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Abstract

Background: Fluorescent proteins are extraordinary tools for biology studies due to their versatility; they are used
extensively to improve comprehension of plant-microbe interactions. The viral infection process can easily be
tracked and imaged in a plant with fluorescent protein-tagged viruses. In plants, fluorescent protein genes are
among the most commonly used reporters in transient RNA silencing and heterologous protein expression assays.
Fluorescence intensity is used to quantify fluorescent protein accumulation by image analysis or spectroscopy of
protein extracts; however, these methods might not be suitable for medium- to large-scale comparisons.

Results: We report that laser scanners, used routinely in proteomic studies, are suitable for quantitative imaging

of plant leaves that express different fluorescent protein pairs. We developed a microtiter plate fluorescence
spectroscopy method for direct quantitative comparison of fluorescent protein accumulation in intact leaf discs. We
used this technique to measure a fluorescent reporter in a transient RNA silencing suppression assay, and also to
monitor early amplification dynamics of a fluorescent protein-labeled potyvirus.

Conclusions: Laser scanners allow dual-color fluorescence imaging of leaf samples, which might not be acquired in
standard stereomicroscope devices. Fluorescence microtiter plate analysis of intact leaf discs can be used for rapid,
accurate quantitative comparison of fluorescent protein accumulation.

Keywords: Fluorescent protein, Fluorescence spectroscopy, Microtiter plate, RNA silencing, Plant virus

Background

Reporter genes and their products are valuable tools for
plant studies, due to the ease of imaging and quantifica-
tion of the proteins encoded [1]. Fluorescent proteins are
widely employed as reporters, since they have no require-
ments for exogenous substrate/co-factors and do not
interfere with cell growth or function [2]. These proteins
can be detected and imaged in live tissue without cell lysis
or biochemical analysis, and they allow optical exploration
of cell structures and molecule dynamics as well as patho-
gen monitoring with minimal sample preparation [3].

Use of fluorescent protein as a quantitative reporter in-
cludes evaluation of new vectors for heterologous protein
expression and of promoter activity, translational regula-
tion and transient RNA silencing [4-8]. In plant pathology
and symbiosis studies, fluorescent proteins are an
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important aid for monitoring infection/colonization onset
and spreading, and thus facilitate comprehension of host-
microbe interactions. Since the first demonstrations that
plant viruses are useful vectors for foreign sequence trans-
fer to their hosts [9-12], several genes were shown to be
suitable RNA virus reporters; they include those that en-
code chloramphenicol acetyltransferase, firefly and Renilla
luciferases, p-glucuronidase, anthocyanin biosynthesis
transcription factors, and Aequorea victoria green fluores-
cent protein (GFP) [12-18].

Compared to other markers, fluorescent protein genes
inserted into viral genomes offer good reporter stability
[19], viral localization to individual cells, and monitoring
of co-infection with differently-labeled viruses [20,21]. A
further advantage of these proteins is that their fluores-
cence intensity is directly proportional to protein amount
and can be used for quantification [22,23]. Although GFP
fluorescence can be quantified by image analysis [24,25],
this involves time-consuming steps that can be overcome
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by spectrofluorometric measurement of intact plant or-
gans or protein extracts from GFP-expressing samples
[23,26,27].

A microplate assay was recently described that measures
luciferase activity in intact leaf discs [28]. In a similar ap-
proach, here we evaluated the use of 96-well plate readers
for rapid quantification of two A. victoria GFP variants,
the ultraviolet (UV)-excitable mGFP5 [29] and a mutant
with enhanced brightness sGFP(S65T) [30]. The method
was applied in viral RNA silencing suppressor studies and
in accumulation monitoring of GFP-labeled Plum pox
virus (PPV) clones. A palette of engineered monomeric
fluorescent proteins was expressed transiently in plants
(Table 1) and shown to be easily quantifiable by direct leaf
disc analysis.

