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Abstract

Background: Striga hermonthica is a hemiparasitic weed that infects cereals in Sub Sahara Africa (SSA) resulting in
up to 100% grain yield loss. This significant loss in grain yields is a major contributor to food insecurity and poverty
in the region. Current strategies to control the parasite are costly, unavailable and remain unpracticed by small-scale
farmers, underscoring the need for more economical and sustainable control strategies. Development of resistant
germplasm is the most sustainable strategy in the control of S. hermonthica, but is constrained by paucity of resistance
genes for introduction into crop germplasm. RNA interference (RNAI) has potential for developing host-derived
resistance against S. hermonthica by transformation of host crops with RNAi sequences targeted at critical Striga
genes. The application of RNAi in management of S. hermonthica is however constrained by lack of efficient high
throughput screening protocols for the candidate genes for silencing, as well as sub optimal delivery of siRNAs
into the parasite. In comparison to stable transformation, viral induced gene silencing (VIGS) is a rapid and powerful
tool for plant functional genomics and provides an easy and effective strategy in screening for putative candidate
genes to target through RNAI. In addition, VIGS allows for a secondary amplification of the RNAI signal increasing the
siRNA threshold and facilitates siRNA transport through viral movement proteins. We tested the efficiency of the
Tobacco rattle virus (TRV1 and TRV2) VIGS vectors in silencing S. hermonthica phytoene desaturase (PDS) gene
through agrodrench and agro-infiltration.

Results: We report the validation of VIGS in S. hermonthica using a silencing cassette generated from TRV with a
PDS gene insert. Agro-infiltrated and agro-drenched S. hermonthica leaves showed photo-bleaching phenotypes
typical for PDS silencing within 7 and 14 days post infection respectively. In both cases S. hermonthica plants
recovered from photo-bleaching effects within 28 days post inoculation. The transformation efficiency of the VIGS
protocol in S. hermonthica was (60 =+ 2.9)%.

Conclusion: These results demonstrate that the TRV-VIGS system work in S. hermonthica and can be used for
candidate gene validation for their role in the parasite development and parasitism, with the ultimate goal of
developing resistant transgenic maize.
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Background information

Maize is an important staple food crop for majority of
people in Sub-Sahara Africa (SSA) [1,2]. Maize grain
yields are below the demand hence leading to food inse-
curity and poverty in the region. The low maize yields
result from various biotic and abiotic factors that com-
bined cause cereal grain loss worth of US$3 billion an-
nual [3-5]. The most devastating biotic constraint to
maize production in SSA is Striga hermonthica (Del.)
Bentha, a root hemi-parasitic weed of maize which
causes up to 100% grain loss annually [3,6,7]. The life
cycle of S. hermonthica is intimately synchronized with
that of its host, and the seeds of the parasite only ger-
minate in response to chemical signals present in root
exudates of the host [8]. Striga hermonthica infects
maize by forming haustoria connections with the host
vasculature resulting in syphoning of water and nutri-
ents [8,9]. Although some S. hermonthica control strat-
egies have been proposed and practiced, Striga seed
bank in soils has continued to build up and the parasite
has continued to spread to previously non-infected ar-
able land [10,11].

Genetic engineering through cross species RNA inter-
ference (RNAI) technology offers great promise in para-
sitic plant management [12-19]. However, its applicability
in S. hermonthica management has been constrained by
lack of methods to deliver the silencing molecules and the
lack of candidate genes to target [20]. The recent report
on horizontal gene transfer from Sorghum bicolor to S.
hermonthica has increased prospects of delivering the
silencing RNA molecules from cereal hosts to S. hermonthica
[21]. This suggests the possibility of RNAi in some
monocots which have been reported to be recalcitrant
to transformation. Host-derived resistance using RNAi
dependent on efficient delivery of siRNAs from the host
to the parasite in order to determine if the gene causes
an alteration in the parasites’ phenotype, reviewed in
[15]. An alternative approach to determine if a gene has
a function on the parasite would be to develop a high
throughput genetic transformation protocol for Striga.
These two approaches present challenges, as transform-
ation of grasses (especially rice, maize wheat and sor-
ghum) is recalcitrant [22-26] and no protocols exist for
Striga transformation yet.

