/absence studies.

Alternative labeling strategies

A drawback of the !>N-labeling strategy for metabolomic
analyses can be seen in the fact that quantitative informa-
tion can only be obtained for nitrogen-containing metab-
olites. Thus, for quantitative information of a full
metabolite profile, metabolic labeling with 13C would be
a more promising strategy, as has already been proposed
in an experiment using yeast cells [39]. However, for pro-
tein analysis full 13C-labeling is not suitable: The high pro-
portion of carbon atoms in tryptic peptides would lead to
very large mass differences between labeled and unlabeled
peptides making unambiguous detection of labeled and
unlabeled ion pairs very difficult.

Conclusion

In this study we used K1>NOj; to metabolically label plant
cell cultures for comparative proteomic and metabolomic
experiments. We demonstrate that quantitative compari-
son using mixtures of labeled and unlabeled cell extracts
is (i) approximately 10-times less expensive per liter of
cell culture compared to SILAC labeling for plants or the
iTRAQ reagent and (ii) accurate at the level of single mass
spectra. Data supporting quantitative statistics are gener-
ated at the level of single mass spectra for peptides and
those metabolites which comprise the N-metabolome. It
is (iii) the first approach describing possibilities of a

joined quantitative analysis utilizing mass isotopomer
ratios of proteins and metabolites from the same cell
extract. Thus, we believe that metabolic 15N-labeling may
be applied to a wide range of biological questions in plant
science which require quantitative proteomic and metab-
olomic analysis.

Methods

Metabolic labeling of cell cultures

Arabidopsis cell cultures derived from leaves [50] were
grown in JPL medium [51] with 19 mM potassium nitrate
as the sole nitrogen source. Potassium nitrate was sup-
plied either in normal form or in 1>N-enriched form (98
atom% K15NOj;, Sigma-Aldrich). Cells were subcultured
every 7 days using 10% of the culture volume. The
remaining cells were harvested by suction over a filter
plate and frozen at -80°C.

Protein extracts and mixing

Frozen cells were ground and extracted in 50 mM TRIS-
HCI pH 7.5, 1% NP-40, and a protease inhibitor mixture
(Complete Tabs, Roche). Cell debris was pelleted by cen-
trifugation and 200 pg of Protein was precipitated with
TCA. Protein was resuspended in a small volume (approx.
20uL) of 6 M Urea/2 M thiourea pH8 and in-solution
digested with trypsin after reduction in DTT, alkylation
with iodoacetamide and dilution of the sample with 4
volumes of 50 mM NH,HCO, was performed as described
[30].

Mass spectrometric analysis of proteins and database
search

Tryptic peptide mixtures were then desalted on STAGE
tips [52] before LC-MS/MS analysis using nanoflow HPLC
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(Proxeon Biosystems, Odense, Denmark) and a linear ion
trap instrument (LTQ, Thermo Electron, San Jose, CA,
USA) as mass analyzer. Peptides were eluted from the ana-
lytical column (Reprosil C18, Dr. Maisch GmbH, Tiibin-
gen, Germany) by a linear gradient running from 10 % to
50 % acetonitrile in 110 minutes and sprayed directly into
the LTQ mass spectrometer. Proteins were identified by
tandem mass spectrometry (MS/MS) by information-
dependent acquisition of fragmentation spectra of multi-
ple-charged peptides. Additional data-dependent frag-
mentation (MS3) was used to confirm identity of
ambiguous proteins [53]. Fragment spectra were then
searched against a non-redundant version of the Arabi-
dopsis protein Database (TIGR6) using the Mascot algo-
rithm (Matrix Science, UK, http://
www.matrixscience.com). The following search parame-
ters were applied: Peptide mass tolerance 800 ppm, MS/
MS tolerance 0.8 Da, methionine oxidation and carbami-
domethylation of cysteine were set as variable modifica-
tions. For each sample, two database searches were carried
out, one without fixed modifications ('14N-search') and
one with 15N-amino acids as a fixed modification ('15N-
search').

Quantitative analysis of protein

Quantitative Analysis was done using the open-source
software  MSQuant (http://msquant.sourceforge.net)
which provides a validation and quantitation platform for
protein mass spectrometry. The MSQuant software has
previously been successfully applied to quantitative anal-
ysis involving SILAC labeling [31,32]. For quantitation
involving full 1>5N-labeling, ratios between the centroids
in the ion chromatograms of the eluting 'heavy' (i.e. 15N-
labeled) and 'light' (i.e. unlabeled) tryptic peptide peaks
were calculated and averaged over the duration of the
respective peaks in the total ion chromatogram [26].
Labeled and unlabeled forms of peptides were found to
co-elute (Fig. 3) and the quantification was based on the
average of independently determined ratios for each pep-
tide. Ratios obtained from different peptides identifying
the same protein were averaged. A final standard devia-
tion for protein ratios was calculated from the ratios of the
individual peptides or, when the identification was based
on a single peptide, from the ratios obtained from the dif-
ferent mass spectra of this peptide pair.