Results and discussion

Laser scanner imaging of Nicotiana benthamiana leaves
GFP variants such as mGFP5 [29], which can be excited
by long-wavelength ultraviolet (UV) light, are used fre-
quently in plant studies of species other than the small-
sized Arabidopsis, since fluorescence imaging of whole
specimens is constrained by objective lens size of fluores-
cence (stereo)microscopes. The need for fluorescence mi-
croscopes is overcome by use of UV lamps as excitation
sources, although this restricts fluorophore choice and
limits multi-fluorescence imaging. Scanners with excitation
lasers at 457, 488, 532, and 633 nm are used for fluores-
cence imaging in two-dimensional difference gel analysis
systems [36] and have a relatively large glass platen (for ex-
ample, 35 cm x 43 cm, in the Typhoon 9400). As a 633 nm
laser might be unsuited to leaf tissue imaging due to inter-
ference from chlorophyll autofluorescence [37], we tested
whether 457, 488 and 532 nm lasers can be used for im-
aging N. benthamiana leaves that transiently express fluor-
escent proteins. Plant expression vectors bearing coding
sequences for mGFP5 or a monomeric red fluorescent pro-
tein TagRFP-T [35] were delivered to plants by Agrobacter-
ium infiltration. Tomato bushy stunt virus pl9 RNA
silencing suppressor was co-expressed to increase yield of
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the heterologous proteins delivered [38]. At 6 days post-
agro-infiltration (dpa), N. benthamiana leaf fluorescence
was acquired after excitation with 488 nm and 532 nm la-
sers. A strong signal was detected in leaf patches expressing
the fluorescent proteins. Only background signal was
detected in non-infiltrated leaf areas and when non-
optimal excitation/emission conditions were used, i.e.,
mGFP5-expressing patches imaged with TagRFP-T set-
tings (Ex532/Em580) and TagRFP-T-expressing patches im-
aged with mGFP5 settings (Ex488/Em526) (Figure 1A, C).
To expand fluorophore choice, we tested a cyan (mTFP1;
[32]) and a yellow (mPapayal; [34]) fluorescent protein,
and found them to be easily imaged in agro-infiltrated
leaves (Figure 1B, D). These results support the suitability
of mGFP5/TagRFP-T and mTFP1/mPapayal pairs for laser
scanner bicolor imaging in plants.

Spectral properties and quantification of plant-expressed
fluorescent proteins

A fluorescence signal acquired by laser scanner imaging
is suitable for quantitative comparisons (Figure 1C, D),
as is done routinely in proteomic studies [36]. Image
analysis can be a lengthy process, however, and signal
quantification can be affected if leaf lamina occupy dif-
ferent focal planes during the acquisition step. As mi-
crotiter plate readers are available for medium-high
throughput analysis, we used a monochromator-based
plate reader to analyze the fluorescence signal from in-
tact leaf discs collected from agro-infiltrated patches
(Figure 2A). We found that fluorescence properties of
mGFP5 could be measured without extract preparation
(Figure 2B), and excitation and emission spectra closely
resembled those reported [29]. Five-fold dilutions of the
mGFP5-Agrobacterium strain were used in a transient
expression assay. Fluorescence intensity values were
consistent with the amount of bacteria delivered
(Pearson R*=0.9855; 1 = 4; Infinite M200 values were
considered) and independent of the fluorescent plate
reader used (Figure 2C).

Table 1 Reporter proteins and fluorescence analysis conditions evaluated

Reporter Laser scanner imaging Plate reader FI quantification Species Structure Ref.
Laser (nm) Em (nm) Ex (nm) Em (nm)
mTagBFP2 na. n.a. 400/9 455/20 Entacmaea quadricolor Monomer [31]
mTFP1 457 526SP 450/9 480/20 Clavularia sp. Monomer [32]
mGFP5 488 526SP 485/9 535/20 Aequorea victoria Weak dimer [29]
sGFP(S65T) 488 526SP 485/9 535/20 Aequorea victoria Weak dimer [30]
mNeonGreen nt? nt. 500/9 530/20 Branchiostoma lanceolatum Monomer [33]
mPapayal 532 555/20 520/9 550/20 Zoanthus sp. Monomer [34]
TagRFP-T 532 580/30 560/9 595/20 Entacmaea quadricolor Monomer [35]

