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Abstract

Background: TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that combines
chemical mutagenesis with high-throughput genome-wide screening for point mutation detection in genes of
interest. However, this mutation discovery approach faces a particular problem which is how to obtain a mutant

out of 15 point mutations were identified.

population with a sufficiently high mutation density. Furthermore, plant mutagenesis protocols require two
successive generations (M1, M2) for mutation fixation to occur before the analysis of the genotype can begin.

Results: Here, we describe a new TILLING approach for rice based on ethyl methanesulfonate (EMS) mutagenesis
of mature seed-derived calli and direct screening of in vitro regenerated plants. A high mutagenesis rate was
obtained (i.e. one mutation in every 451 Kb) when plants were screened for two senescence-related genes.
Screening was carried out in 2400 individuals from a mutant population of 6912. Seven sense change mutations

Conclusions: This new strategy represents a significant advantage in terms of time-savings (i.e. more than eight
months), greenhouse space and work during the generation of mutant plant populations. Furthermore, this
effective chemical mutagenesis protocol ensures high mutagenesis rates thereby saving in waste removal costs
and the total amount of mutagen needed thanks to the mutagenesis volume reduction.
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Background
Rice (Oryza sativa) is one of the most important food
crops in the world. It is also a model cereal plant [1] for
molecular biology and genetics due to its small genome
size relative to other cereals, the availability of the entire
genome sequence [2], it’s ease of transformation and
regeneration, and the availability of a variety of mutants.
Since sequencing of the rice genome was completed in
December 2004 [2], functional genomics has been used
to determine the function of all of the approximately
50,000 annotated genes [3,4]. This objective has already
been reached through the development of a variety of
gene knockout strategies [5-7].

There are 3 ways in which to induce mutations, by
either using: 1) biological agents such as transposons
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and T-DNA, 2) physical agents such as fast neutron, UV
and x-ray radiation, or 3) chemical agents such as N-
methyl-N-nitrosourea (MNU), 1,2:3,4-diepoxybutane (DEB)
or ethyl methanesulfonate (EMS). Among these com-
pounds, EMS has become one of the most effective, reli-
able, powerful and frequently used chemical mutagens in
plants [8]. EMS mainly induces C—to-T substitutions
resulting in C/G to T/A transitions [9,10] and at a low fre-
quency, EMS generates G/C to C/G or G/C to T/A trans-
versions through 7-ethylguanine hydrolysis or A/T to G/C
transitions through 3-ethyladenine pairing errors [9-12].
Irradiation and chemical mutagenesis have long been
used to produce mutant plants for breeding proposes
[13,14]. Molecular screening of mutations was developed
much later after the efficiency of chemical mutagens
producing small deletions and point mutations had been
improved [8,9,15,16] and DNA sequencing allowed for
the identification of such point mutations. Nevertheless,
direct sequencing in large populations is a slow and
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expensive process. Therefore, several mutation detection
techniques based on physical properties were developed
[17-24] before enzymatic mismatch detection methods
provided the key to efficient mutant population screen-
ing. The endonucleases obtained from Aspergillus [25],
Vigna radiata [26] or Penicillium [27] were the first
enzymes used to detect DNA mismatches. Oleykowski
et al. [28] improved this technique by using the CEL I
endonuclease obtained from Apium graveolens com-
bined with an electrophoresis step, thereby paving the
way for high throughput screening technology. Since then,
the enzymatic detection methods in combination with
high throughput genotyping have been improved for the
efficient detection of genetic polymorphisms [29-32]. Con-
sequently, there has been growing interest in using irradi-
ation and chemical mutagenesis in model organisms for
use in functional genomics research [33,34].

Chemically induced mutant populations have been
generated in different plant species [11] and efficiently
screened following Targeting Induced Local Lesions IN
Genomes (TILLING) high-throughput screening proto-
cols [35-37]. These combine random chemical mutagen-
esis with polymerase chain reaction (PCR) amplification
of target genes, heteroduplex formation and identification
of a range of allele changes [38] by using enzymatic mis-
match cleavage and electrophoresis. Achieving a genome-
wide saturated mutant population in plant species with
large genomes is challenging. Small genome species such
as rice are more suitable for TILLING [30,39,40]. As a
result, many rice mutant populations have been efficiently
screened using this technique [36,41-43].

In TILLING chemical mutagenesis protocols, germinat-
ing seeds are incubated in a mutagenic solution. The first
generation (MI) that is produced directly from the muta-
genic treatment cannot be screened because the majority
of generated mutations are somatic and are not transmit-
ted to the progeny [30]. To solve this problem, the M1
mutant population has to be grown and then self-fertilized.
The mutations in M1 sexual structures can produce whole
mutant M2 descendants, thereby avoiding any ambiguities
caused by mosaicism. The resulting M2 progeny can be
screened for mutations.

Tissue culture methods and mutagenesis techniques
currently available could significantly shorten the breeding
process and overcome some substantial agronomic and
environmental problems. In most cases, the embryo-
derived rice callus regeneration is only generated from a
few cells. Thus, the regenerated M1 plantlets from mutant
calli could be screened directly without waiting for a self-
pollinated M2 population. Few attempts at mutagenesis
for breeding purposes in rice using immature embryos,
calli derived from mature seeds or single zygotic cells in
recently fertilized spikelets have been reported [44-47].
Recently, mutagenesis of suspension-cultured rice cells for
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phenotypic detection of mutants has been reported [48].
However, to date no studies of chemical mutagenesis in
mature seed-derived rice calli in order to obtain mutant
populations for TILLING have been reported.

The aim of this work is to carry out a new TILLING
strategy based on the production of a plant mutant
population from EMS mutagenised embryo-derived calli
followed by a mutational screening on the regenerated
plants. This mutational screening focusses on two genes
related to senescence since this developmental process
in annual cereal crop plants overlaps with the reproduct-
ive phase and may reduce crop yield when it is induced
prematurely under adverse environmental conditions.