The labeled or unlabeled counterparts to peptides identi-
fied in the database searches were detected automatically
in MSQuant based on their amino acid sequence and
mass to charge ratio (Fig. 4). For example, if a peptide was
identified in the 14N-search, the mass to charge ratio of the
corresponding peak in the !>N-labeled form was calcu-
lated from the expected mass shift based on the amino
acid sequence of the 14N-isoform of the identified peptide
and its charge state.
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Figure 3

Co-Elution of unlabeled and labeled peptides. Solid lines
mark the elution peak of the unlabeled form of each peptide,
dashed lines mark the elution peak of the corresponding
labeled peptide.
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Figure 4

Mass spectra of unlabeled and labeled peptides of from glyc-
eraldehyde-3-phosphate dehydrogenase C subunit
(At3g04120) in a I:] mixture of unlabeled and labeled pro-
tein extracts. For each peptide the mass difference between
unlabeled and labeled form of the peptide is different as indi-
cated by the arrows.

Metabolite extraction and sample preparation
Metabolites were extracted from 120 mg cell material,
which was shock frozen in liquid nitrogen and ground to
a fine powder. Alternately different ratios of labeled and
non labeled powder were combined to a final amount of
120 mg and subsequently treated as a single sample. Care
was taken to keep samples frozen during manipulation.
Frozen material was extracted with 360 pL methanol.
Extraction temperature was 70°C. 200 pL chloroform and
400 pL water were added for partitioning polar metabo-
lites as described [54]. Polar extracts were dried in a vac-
uum concentrator over night. Derivatization was
conducted with 10 pL 20 mg mL-! methoxyamine hydro-
chloride/pyridine, and 17.5 pL 20 mg mL! N-methyl-N-
(trimethylsilyl)-trifluoroacetamide. A mixture of alkanes
was added for calculation of retention time indices [55].

http://www.plantmethods.com/content/2/1/14

Mass spectrometric analysis of metabolites

GC-MS based metabolite profiling performed according
to the procedure described previously [56]. Briefly, 1uL of
sample was injected at 230°C into a GC 6890 (Agilent
Technologies, Palo Alto, CA, USA) gas chromatograph
mounted with a Rtx-5Sil MS capillary column, 30 m x
0.25 mm inner diameter with 0.25 pwm film thickness, and
a 10 m integrated guard column (Restek GmbH, Bad
Homburg, Germany). The temperature program com-
prised 1 min at 70°C, a 9°C min-! ramp to 350°C, and 5
min at 350°C. The transfer line to the mass-spectrometer
was set to 250°C. Carrier gas was helium at a flow rate of
0.6 mL min-! and operated at constant flow. A time-of-
flight mass-spectrometer was used, Pegasus III TOF-MS
system (Leco, St. Joseph, MI, USA) with the electron
impact ionization source set to -70 eV and 250°C. Data
acquisition was set to 20 spectra s! and the mass range
restricted to m/z = 70-600. All other settings of the mass
spectrometer were according to manufacturer's instruc-
tions. Chromatograms were acquired, deconvoluted and
processed with ChromaTOF™ software (LECO, St. Joseph,
MI, USA). Metabolites were identified using the GMD
library  (Golm Metabolome  Database, http://
csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html;
[57,58]). Mass spectral and RI comparison was performed
by NIST02 (National Institute of Standards and Technol-
ogy, Gaithersburg, MD, USA) mass spectral search and
comparison software accepting mass spectral matches
>650 on a scale of 1000 and retention time index matches
+ 5.0 RI units. Mass spectra and fragmentation pattern of
amino acid derivatives were interpreted as described [59]
in order to identify 15N-labeled forms of the respective
amino acids.

Quantitation of metabolites

Absolute ion currents and ratios in ion intensities of
metabolites were directly derived from mass spectral frag-
mentation pattern exported from the ChromaTOF™ soft-
ware. If available, for each metabolite, more than one
fragment ion was used for quantitation [39]. For each
sample type (original cell cultures, and the three mix-
tures), five independent samples were analyzed and the
ion intensities for each fragment ion were averaged across
the five replica samples.
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