'n.a,, not applicable.
2nt, not tested.
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Figure 1 Laser scanner imaging of fluorescent protein-expressing leaves. Fluorescent proteins were transiently expressed by co-infiltrating
N. benthamiana leaf tissue with an Agrobacterium pSN.5 p19 culture plus cultures of Agrobacterium containing pBin-355-mGFP5 (MGFP5), pSN.5
TagRFP-T (TagRFP-T), pSN.5 mTFP1 (mTFP1) or pSN.5 mPapayal (mPapayal). Fluorescence was imaged by leaf laser scanning. (A) Signal acquired at 6
dpa for TagRFP-T (red) and mGFP5 (green); green and red channel images were merged. Scale bar, 2 cm. (B) Signal at 3 dpa for mTFP1 (cyan) and
mPapayal (yellow); cyan and yellow channel images were merged. Scale bar, 2 cm. (C,D) Surface plots of infiltrated patches from above images.

Rapid fluorometer GFP quantification in transient RNA
silencing assays

To determine whether leaf disc fluorescence intensity
can be used for quantitative analysis of GFP accumula-
tion in leaf tissue, we co-expressed mGFP5 with PPV si-
lencing suppressor constructs. These included HCPro
with the parent sequence (WT), with the L134H substitu-
tion (LH; which abolishes RNA silencing suppression
activity [40,41]), and HCPro into which amino acids REN-
239, 240, 241 were replaced by alanines (AS9). The AS9
construct was tested since the corresponding HCPro mu-
tants in Tobacco etch virus (TEV) and Turnip mosaic virus
(TuMV) are silencing suppression-defective [42-44], but
no data are available for PPV. The red TagRFP-T was also
included to test for interference with mGFP5 fluorescence
analysis (Figure 3A). At 6 dpa, laser scanner imaging de-
tected bright fluorescence in patches in which mGFP5 was
co-delivered with wild-type HCPro (WT, Figure 3A). Ana-
lysis on a 96-well plate reader showed a significantly
higher fluorescence signal in WT samples than in those of

the other constructs tested, i.e., LH, AS9 and red fluores-
cent protein samples (Figure 3B). Fluorescence intensity in
AS9 samples was equivalent to that in silencing suppres-
sion mutant L134H samples. These results suggest that
the PPV HCPro AS9 (REN-239, 240, 241 replacement)
construct behaves like the TEV and TuMV HCPro AS9
mutants. In immunoblot analysis, mGFP5 protein accu-
mulation correlated positively with fluorescence signal
quantification values (Pearson R* = 0.9989; Figure 3C). In
a parallel experiment, transient delivery of HCPro proteins
was confirmed by anti-PPV HCPro immunoblot analysis
of samples co-infiltrated with p19 (Figure 3D). We de-
tected no TagRFP-T interference in mGFP5 quantification
assays (Figure 3A, B).

Monitoring of plant viral amplification dynamics by
fluorometer analysis

We used sGFP(S65T), a synthetic GFP version with en-
hanced brightness [30], as a sensitive reporter to follow
PPV early amplification in plant tissue. The pSN-PPV
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Figure 2 Spectral properties and fluorescence quantification of GFP. Fluorescent protein was transiently expressed by co-infiltrating N.
benthamiana leaf tissue with an Agrobacterium pSN.5 p19 culture plus a strain with no expression vector (®), or 5-fold dilutions of Agrobacterium
containing pBin-355-mGFP5 (MGFP5 at ODggo 0.50, 0.10 and 0.02). (A) At 3 dpa, mGFP5 (green) fluorescence was imaged by leaf laser scanning.
(B) In a plate reader, excitation (dotted lines) and emission spectra (solid lines) were measured from leaf discs of tissue agro-infiltrated with
mGFP5 (green) or no expression vector (black). Relative fluorescence intensity (RFI) was plotted using mGFP5 peaks equal to 100. Ultraviolet (UV)
wavelengths are in gray, visible spectrum colors were assigned as described [39]. (C) Box-plot graphs show quantification values from n=8
samples/condition. Fluorescence intensity of leaf discs agro-infiltrated with mGFP5 strain dilutions, no expression vector (®) or non-treated
samples (N) was acquired in monochromator-based (Infinite M200) and two filter-based (Appliskan and Victor X2) plate readers. Fluorescence

a.u.