Results

Mutagenised population

In order to till rice we followed a new approach that differs
from the traditional TILLING procedure (described in the
introduction section, see above, Figure 1) in two aspects: i)
mutagenesis was applied to embryo-derived calli, and ii)
mutational screening was carried out on regenerated
plantlets after acclimatization.

Rice seeds were cultured in callus induction media
(OryCIM) for three weeks before Scutellum-derived callus
masses were picked and mutagenised avoiding those calli
obtained from the radicle (Figure 2a and b). No apparent
differences were detected between partially disaggregated
mutagenised and non-mutagenised calli except that the
first showed a certain degree of browning. Both calli grew
normally when cultured in OryCIM miedia for four weeks.
Plantlets from both mutagenised and control calli started
regenerating just three weeks after the growing callus
masses were transferred to regeneration (MSM) media
(Figure 2d). Mutant plantlets did not show any apparent
phenotypic differences with respect to control plantlets.
The control material was discarded after observing that
the regeneration rate was satisfactory and similar in both
treatments.

The callus regeneration process yielded 6912 individ-
ual plantlets obtained from 395 different mutagenised
callus masses. From these, 2400 plantlets were sampled
and their DNA was extracted, pooled fourfold and orga-
nized into a 96-well format for TILLING screening.

Molecular screening

Two target genes of agronomic interest were selected:
OsACSI (0s03g0727600) and OsSGR (0Os09g0532000).
Among the six ACS isozymes identified in rice, OsACS1
is the most closely related (86% identity) to ACS6 of Zea
mays (Swiss-prot: Q3ZTU2), a protein encoded by the
ZmACS6 gene whose expression is largely responsible
for directing natural, dark-induced and drought-induced
senescence in maize [49,50]. OsSGR exists as a single
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Figure 1 Diagram comparing callus mutagenesis and seed mutagenesis protocols in rice TILLING. (a) In the proposed rice TILLING
protocol through callus mutagenesis, calli are induced, mutagenised, and the regenerated plants provide DNA for molecular screening of
mutations. (b) In the basic TILLING method, seeds are mutagenised, the resulting M1 plants are self-fertilized and the M2 generation of individuals
is used to prepare DNA samples for mutational screening while their seeds are inventoried. The steps represented cover from callus induction

(a) or seed imbibition (b) to DNA extractions for molecular screening of mutations. Duration of each step is indicated.

Figure 2 Plantlets regeneration of Oryza sativa var. Hispagram from EMS mutagenised calli. (a) Oryza sativa cv. Hispagran dehusked seeds
forming callus masses after 18 days culture in darkness using N6 medium supplemented with 0.5 mg L' casaminoacids, 1 g L' L-proline, 2 mg L™

24 dichlorophenoxyacetic acid and 0.5 g ! 2-(N-morpholino) ethane sulphonic acid. (b) development of a scutellum-derived callus mass (black arrow)
and a callus mass growing from radicle (black circle), (c) and (d) plantlet regeneration from mature seed-derived callus (0.2% EMS mutagenised) in MS
medium supplemented with 1 g L™ casein hydrolisate, 3 mg L' kinetin, 0.5 mg L™ 6-benzylaminopurin, 0.5 mg L 1-naphtalenacetic acid and 05 g L™
2-(N-morpholino) ethane sulphonic acid under 18/6 h light/dark cycles (details in Methods). Scale bar 1 cm.
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copy in the rice genome and is mapped onto the long
arm of chromosome 9 [51].

OsACS1 is a four exon rice gene that codes for a 487
amino acid protein [Swiss-prot: Q10DK7]. OsACSI was
screened in two fragments called OsACSI 1-3 and
OsACS1 4. OsACSI 1-3 is a 1014 base pair (bp) frag-
ment harboring the first three exons, while OsACSI 4 is
a 1480 bp fragment spanning exon 4 (Figure 3).

Figure 4 shows the detection of three OsACSI mutants
(acsl 152 s3, acsl 228 sl and acsl 576 sl) based on
different heteroduplex banding patterns (Figure 4a) and
the identification of nucleotides changes by sequencing
(Figure 4b). Acs1 152 s3 resolve into four bands of ap-
proximately 250, 450, 550 and 750 bp and has two mis-
sense mutations, T — G and G — A transitions at gene
nucleotide positions 58 and 174, in the target fragment
OsACSI1 1-3 (Table 1). The G — A transition generates a
modification (GT — AT) in the splicing donor site of the
first intron. The T — G change resulted in the amino
acid substitution C — G at position 20 in exon 1 (C20G,
Table 1). AcsI 228 s2, acsl 398 s4 and acsl 576 s1 are mis-
sense mutations in the target fragment OsACSI 4 which
result in the amino acid substitutions S314N, A246P and
L354P at gene positions 1266, 1220 and 1351 bp res-
pectively (Table 1). In addition, one mutation in intron 3
(acsl 43 s3, T— A at gene position 707 bp), one silent
mutation in exon 1 (acsl 418 s2, C— T at gene position
84 bp) and one silent mutation in exon 3 (acsl 558 s2,
G — A at gene position 535 bp) were detected in the
OsACS1 1-3 fragment. Furthermore, two silent mutations
in exon 4 coded acsl 83 s2 (C— T at gene position
1177 bp) and acsl 364 s2 (G— A at gene position
1669 bp), and one +73 bp C— T downstream mutation
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were also detected in the OsACSI 4 fragment (Table 1). A
total of 11 nucleotide changes in the OsACSI gene were
detected after screening 2400 individuals. This is a one in
every 457 Kb, 2.19 e*® mutation frequency.