binary vector [45] was used to deliver sGFP(S65T)-tagged
PPV by agro-inoculation (Figure 4A). As anticipated,
sGFP(S65T) fluorescence was readily detected in infected
leaves (Figure 4B). Fluorophore spectra were confirmed by
analysis of leaf discs from inoculated leaves. Compared to
mGFP5, sGFP(S65T) retained the blue light excitation
peak but lacked the UV peak (Figure 4C).

We further compared GFP fluorescence intensity (FI)
signal dynamics of leaves agro-inoculated with pSN-PPV
(WwtPPV) or with pSN-PPV P1-S (S259A), a ¢cDNA clone
of a non-infectious PPV mutant with silencing suppres-
sion defects [45]. Whereas the FI of the PPV S259A clone
peaked at 2 dpa, FI of wtPPV continued to increase over
the 6-day time course (Figure 4D). In agro-inoculated
leaves, fluorescence quantification results were corrobo-
rated by immunoblot analysis of GFP and PPV coat pro-
tein (CP, Figure 4E). We developed a strand-specific
quantification of PPV RNA by RT-qPCR assay (Additional
file 1), and viral RNA amounts at 6 dpa were consistent
with protein determinations (Figure 4F). B-glucuronidase
and luciferase genes can be used to analyze potyviral accu-
mulation, genome amplification rates and cell-to-cell
movement [14,46-48]; here we show that detection of a

GFP-tagged virus is quite straightforward, since no sub-
strates/co-factors are needed and sample preparation re-
quirements are minimal.

Direct leaf disc analysis of engineered monomeric
fluorescent proteins

There is a wide variety of engineered fluorescent proteins
with improved optical and stability properties and many
spectral variants were obtained by evolution of the A.
victoria GFP sequence. For multicolor experiments, how-
ever, fluorescent proteins with minimal sequence similarity
are desirable, to reduce post-transcriptional gene silencing
events and assure immunodetection specificity. We evalu-
ated the novel bright fluorescent proteins blue mTagBFP2
[31], cyan mTFP1 [32], green mNeonGreen [33], yellow
mPapayal [34] and red TagRFP-T [35], all derived from
species other than A. victoria (Table 1), for transient ex-
pression in plants. Fluorophore spectral properties and
fluorescence intensity were easily determined using intact
leaf discs collected from tissue agro-infiltrated with the
corresponding constructs (Figure 5). We also show that
the FI of different fluorophores can be measured simultan-
eously and, in multicolor experiments, the choice of
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Figure 3 Quantification of GFP accumulation in transient RNA silencing assay. (A) GFP was transiently expressed by co-infiltrating N. benthamiana
leaf tissue with an Agrobacterium pBin-35S-mGFP5 culture plus cultures of Agrobacterium containing pSN.5 TagRFP-T (RFP), pSN.5 HC-L134H (LH, producing
PPV HCPro L134H mutant), pSN.5 HC-AS9 (AS9, producing a PPV HCPro mutant in which amino acids REN-239, 240, 241 were replaced by alanines) or
pSN.5 wtHC (WT, producing wild-type PPV HCPro). At 6 dpa, leaf fluorescence was acquired by laser scanning using Ex488/Em526 (green) and Ex532/
Em580 (red); the image overlay is shown (Merged). (B) GFP fluorescence intensity of the agro-infiltrated leaf patches was quantified in a 96-well plate reader.
RFI was plotted using WT mean value equal to 100. Bar graph shows mean + SD (n = 14 biological replicates from two independent Agrobacterium
cultures); the difference between the results marked with different letters is statistically significant, p < 0.01, one-way Anova and Tukey's HSD test. (C) GFP
protein accumulation in infiltrated leaves at 6 dpa was assessed by immunoblot analysis. Relative GFP signal intensities are indicated using average WT equal
to 100; the difference between the values marked with different letters is statistically significant, p < 0.01, one-way Anova and Tukey’s HSD test. Each lane
represents a pool of 3 or 4 leaf samples infiltrated with two independent Agrobacterium cultures. N, non-treated leaf sample. Ponceau red-stained blot as
loading control. (D) HCPro expression by the binary vectors tested was assessed by HCPro immunoblot analysis of leaf co-infiltrated with an Agrobacterium
pSN.5 p19 culture (6 dpa). Each lane represents a pool of infiltrated leaf samples. N, non-treated leaf sample. Ponceau red-stained blot as loading control.
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Figure 4 Monitoring of GFP-tagged virus amplification dynamics by fluorescence spectroscopy. GFP-tagged viral cDNA clones pSN-PPV
(WtPPV, wild-type PPV) and pSN-PPV P1-S (S259A, in which P1 protease catalytic amino acid 5259 was replaced by alanine) were delivered to
plants by agro-infiltration. (A) Diagram of wild-type PPV (wtPPV) genome originated following pSN-PPV agro-infiltration. Hatched box indicates
P3N-PIPO protein. The reporter sGFP(S65T) gene is inserted between Nlb and CP coding sequences. (B) N. benthamiana plants were challenged
with pSN-PPV, and fluorescence of systemically infected leaves was detected by laser scanning (10 dpa; green). (C) Excitation (dotted lines) and emission
spectra (solid lines) of SGFP(S65T) were measured from pSN-PPV agro-inoculated leaf discs (green); leaves infiltrated with an Agrobacterium culture without
expression vectors were used as control (black). Relative fluorescence intensity (RFI) was plotted using sGFP(S65T) peaks equal to 100. UV wavelengths are
in gray, visible spectrum colors were assigned as described [39]. (D) GFP fluorescent intensity (RFI) from infiltrated leaves was quantified in a 96-well plate
reader and plotted using average wtPPV value at 6 dpa equal to 100. Line graph shows mean + SD (n = 16 samples/condition, from two independent
Agrobacterium cultures). (E) Amount of GFP protein and PPV CP in infiltrated leaves at 6 dpa was assessed by immunoblot analysis. Each lane represents a
pool of 3 or 4 leaf samples infiltrated with two independent Agrobacterium cultures. Ponceau red-stained blot is shown as loading control. (F) Amount of
viral (HRNA and (—)RNA from inoculated leaves at 6 dpa was quantified by RT-gPCR and plotted using average wtPPV value equal to 100. Bar graph shows
mean + SD (n =4 biological replicates, from two independent Agrobacterium cultures);, ***p < 0.001, Student’s t-test.
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reporters with minimal spectral overlap assures signal
specificity (Additional file 2).

Conclusions

We present laser scanning as an alternative method for
fluorescence imaging of plant samples that, due to their
size, cannot be acquired in their entirety in standard
fluorescence stereomicroscopes. Dual-color fluores-
cence imaging of leaf samples is achieved using fluoro-
phore combinations with minimal spectral overlap, such

as mGFP5/TagRFP-T and mTFP1/mPapayal, and image
analysis can be used for raw quantitative comparisons.

We show that fluorescence plate readers are extremely
powerful tools for medium-high throughput analysis of
fluorescent proteins expressed in plant tissue, making it
feasible to collect data from a 96-well plate in a few mi-
nutes. Fluorescence intensity is readily quantified in leaf
discs, with no need to prepare protein extracts. A large
number of improved fluorescent proteins have been de-
veloped, and proteins with reduced biological half-life,
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Figure 5 Direct leaf disc analysis of engineered monomeric fluorescent proteins. Fluorescent proteins were transiently expressed by
co-infiltrating N. benthamiana leaves with an Agrobacterium pSN.5 p19 culture plus cultures of Agrobacterium containing pSN.5 mTagBFP2 (mTagBFP2),
pSN.5 MTFPT (MTFP1), pSN.5 mNeon (mNeon), pSN.5 mPapayal (mPapayal), pSN.5 TagRFP-T (TagRFP-T) or a strain with no expression vector (D).