The analysis of the deduced mutant amino acid se-
quences using the GOR (Garnier-Osguthorpe-Robson)
Secondary Structure Prediction application [52] is sum-
marized in Table 1. According to the Eukaryotic Linear
Motif resource for Functional sites in Proteins (ELM)
[53], the conserved functional motif (50-432 amino
acids) of the wild type rice protein ACSI is divided into
two sub-domains 50-148 amino acids and 275-404
amino acids.

The C20G (acs! 152 s3 mutant) change is located in the
first functional domain and generates a weak a-helix
domain modification (+1) (Table 1). The mutations L354P
(576 s1 mutant) and S314N (228 s1 mutant) are located in
the second functional sub-domain resulting in a loss
and a weak modification of an a-helix motif respectively
(Table 1). The change A246P (acsl 398 s4 mutant) does
not affect any functional domain; it produces a complete
a-helix domain lost mutation. Finally, the acsI 152 s3
mutant which has a GT — AT change at the intron 1
splicing acceptor site may affect splicing.

OsSGR contains three exons that code for a 274 amino
acid protein [Swiss-prot:Q652K1]. A single 926 bp frag-
ment harbouring the first two exons was screened in this
study (Figure 3b). Following the same strategy described
above, one mutation in exon 1 (sgr 24 s1 G— A at gene
position 67 bp), one mutation in exon 2 (sgr 389 s2 G — A
at gene position 484), one silent mutation in exon 1
(sgr 855 s2 C— T at gene position 78 bp) and one
mutation in intron 1 (sgr 854 s1 G— A gene position
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Figure 3 Targeted genes diagrams and PCR amplicons. Diagrammatic representation of the OsACS1 (0s03g0727600) (a) and OsSGR
(0s09g0532000) (b) genes obtained by blast searches at NCBI. Exons are represented by dark green boxes, introns by dark red lines and 5-UTR
and 3-UTR by pale green boxes. Exons are designated Exon 1-Exon 4 (OsACS1) or Exon 1-Exon 3 (OsSGR). Intron numbering follows exon
numbering. Targeted screened gene segments (grey boxes) are designated ACS1 1-3, ACS1 4 and SGR 1-2.
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Figure 4 Identification of OsACST mutants. (a) Heteroduplex mobility assays identifying three of the OsACST mutants (acs1 152 s3, acs]

228 s1 and acs1 576 s1). Denaturating polyacrylamide gel electrophoresis showing different heteroduplex DNA band patterns formed after PCR
amplification and mismatch cleavage by Fennel Crude Extract (FCE) incubation. The presence of two bands of about 600 and 850 bp in the case
of acs1 228 s1 sample and 700 and 750 bp in the case of acs1 576 s1 sample, indicate heteroduplex digestions in the 1480 bp amplicon

(ACST 4). The presence of two mutations in the same 1014 bp amplicon (ACST 1-3) of the same individual (acs1 152 s3) generates four bands of
about 250, 450, 550 and 750. M: molecular weight marker (100 bp marker, Thermo Fisher Scientific Inc.). Pool: positive mismatch pool formed by
mixing four individual DNA samples. Arrows indicate mismatch digested bands. Lanes 2-5: individuals DNA samples of the positive mismatch
pool. Mutant samples are indicated by bold number lane. (b) Identification of nucleotide changes by sequencing. Heterozygous acs1 mutants
(upper panel) and wt (lower panel) sequences are represented. Black arrows indicate the base substitution. Direct nucleotide sequencing of the
acs1 152 s3 mutant revealed the heterozyogus G to A and T to G transitions at gene nucleotides position 174 and 58 respectively which resulted
in substitution of GT/AG at intron 1 5'UTR and the amino acid C to G change at position 20 (C20G). Direct nucleotide sequencing of acs1 228 s1
and acs1 576 s1 mutants revealed the heterozigous G to A and C to G transitions at gene nucleotides position 1266 and 1351 which resulted

in substitution of amino acids S to N and L to P at amino acid positions 314 (S314N) and 354 (L354P) respectively.

€ ¢ A6 ¢

238 bp) were detected after screening 2400 individuals.
This is a one in every 436 Kb, 2.30 e ® mutation frequency.
The GOR application predicted that amino acid substitu-
tions A23T and V127M induced modification in a-helix
domains in exon 1 (sgr 24 s1) and exon 2 (sgr 389 s2) res-
pectively (Table 1).

Individual mosaicism was discarded after re-analysing 8
new independent leaf samples from all of the 14 detected

mutant individuals, while the incidence of multiple clone
regeneration was studied by revising mismatch cleavage
results of all plants that had originated from the same
callus which had regenerated the 14 detected mutant
plants. In total, 112 leaf samples were subjected to mis-
match cleavage detection and sequencing, resulting in no
individual mosaicism (Additional file 1: Table S1). All
the mismatch cleavage results from samples of plants
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Table 1 Mutations discovered in the Oryza sativa cv. Hispagran population obtained from 0.2% EMS-mutagenised callus

Mutant gene Mutant code Target fragment Nucleotide Gene bp Effect Predicted protein structure modification
change position

acsl 15253 ACST 1-3 T->G 58 C20G Exon 1 a-helix domain modification (weak effect)

acsl 418 s2 ACST 1-3 C->T 84 S28S Exon 1 silent mutation

acsi 152 s3 ACST 1-3 G->A 174 GT-> AT Intron 1 5'UTR splicing donor site GT modification
that may affect splicing

acsl 55852 ACST 1-3 G->A 535 Q114Q Exon 3 silent mutation

acsl 4353 ACST 1-3 T->A 707 Intron 3 mutation

acsl 8352 ACST 4 C->T 1177 F231F Exon 4 silent mutation

acsi 398 s4 ACST 4 G->C 1220 A246P Exon 4 a-helix domain lost

acsl 228 s1 ACST 4 G->A 1266 S314N Exon 4 a-helix domain modification (+1)

acsl 576 s1 ACST 4 C->T 1351 L354P Exon 4 a-helix domain modification affecting
functional domain

acsl 364 s2 ACST 4 G->A 1669 L3951 Exon 4 silent mutation

acsl 408 s3 ACST 4 C->T +73 Downstream mutation

sgr 24 s1 SGR9 1-2 G->A 67 A23T Exon 1 a-helix domain modification (weak effect)

sgr 855 52 SGR9 1-2 C->T 78 L26L Exon 1 silent mutation

sgr 854 s1 SGR9 1-2 G->A 238 Intron 1 mutation

sgr 389 s2 SGR9 1-2 G->A 484 V127M Exon 2 a-helix domain modification (+2)