(A) At 6 dpa, cell fluorescence was imaged by confocal microscopy. Fluorophore excitation (dotted lines) and emission spectra (solid lines) from
agro-infiltrated leaf discs were measured in a 96-well plate reader. Leaves infiltrated with an Agrobacterium culture without expression vectors were
used as control (black lines). Relative fluorescence intensity (RFI) was plotted using fluorophore peaks equal to 100. UV wavelengths are in gray, visible
spectrum colors were assigned as described [39]. (B) Box-plot graphs show quantification values from n =8 samples/condition. Fluorescence intensity
of the leaf discs agro-infiltrated with the indicated fluorescent protein-expressing plasmid or without expression vector (®) was measured in a
monochromator-based plate reader. RFl was plotted using each fluorophore mean value equal to 100.

J

rapid choromophore maturation and photoactivable var-  on fluorescence intensity quantification of mGFP5. A
iants [3,49-51] might be used to increase assay sensitivity =~ battery of fluorescent proteins that have minimal se-
and temporal resolution for kinetic studies. We show  quence identity with the widely used A. victoria GFP se-
that co-expression of TagRFP-T has no appreciable effect quence was quantified easily in a monochromator-type
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plate reader. We anticipate that the method presented
will aid in the design of fluorescence-based experiments
with single and multiple reporter genes and facilitate
comparisons of fluorophore amounts.

Methods

DNA plasmids and constructs

The binary vector pSN-PPV bearing a full-length cDNA
copy of a PPV isolate and its variant pSN-PPV P1-S were
reported [45]. An Agrobacterium strain GV3101 containing
the binary vector pBin-35S-mGFP5 was kindly provided by
D. Baulcombe (University of Cambridge, Cambridge, UK).
For the remaining transient expression vectors, genes of
interest were inserted into Xbal/PmlI-digested pSN2-ccdB
[45] by Gibson assembly [52]. Briefly, to obtain pSN.5
TagRFP-T (encoding a mutant red TagRFP), the TagRFP se-
quence was amplified from pSITEI-6C1 [53] and the
S158T mutation [35] was inserted by the overlap extension
method [54]. For pSN.5 mTagBFP2, blue mTagBFP se-
quence was amplified from pGGC024 [55] (kindly provided
by J. Forner, Universitat Heidelberg, Heidelberg, Germany),
and the I174A mutation [31] was inserted. For pSN.5
mTEP1, the cyan mTFP1 sequence was synthesized de novo
(GeneArt, Life Technologies). For pSN.5 mNeon, green the
mNeonGreen sequence was amplified from pICSL80019
[56], kindly provided by M. Youles (The Sainsbury Labora-
tory, Norwich, UK). For pSN.5 mPapayal, the yellow mPa-
payal sequence was synthesized de novo (GeneArt, Life
Technologies). For pSN.5 wtHC, PPV HCPro was amplified
from pSN-PPV AP1 [45]; for pSN.5 HC-L134H, PPV
HCPro was amplified from pSN-PPV AP1 and the L134H
mutation inserted, whereas for pSN.5 HC-AS9, PPV HCPro
was amplified from pSN-PPV AP1 and amino acids REN-
239,240,241 were replaced by alanines. For pSN.5 p19,
tomato bushy stunt virus p19 was amplified from pBIN61-
P19 [38]. In all the newly-generated constructs, coding
sequences are driven by a double enhancer Cauliflower mo-
saic virus 35S promoter, flanked by PPV 5’UTR and 3'UTR,
followed by a nopaline synthase terminator.