Confirmed acs1 and sgr mutants detected by TILLING screening and its predicted effect using GOR (Garnier-Osguthorpe-Robson) Secondary Structure Prediction

application.

that had originated from the same callus which had gener-
ated the 14 mutant plants resulted negative (Additional
file 1: Table S1).

In total 15 mutations were obtained in both target
genes after screening 2400 individuals. This is a one in
every 451 Kb, a 2.22 e * mutation frequency which is
useful for reverse genetic studies and breeding pro-
poses [54].

Homozygous mutant lines

Mutants were self-pollinated in order to obtain homo-
zygous mutants. Selection was completed in two steps.
First, in order to detect and discard heterozygous mutants,
individual DNA was subjected to PCR amplification, de-
naturation and re-annealing to perform heteroduplexes,
and FCE incubation and electrophoretic analysis to detect
FCE-cut products. Then, with the aim of detecting and
selecting homozygous mutants, individual samples of po-
tential homozygous mutants selected in step 1 were mixed
with wild type DNA (1:1 w/w). From this point onwards,
screening was identical including PCR amplification, FCE
digestion and electrophoresis. An example of this screen-
ing using 16 descendants of a self-fertilized sgr 389 s2 mu-
tant is presented in Figure 5. In the case of heterozygous
descendants, mismatch cleaved bands of 380 and 506 bp
were observed, while no bands were detected in homozy-
gous descendants (either wild type or mutants) (Figure 5a).
In the second step, mismatch cleaved bands only appear

in samples where wild type DNA is mixed with DNA from
homozygous mutants (Figure 5b).

Four wild type, 7 heterozygous and 5 homozygous
mutant lines were obtained from the sgr 389 s2 des-
cendants, X* statistic for “goodness of fit” with the ex-
pected Mendelian segregations was X> = 0.375 confirming
the null hypothesis (2 degrees of freedom, p=0.05)
(Additional file 1: Table S1). Preliminary results indi-
cated that they were completely fertile and showed a
delayed senescence phenotype. In contrast, strong effect
mutations of OsACSI such as acsl 228 s1, 398 s4 and
576 s1 (Additional file 2: Table S2) were partially sterile,
no mutant homozygotes were obtained and about 25% of
seeds were unable to germinate. Segregations did not fit
Mendelian segregation, but when scoring non-germi-
nated seeds as lethal homozygous mutants, X* test for
goodness-of-fit with expected segregation resulted in X* =
1.500, X*>=1444 and X*=0,200 respectively, being less
than 5.991 when considering 2 degrees of freedom and
p =0.05 (Additional file 2: Table S2).

Discussion

A new rice callus mutagenesis protocol using EMS was
established. Mutant plants were efficiently obtained by
mutagenizing scutellum-derived callus masses contain-
ing primary, embryogenic and non-embryogenic calli
[55] (Figure 2). Root callus was the only callus mass to
be discarded as it is unable to regenerate plants and it is
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Figure 5 Identification of homozygous mutants among OsSGR 389 s2 mutant descendants. (a) Electrophoretic analysis to discard
heterozygous mutant plants obtained by self-fertilization of sgr 389 s2. Individual DNA samples were subjected to PCR amplification, denaturation,
re-annealing, Fennel Crude Extract (FCE) heteroduplex mismatch cleavage and denaturing polyacrylamide gel analysis. The 926 bp band corresponding
to the amplified fragment is present in all samples, while cleaved bands (380 and 506 bp) were detected in heterozygous mutant descendants

(D4, D8, D10, E, B4, E6 and E9). No cleavage bands were observed either in wild type or mutant homozygous descendants (D1, D3, D5, D6, D7, E3, ES,
E8 and E10) highlighted in bold. (b) Electrophoretic analysis to discard homozygous wild type descendants. Homozygous descendants (D1, D3, D5,
D6, D7, E3, ES5, E8 and E10) individual DNA was mixed with wild type DNA (1:1 w/w) and subjected to PCR amplification, denaturation, re-annealing,
FCE mismatch cleavage incubation and polyacrylamide gel analysis. Cleaved bands (380 and 506 bp) were detected in homozygous
mutant descendants (D1, D3, D5, D7 and E10 in bold). Homozygous wild type individuals DNA could not form mismatches, and consequently no
mismatch cleaved bands were visualized (D6, E3, E5 and E8). M: Molecular weight marker (100 bp marker, Thermo Fisher Scientific Inc).

easy to identity as it grows separately from the radicle. The
expensive and time consuming embryogenic callus selec-
tion process which is commonly used in transformation
protocols proved to be unnecessary for successful callus
mutagenesis, since embryogenic calli are contained in scu-
tellum-derived callus masses [55] (Figure 2b).

In order to ensure sufficient callus availability 1,200
Hispagran seeds were sown, although only less than 20%
of total calli was used for mutagenesis. It would have
been possible to mutagenise the same amounts of calli
using less than 200 callus forming seeds, although the
capability of obtaining and regenerating embryogenic
callus depends on the cultivar and culture media used
[55]. Nevertheless, it is highly recommendable to use
mutagenesis flask replicates in order to ensure that fun-
gal and/or bacterial contamination free in vitro material
is obtained.

In general, in seed-propagated plants, the chemical
mutagenesis protocols use a seeds under germination
process, so that the mutagen has to be absorbed by the
germinating embryo and reach the meristematic region
where the germ cells are contained. Other alternative
plant material has been mutagenised, such as pollen,
microspores, single zygotic cells in recently fertilized
eggs and suspension cultured cells. Although pollen mu-
tagenesis has been performed in maize, no pollen muta-
genesis attempts have been reported to date in rice as
pollen lifetime is too short and manual pollination is much
more complicated than in maize [56-58]. Iftikhar and
Mumtaz [59] mutagenised microspores using EMS for a

practical mutation breeding programme in the genetic
improvement of oilseed brassicas. On the other hand,
Suzuki et al. [46] found high mutagenesis rates when
treating single zygotic cells in recently fertilized rice spike-
lets by using N-methyl-N-nitrosourea. However, a low cell
survival was obtained and the resulting seeds (M) had to
be grown, fertilized and harvested until the M2 population
was ready for screening. Recently, suspension-cultured cell
mutagenesis using EMS has been reported [48] where
regenerated mutant plants were self-pollinated in order to
obtain 302 M2 lines for phenotypic analysis in field condi-
tions which subsequently achieved high mutagenesis rates.

In this context, callus mutagenesis is more effective
when compared to the traditional mutagenesis technique
in seeds since this technique allows the mutagen agent
to easily reach the target uncoated embryogenic cells
rather than complex fully-formed embryos. Considering
that somatic embryogenesis is the main regeneration
method in the culturing of rice in vitro, and that somatic
embryos arise from single cells, each mutated single cell
can develop into a somatic embryo and regenerate a
mutant plant. [48]. Furthermore, all mutants were unique;
no clones were detected in the mutant population after
screening the whole population and upon revision of all
the results involving any plant that had shared the same
callus of origin.

The intensity of mutagenesis applied is an important
component in a TILLING project, and it is necessary to
find a compromise between mutagen toxicity, genome mu-
tation saturation and possible accumulation of undesirable
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phenotypes. In our study, 0.2% EMS for 2 hours was
effective to generate a whole rice mutant population with
a sufficiently high mutation density. This mutagen dose
applied in order to mutagenize rice seeds is in the range
of values (0.2-2%), however, the duration of treatment is
lower, 2 hours versus 6 hours reported by Chakravarti
et al. [60] (0.2% EMS), and 12 hours reported by Wu et al.
[43] (0.4% to 1% EMS) and Talebi et al. [61] (0.25 to 2%
EMS). Regarding rice cell culture, Chen et al. [48] repor-
ted that a treatment of 04% EMS for 18-22 hours is
optimal in order to induce mutagenesis. Consequently,
the effectiveness of our low doses and low volume of
mutagen presents an advantage since it implies a consider-
able financial saving and reduces the amount of residues
generated. The mutagenized callus regeneration rate was
similar to that of non-mutagenized control calli, which
means that this treatment neither causes apparent lethal-
ity, which is one of the main problems associated with
chemical mutagenesis [61], nor affects the plantlet re-
generation rate.

Characterization of the two mutant populations ob-
tained through screening with ACS and SGR target genes
revealed mutation densities of 1/457 kb and 1/436 Kb,
respectively, which are satisfactory and suitable for high
throughput TILLING [42]. These mutations densities are
in the range of those found by Wu et al. (1 per 1 MB for
cv. IR64) [43], Till et al. (1 per 300 Kb for cv. Nipponbare)
[42] and Suzuki et al. (1 per 135 Kb for cv. Taichung 65)
[46] using rice seed mutagenesis protocols.

In twelve out of 15 mutants the most common EMS
induced mutation was present, which is the C/G to T/A
(C—T or G— A) substitution [9,12], while one case of
G/C to C/G (C — @) transition was detected as expected
in Arabidopsis EMS mutagenesis experiments [10]. Al-
though T — A transversions are the second largest expec-
ted in Drosophila EMS mutantagenesis experiments [62],
T— A and T — G detected transversions were unexpec-
ted in EMS rice mutagenesis. The origin of these muta-
tions is unknown. We used 1200 seeds obtaining 395
callus masses which subsequently regenerated 6912
plantlets, and from these, 2400 individual mutants were
screened. Polymorphisms in the Hispagran cv. seeds batch
used to generate the mutant population could not explain
these mutations since at least more than one other identi-
cal mutant should have been found, however all mutants
were unique and furthermore, no other identical mutants
were observed within the mutant population, even in
those sharing the same callus of origin.

In this work, mutations were detected using a hetero-
duplex digestion assay with crude fennel juice extract
(FCE) instead of crude celery juice extract (CJE) [63] or
CEL I nuclease from celery, the most common enzyme
used in TILLING projects [42,64]. The disadvantage of
using juice extracts is that they contain multiple mismatch-
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cleaving enzymes which collaborate in the digestion of het-
eroduplex DNA substrates. However, Till et al. [65] con-
cluded that juice extracts and highly purified preparations
in optimal conditions yielded similar mismatch detection
results. Crude FCE exhibits lower mismatch-cleavage ac-
tivity than that of CJE [66] however, it cleaves A/C and T/
G mismatches preferentially, matching them with the
most likely substitutions induced by EMS treatment, while
the commercial CEL1 purified enzyme cleaves C/C mis-
matches preferentially [28]. In addition, it is inexpensive
when compared with the substantially higher cost of the
CEL I purified enzyme. Nevertheless, FCE nucleases mis-
match cleavage was under study, and its 3'-5" exonuclease
activity and other aspects implied the need for specific in-
cubation conditions [67].