Plant agro-infiltration

Nicotiana benthamiana and N. clevelandii were grown
in a greenhouse maintained at a 16 h light/8 h dark
photoperiod, temperature range 19-23°C. Agro-infiltration
of N. benthamiana and N. clevelandii plants was as
described [6]; whenever possible, tested constructs
were delivered in individual patches of the same leaf.
The viral replication assay was conducted in three-
week-old N. clevelandii plants following agroinfiltration
and sampling guidelines [14], with the exception that a
saturating concentration of Agrobacterium (ODgyy 1.0)
was used.
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Laser scanner imaging

Plant leaves were sandwiched between two low-
fluorescence glasse plates and fluorescence was acquired
in a laser scanner (Typhoon 9400, GE Healthcare). Set-
tings used were normal sensitivity, focal plane +3 mm and
50-100 pm pixel resolution; excitation lasers and emission
filters used are summarized in Table 1. Signal saturation
was avoided by adjusting photomultiplier tube voltage. Ty-
phoon data were exported to 16-bit .tiff files. Image] soft-
ware [57] was used to produce false-color images and
overlays, and to generate 3D-projections through the
Interactive 3D Surface Plot plug-in.

Fluorescence intensity measurements

Black 96-well flat-bottom plates (Nunc) with 50 pL water/
well (to limit sample dehydration) were used for the assay.
A cork borer was used for tissue sampling; individual
5.0 mm-diameter leaf discs, collected at the same distance
from the infiltration point, were placed upside down in
the prepared plates. Top reading measurements were used
to acquire fluorescent protein excitation, emission spectra
and intensity quantification in a monochromator-based
plate reader (Infinite M200, Tecan Group). Gain value was
adjusted manually to avoid signal saturation. RFI was
quantified using the excitation and emission bands indi-
cated in Table 1. Top reading GFP fluorescence intensity
was alternatively quantified in an Appliskan (Thermo
Fisher Scientific) and/or Victor X2 (PerkinElmer) filter-
based plate readers.

Western blot assays

Liquid nitrogen-frozen plant tissue was homogenized in a
TissueLyzer bead mill (Qiagen). Total proteins were ex-
tracted, separated by glycine-SDS-PAGE and electroblotted
onto a nitrocellulose membrane, as reported [45]. Proteins
were detected using rabbit anti-PPV CP and -PPV HCPro
sera, and mouse anti-GFP monoclonal antibody (clones
7.1 and 13.1, Roche) as primary antibodies; horseradish
peroxidase-conjugated goat anti-rabbit IgG (Jackson) or
sheep anti-mouse I1gG (GE Healthcare) were used as sec-
ondary antibody. For signal quantification, chemilumines-
cence was acquired in a ChemiDoc XRS imager (BioRad)
and analyzed with Image].

RT-qPCR

Total RNA was extracted with the FavorPrep Plant Total
RNA Mini kit (Favorgen), including on-column DNAsel
treatment. Purified RNA was quantified spectrophotomet-
rically by NanoDrop (Thermo Fisher Scientific) and con-
centration adjusted to 50 ng/uL. Strand-specific cDNA for
PPV RNA was synthesized for at least three biological rep-
licates per condition using tagged cDNA primers in the
RT step [58]. The 10-pL RT reactions contained 100 ng of
total RNA and (at final concentrations) 1x Superscript III
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first-strand buffer, 0.5 mM of each dNTP, 5.0 mM dithio-
threitol, 1.0 U/uL RiboLock (Fermentas), 5.0 U/uL Super-
script III (Invitrogen) and 50 nm primer Q26_R or Q29_F
(Additional file 1) to transcribe cDNA from positive and
negative PPV genomes, respectively. Mixtures were incu-
bated (35 min at 56°C, 10 min at 95°C), cooled to room
temperature and diluted 1/10 - 1/25 with nuclease-free
water. Technical triplicate 8 uL. qPCR reactions were pre-
pared in 384-well optical plates using 4 pL diluted cDNA
sample, 1x Hot FIREPol EvaGreen qPCR Mix Plus (Solis
BioDyne), 195 nM each of primer pair Q27_F/Q28_R, or
300 nM each of primer pair Q30_F/Q31_R (Additional
file 1) for quantification of positive and negative PPV ge-
nomes, respectively. In a 7900HT Fast Real-Time PCR
System (Applied Biosystems), reactions were subjected to
10 min at 95°C activation step, 40 cycles of 95°C, 30 s and
60°C, 60 s, followed by a final dissociation curve analysis
step. Absolute quantification was done using external
DNA standard curves [59]. Briefly, Nicotiana plants were
agro-inoculated with pSN-PPV, total RNA was purified
from systemically infected tissue and reverse-transcribed
using the High-Capacity cDNA Archive Kit (Applied Bio-
systems). cDNA was used as template for PCR reactions
which contained primer pair Q25_F/Q26_R or primer pair
Q23_R/Q29_F for positive and negative PPV genomes, re-
spectively. Amplicons were gel-purified and serially diluted
to generate qPCR standard templates. Strand specificity of
RT-qPCR assays was evaluated using synthetic positive
and negative strand PPV RNA fragments. The T7 ©2.5
promoter sequence was incorporated into PCR fragments
amplified using primers Q22_F/Q23_R and Q24_R/Q25_F
for positive and negative RNA strand templates, respect-
ively. In vitro transcription and RNA purification were as
described [45]. Healthy Nicotiana total RNA was used as
carrier for 10-fold dilutions of target RNA alone or with a
fixed amount of complementary RNA. RNA samples were
reverse-transcribed in triplicate and used as template in
qPCR reactions, as above.