Functional analysis of the acs and sgr rice mutant lines
would be needed in order to shed some light on the
segregation of these genes and the roles that they play in
the improvement of rice culture (i.e. delayed senescence
and increase in rice yield), through performing field
trials. To date, we are not able to predict the effect of
OsACS1 mutations on senescence since the amino acidic
changes detected do not affect critical amino acids for
catalysis, interaction and correct orientation of pyridoxal
5'-phosphate and substrate recognition [68] or any of
the seven strongly conserved regions described by Wong
et al. [69]. With respect to sgr mutants, the A23T and
V127M changes do not correspond to amino acids
critical for the correct functioning SGR proteins of rice
[51,70], pepper and tomato [71]. As far as we currently
know, all rice sgr recessive mutants obtained to date
[51,70] belong to non-functional type C—sgr mutants in
which chlorophylls are retained in senescent leaves as
their photosynthesis efficiency decreases [72]. Given that
SGR is a highly conserved protein in plants and does not
show a large degree of similarity to any other proteins, we
are not able to predict the effect of the two mutations
which were obtained. Homozygous lines obtained from
both mutants are completely fertile, and they remain
greener longer than in Hispagran plants. Therefore, these
results suggest that they could be functional stay-green
rice mutants. If this is the case, these mutants could be
the first functional sgr mutants in rice to have been found
and they could potentially be useful for rice improvement.
On the other hand, if these mutants produce a non-
functional SGR phenotype, they would be useful for the
study of the chlorophyll degradation pathway. Further
work is now underway to understand the effect of these
mutations on rice.

Conclusions

In conclusion, our results showed that combined EMS
mutagenesis in callus with FCE heteroduplex digestion
assay is a powerful tool for the identification and genetic
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characterization of rice mutants. In our study, we were
able to identify 15 nucleotide changes. The estimated
mutation density is in the range of that previously repor-
ted for rice.

Our mutagenesis protocol avoids the problem of the
inhibitory effect of the mutagen on seed germination
and can be adapted to any callus induction/regeneration
media with two modifications which are: the removal of
agar and the addition of antioxidants during mutagenesis
and rinsing. In addition, callus mutagenesis makes it pos-
sible to rapidly obtain a mutant population with a time
saving of more than eight months when compared to
classical seed mutagenesis. Furthermore, it saves green-
house resources and work, the amount of mutagen needed
to produce a mutant population and, consequently, the
amount of residues generated.

This methodological approach could be easily adapted
to any rice variety or even other plant species (e.g. cereals)
and also cell suspensions.

Methods

Plant material

Hispagran temperate japonica rice (Oryza sativa) culti-
var is a high yielding variety grown in Extremadura and
Seville (Spain). Certified Hispagran seeds were supplied
by the Instituto Hispdnico del Arroz, S.A. (Hisparroz).
The possibility of polymorphisms in targeted gene frag-
ments of Hispagran was studied in advance by sequen-
cing the targeted fragments in 80 wild type Hispagran
individuals. The nucleotidic sequences were compared
with the GenBank database of Nipponbare japonica rice
cultivar (GenBank: AP008209.2).

Callus induction

To ensure enough calli were obtained, 1200 Hispagran
certified seeds were dehusked and surface disinfected
after soaking and stirring for 1 minute in 70% ethanol
followed by 30 minutes in bleach sterilization solution;
40% commercial bleach supplemented with 8 drops of
Tween 20 (Sigma-Aldrich, Madrid, Spain) per litre. After
five rinses (5 minutes per rinse) using sterilized water, seeds
were sown in solid Callus Induction Media (OryCIM),
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based on rice Callus Induction Media [73] that was
optimized to Mediterranean japonica rice varieties; Chu
N6 [74] standard salts and vitamins were supplemented
with 0.5 g L' casaminoacids, 1 g L™ L-proline, 2 mg L™
2,4 dichlorophenoxyacetic acid (2,4 D), 0.5 g L™ 2-(N-
morpholino) ethane sulphonic acid (MES), and 30 g L™
sucrose. The pH 5.7 was adjusted using 1 M KOH solu-
tions and 2.5 g L' Gelrite™ was added before autoclaving.
Sterilin 90 mm petri dishes (Sterilin LTD, Cambridge)
were filled with 25 mL media after autoclaving. Fourteen
sterilized seeds were sown in each OryCIM petri dish,
and plates were sealed and incubated for three weeks
in complete darkness, at 28°C (Figure 6). Contaminated
seeds were discarded and scutellum-derived callus
masses growing close to the embryo were selected avoid-
ing smaller root producing calli growing from the radicle
[55]. All media components were supplied by Duchefa
(Duchefa Biochemie BV, The Netherlands) with the excep-
tion of casaminoacids (Becton, Dickinson and Company).

Chemical mutagenesis

Callus masses were transferred into three 375 mL
NUNC EasyFlasks™ with filter caps for continuous vent-
ing (Thermo Fisher Scientific Inc.) containing 96 mL
OryCIM liquid media without 2,4-D, but supplemented
with 125 mg L™ L-ascorbic acid and 125 mg L™ citric
acid (Liquid OryCIM) to prevent callus oxidation in
further callus mutagen treatments. Callus masses were
transferred until the final volume reached 110 mL in
each flask. Next, two flasks were immediately mutagen-
ised by adding EMS (0.2% v/v) (Sigma-Aldrich, Madrid,
Spain) following the safety instructions provided by the
manufacturer’s Material Safety Data Sheet (MSDS). No
EMS was added to the control flask. Flasks were placed
on an orbital shaker (150 rpm) and covered with alumin-
ium foil to avoid light for two hours. After incubation,
every callus batch was rinsed ten times using 200 mL li-
quid OryCIM media and removing it after 3 to 4 minutes.
After rinsing was complete, calli were incubated on modi-
fied liquid OryCIM media which was supplemented with
2 mg L' 2—4 D and shaken (120 rpm) for two additional
days (28°C, darkness).

Callus induction in OryCIM media 3w

123 4567 8 9101 1213141516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46

0.2% EMS Treatment and rinses in liquid OryCIM media
Mutagenized calli culture in OryCIM media 4w

Plantlet regeneration in MSM media

22w

[Plantlet development in tubes

19w

[Ex-vitro acclimatization

16w

|Molecular screening

14 w

(weeks, w) is indicated.

Figure 6 Schedule of the experiment. Schematic representation of TILLING schedule based on callus mutagenesis. The duration of each step

[Mutant population seed stock 16 w|
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Plantlet regeneration

Calli were partially dried in a laminar flow cabinet on
sterile cellulose paper for about 30 minutes before
sowing them in solid OryCIM fortified with 4.5 g L™
Gelrite™ (Duchefa) in 90 mm diameter dish. Fourteen
callus masses per dish were transferred and cultured for
four weeks in darkness at 28°C (Figure 6).

Calli were transferred to regeneration media (MSM) petri
dishes (90 mm diameter) and cultured under a 18/6 hours
light/dark photoperiod under 70 pmol m™ s fluorescent
light, and at 28°C until plantlets were fully-formed 30 days
later. This MSM media was based on MS [75] standard
salts and vitamins, fortified with 1 g L™ casein hydro-
lisate, 3 mg L™ kinetin, 0.5 mg L' 6-benzylaminopurine,
0.5 mg L' 1-naphthaleneacetic acid, 0.5 g L"* MES and
30 g L' sucrose. The pH was adjusted (5.8) by using
0.5 M HCI solution and 4.5 g L™ Gelrite™ was added
before autoclaving. Calli were transferred every three/four
weeks to fresh MSM media until the end of the experi-
ment ca. 22 weeks (Figure 6).

Regenerated plantlets were individually numbered and
its callus mass origin was recorded as soon as they were
sub-cultured into culture tubes (17 cm high/2 cm width)
filled with 10 mL of root media (RM) [73]. Plants were
cultured for three more weeks to enhance rooting and leaf
development under a 18/6 hours light/dark photoperiod
70 umol m™* s fluorescent light, at 28°C (Figure 6).

Mutant population seed stock

Rooted plantlets were ex vitro acclimatized (Figure 6) as
follows. Media was carefully removed from roots using
tap water and plants were transplanted into 96-well
multi-pots, each pot filled with 35 cm® of specially
designed Floratorf™ peat moss (Floragard Vertriebs,
Oldenburg, Germany) - vermiculite (2:1 v/v) substrate that
was supplemented with Osmocote™ (The Scotts Company
LLC, Ohio, USA) controlled release fertilizer mix [Osmo-
cote Exact™ (15+9+9+3 MgO + micronutrients) 6-
month release and Osmocote™ high K (11+5+15+1.2
MgO + micronutrients) 9-month release (1:1), 1gr L' of
substrate]. Then 1 gr of CaCOj per peat litre was added to
adjust the substrate to pH 6. Multi-pots were placed
in 54 x 31 x 4.6 cm plastic trays with holes ensuring
a maximum 1 cm flooding irrigation. Supplementary ferti-
lization was supplied during panicle formation period by
adding high ammonium (50% total N) soluble fertilizer
(NPK 19 + 6 + 6) supplemented with 4% w/w micronutri-
ents and 4% w/w iron chelate diluted in osmotized water,
final electro-conductivity was adjusted to 1000-1200
micro Siemens.

The mutants identified by the TILLING screening
were transplanted from multi-pot wells to 4 litre pots to
obtain as many seeds as possible, while the rest of plant-
lets growing in multi-pots where discarded as soon as a
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minimum 20 seeds per plant was obtained. Seeds were
collected in individually labelled envelopes, and stored
as if they were an M3 mutant population generated by
seed mutagenesis (Figure 6).

DNA extraction and sample pooling

About 0.5 cm® of newly formed leafs were sampled from
each plant using 96-well sample boxes containing 50—
100 pg quartz (Merck KGaA, Darmstadt, Germany) and
two 4 mm glass balls (Merck) placed on ice in polystyrene
boxes to avoid DNA degradation. Samples were stored
at —80°C and the completely frozen material was
disrupted for 1 minute using a Mixer Mill (Retsch). Gen-
omic DNA phenol-chloroform extraction: 200 pl buffer 1
(100 mM Tris—HCI pH 8, 50 mM EDTA pH 8, 500 mM
NaCl and SDS 20%) was added to each sample and boxes
were incubated at 65°C for 30 minutes. Two hundred pl
of phenol:chloroform:isoamyl alcohol (24:25:1) was added
to every extraction tube and the entire box was vortexed
before being centrifuged at 3,000 rpm for 30 minutes at
room temperature. Two hundred and twenty pl from the
upper phase was transferred to a clean 96-well plate and
kept for further analysis. DNA quality and quantity were
determined with a combination of electrophoresis gel ana-
lysis and gel determination software and the same amount
of DNA from 4 distinct plants was pooled together and
organized into 96-well format, this being the starting
material for TILLING mutant screening.

Target genes selection and primer design

The ZmACS6 gene is involved in senescence regulation
and drought tolerance in maize [49,50]. Several ACS
genes were found in rice and maize after a BLAST was
performed using the ZmACS6 protein sequence. OsACS1
was selected as the best candidate after homology
studies using CLUSTAL W2 [76]. OsSGR has been re-
lated to Chlorophyll catabolism [51]. These two genes
were selected as target genes.

Primer design was carried out using the Primer 3 pro-
gram application [77]. A set of primers (OsSGR 1-2) was
designed to amplify the first two exons of OsSGR. Two
sets of primers were designed to amplify 2 segments of
the OsACS1 gene: The first segment (OsACS1 1-3) was
designed to amplify from the first to the third exon, and
the second (OsACS1 4) was designed to amplify the
fourth exon (Figure 3) (Table 2). Eighty plants were
sequenced for OsACS1 and OsSGR fragments and
compared with Nipponbare japonica cultivar sequences
available at NCBI.