Additional files

Additional file 1: Primers and PPV target region used in RT-qPCR
viral RNA quantification. (A) Sequence and use of the RT-gPCR primers.
Nucleotides identical to pSN-PPV-derived viral RNA sequence are shown
in uppercase letters. Non-viral tag sequences are in bold, 5' clamps to
increase annealing stability are underlined and the T7 ®2.5 promoter
sequence is double-underlined. Application as follows: T7(+), in vitro
transcription of positive strand RNA with T7 RNA polymerase; T7(-),

in vitro transcription of negative strand RNA with T7 RNA polymerase;
S(+), generation of template for positive strand standard curve; RT(+),
positive strand-specific cONA synthesis; Q(+), gPCR amplification of positive
strand; S(=), generation of template for negative strand standard curve;
RT(-),negative strand-specific cDNA synthesis; Q(-), gPCR amplification of
negative strand. (B) Detailed scheme of the pSN-PPV binary vector used for
PPV delivery to plants. P3N-PIPO protein was omitted for clarity. A 189 bp
intron from the potato ST-LS-1 gene, inserted in the P3 sequence [GenBank:
EF569215.1] to increase cDNA vector stability [60], is shown as a hatched
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box. Region flanking the P3 splicing site of pSN-PPV-derived viral RNA is
shown. Positive (+) and negative (—) PPV sequences are represented
with the primers used for RT-gPCR quantifications. Reverse transcription
primers were designed to span the P3 intron junction of spliced viral
RNAs. Brackets indicate gPCR amplicon regions. Diagram is not to scale.
(C) Strand specificity of RT-qPCR assays. Standard curves were generated
from cDNA synthesis reactions into which target RNA was mixed with
100 ng of Nicotiana total RNA alone (circles) or in the presence of a
competing strand (squares). Cycle threshold numbers were plotted
against the logarithm of target RNA.

Additional file 2: Quantification of engineered monomeric
fluorescent proteins in multicolor experiments. Fluorescent proteins
were transiently expressed by co-infiltrating N. benthamiana leaves with
an Agrobacterium pSN.5 p19 culture plus cultures of Agrobacterium
containing pSN.5 mTagBFP2 (mTagBFP2), pSN.5 mTFPT (mTFP1), pSN.5
mNeon (mNeon), pSN.5 mPapayal (mPapayal) or pSN.5 TagRFP-T (TagRFP-T).
At 6 dpa, fluorescence intensity of the leaf discs agro-infiltrated with the
indicated fluorescent protein-expressing plasmid was measured in a
monochromator-based plate reader. Evaluated excitation and emission
wavelengths are shown on the left, and summarized in Table 1. Box-plot
graphs show quantification values from n =8 samples/condition. Fl is
expressed in arbitrary units.

Abbreviations
GFP: Green fluorescent protein; PPV: Plum pox virus; UV: Ultraviolet; (R)FI: (Relative)
Fluorescence intensity; dpa: Days post-agro-infiltration; CP: Coat protein.
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