Target gene amplification and heteroduplex DNA
formation

Fragments of target genes were amplified by polymerase
chain reaction (PCR) using 1-4 ng DNA, 200 uM dNTPs
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Table 2 Gene specific primers used for the amplification of targeted genes OsACS7 and OsSGR design for target genes

amplification

Target gene Primer name

Nucleotide sequences 5'-3'

Amplicon size (bp) Amplicon name

OsACST ACST 1-3 F TAAGCAGCTCGTCCAACCTT 1014 ACST 1-3
ACST 1-3 R CAGTGCACGGGTACGATCT
ACST 4 F CTCATCCCCACCCCATACTA 1480 ACST 4
ACST 4R CCCAAATGTGGGAGTGGTAG

OsSGR SGR1-2F TAAGAGATCCGAGGGAGCAG 926 SGR
SGR1-2 F ACAGATGGATGGATGCCAAT

Primers were designed using Primer3 application and used for the OsACS17 (0s03g0727600) and OsSGR (0s09g0532000) molecular screening of mutations. F: forward.

R: reverse. Position of amplicons are shown in Figure 2.

and 04 pM Hispagran genome specific primer sets
(Table 2), and 5U Pfu DNA polymerase in 20 uL 1X Pfu
DNA polymerase reaction buffer including 1X final con-
centration of 2 mM MgCl, (Fermentas). The number of
cycles, the times and the annealing temperatures were op-
timized for each specific primer pairs. DNA denaturation
and slow re-annealing step (from 95°C to 4°C) processes
were added to the end of the PCR amplification thermal
cycle programs in order to induce heteroduplex DNA
formation within the different amplification products
obtained from the pools.

An aliquot of each PCR product (ca. 5 uL.) was checked
on a 1% w/v agarose gel and submitted to electrophoresis
to verify the efficiency of the PCR amplification and the
size of the amplified product.

Fennel crude extract heteroduplex mismatch cleavage
detection

The amplified DNA from each pool was subsequently
incubated with FCE [67] for heteroduplex mismatch
cleavage: 80 ng of heteroduplex DNA, 1 pl FCE, 20 mM
Tris—HCI pH 7.5, 25 mM KCl and 20 mM MgCl, (final
volume 10 pl). After 30 minutes incubation at 45°C, the
reaction was stopped by adding 2 pl of stop buffer
(20 mM Tris—HCI pH 8, 10 mM EDTA, 12.5% v/v
Glycerol, 50% v/v Sybr gold-dimethyl sulfoxide and
0.05% w/v Bromophenol Blue). Digested samples were
size-fractionated by polyacrylamide gel electrophoresis
(4% acrylamide:bisacrilamide 19:1 in Tris/Borate/EDTA
supplemented with 0.008% v/v tetramethylethylenedia-
mine and 0.002% w/v ammonium persulphate) at 300 V
and 15-20 mA for 1.5 hours [67]. Results were analysed
using a Typhoon 8600 scan (GE Healthcare) with a fluor-
escein filter (526 nm) for Sybr-Gold stain detection.

Mutant individual identification

Individual plates containing the four individual DNA
samples from each positive pool were similarly analysed
after mixing (1:1, w/w) with control wild type DNA.
PCR product from validated individuals were purified
using Microcon™ filters purification kit (Millipore) and

5-40 ng (depending on DNA fragment length) were
sequenced on a ABI Prism 3700 (Applied Biosystems)
sequencer using Terminator polymerase (Applied Bio-
systems). In order to detect mosaicism, 8 DNA samples
from eight different leafs from all 15 identified mutants
(120 samples) were extracted and subjected to targeted
fragment amplification, mismatch formation, enzymatic
digestion gel analysis and sequencing. Furthermore, wher-
ever a mutant plant was detected, plants that had origi-
nated from the same callus were tracked and the results
of the analysis were carefully revised.

Data analysis

The nucleotide sequences were analysed using Chromas
Lite 2.1 (Technelysium Pty Ltd) giving the nature and
the exact localisation of the mutation within the gene.
Mutant amino acid sequences were submitted to the
GOR (Garnier-Osguthorpe-Robson) Secondary Structure
Prediction application [52] and listed in Table 1.

Mutation frequencies

The mutation rate was calculated by dividing the total
number of observed mutations by the total surveyed
DNA length. The total surveyed DNA length was calcu-
lated by the sum of the screened individuals multiplied
by the base pair (bp) sum of amplified fragments. We sub-
tracted 200 bp from each TILLED fragment to account for
the difficulty in detecting digested DNA products that
migrate in the top and bottom range of the gel like other
authors [42].

Additional files

Additional file 1: Table S1. Individual mosaicism and multiple clone
regeneration detection. All the independent leaf samples from each
mutant individual yield identical results, consequently no individual
mosaicism was detected. The incidence of clones regenerated from the
same callus is represented as the number of TILLED plants originating
from the same callus related to the number of additional mutant clones
detected, being only 1 in all cases.

Additional file 2: Table S2. Total number of wild type (WT),
heterozygous mutant (het) and homozygous mutant descendants



http://www.biomedcentral.com/content/supplementary/1746-4811-10-5-S1.docx
http://www.biomedcentral.com/content/supplementary/1746-4811-10-5-S2.docx

Serrat et al. Plant Methods 2014, 10:5
http://www.plantmethods.com/content/10/1/5

obtained from predicted strong effect mutants. Sgr 389 s2 segregation X*
test for goodness-of-fit (X* = 0.375) confirms the null hypothesis being
less than 0.5991 (2 degrees of freedom, p=0.05). In the case of acs1

398 54, 228 s1 and 576 s1 mutants, non-germinated seeds have to be
considered homozygous mutants in order to predict recessive lethality
inheritance (X° = 1500, X* =1.444 and X* =0.200 respectively). For the rest
of mutations, the progeny was not studied.
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