Viral induced gene silencing (VIGS) is a technique that
employs recombinant viruses to specifically reduce en-
dogenous gene activity through plant innate silencing
mechanisms called Post-Transcriptional Gene Silencing
(PTGS) [27]. The VIGS vectors are usually standard bin-
ary Ti-plasmids that contain a viral genome and a frag-
ment of the host plant’s target gene. The vectors are
introduced in the plants via Agrobacterium tumefaciens
infection that results in the transfer of the T-DNA con-
taining the viral genome into the host genome of at least

Page 2 of 8

one cell, where it is transcribed, and translated [28,29] .
This leads to the production of double-stranded RNAs
(dsRNAs) due to self-assembly of viral ssRNA into hair-
pins or complementary sequences derived from sense
and antisense viral ssSRNA strands [30]. Dicer-like pro-
teins cleave these viral dsRNAs into short interfering
RNAs (siRNA) duplexes of 21-24 nucleotides (nt) in
length [27-29]. These siRNAs are incorporated into a
RNA-induced Silencing Complex (RISC) that guide and
cleave complementary RNAs [31,32]. The virus-derived
silencing signal is amplified and spreads systemically
throughout the plant [33]. Amplification of VIGS results
in down-regulation of target gene [27,34]. VIGS is not a
stable transformation strategy but works transiently and
therefore could be used as a powerful and rapid tool in
gene validation for loss-of-function.

We report efficient Tobacco rattle virus (TRV-(1&2)
VIGS vectors in silencing S. hermonthica Phytoene desa-
turase (PDS) gene. These findings have far reaching appli-
cation in designing RNAI strategies based on host derived
resistance.

Results

VIGS induced RNAi on S. hermonthica PDS causes
photo-bleaching

Viral induced technique through agro-drench methods
was effective in S. hermonthica plants. This was evi-
denced by down regulation of the PDS gene resulting
into photo-bleached phenotypes on the leaves of S.
hermonthica plants. The bleaching appeared on plants
agro-drenched with the Agrobacterium strain GV3101
habouring the TRV1 and mixed with GV3101 having
TRV2 vector containing the PDS insert (Figure 1la, b,
¢, d, e). The photo-bleaching effects appeared on the
14th day after agro-drench but the plants recovered on
the 28th day post infection (Figure 1c) and (Figure le)
respectively. There was no photo-bleaching on the
control agro-drenched plants leaves (Figure 1f-t). Similarly
agro-infiltrated S. hermonthica plants developed photo-
bleached phenotypes on the leaves of PDS targeted S. her-
monthica plants. The effects appeared on the 7th day after
agro-infiltration (Figure 2b) and the plants recovered on
the 28th day post agro-infiltration (Figure 2d). The nega-
tive control agro-infiltrated plants did not show photo-
bleaching symptoms (Figure 2f-o).

VIGS induced RNAi is because of down-regulation of

S. hermonthica PDS

To confirm if silencing of the PDS had occurred in S.
hermonthica due to infiltration and agro-drench, RT-
PCR analysis was done using PDS and TRV gene specific
primers. The PDS primers were designed to prime out-
side the region of homology between the VIGS vector
and target mRNA. The RT-PCR of the c¢cDNA from
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Figure 1 Viral induced gene silencing (VIGS) via Agro-drench method on S. hermonthica. a, b, ¢, d, and e are plants agro-drenched with
Agrobacterium strain GV3101 with TRV2- PDS (GV3101/TRV2-PDS), and mixed in 1:1 ratio with GV3101 containing TRV1 empty vectors (GV3101/TRV2), in
days 1,7, 14, 21 and 28 post agro-drench respectively; f, g, h, i and j were agro-drenched with GV3101 vectors containingTRV1 empty (GV3101/TRV1)
in days 1,7,14,21 and 28 respectively. k, I, m, n, and o plants were agro-drenched with GV3101 only, while p, q, r, s and t were only watered in days 1,
7,14, 21 and 28 after agro-drench respectively. All scale bars represent 5 cm.

photo-bleached S. hermonthica leaves, using PDS primers
amplified a 250 bp fragment as expected (Figure 3a). How-
ever, fragments were extremely faint due to down regula-
tion of the PDS gene in these plants. The negative control
plants treated with GV3101/TRV1, GV3101 empty and
those which were only watered had bands of higher inten-
sity indicating the PDS was highly expressed in these
plants because there was no down-regulation (Figure 3b,
¢, d, respectively). Additionally, the ¢cDNA amplification
with TRV primers indicated the success of VIGS by
amplifying a 400 bp fragment on plants treated with
GV3101/TRV2 with the PDS insert (Figure 3e). Amplifica-
tion of the ¢cDNA from plants treated with; GV3101/
TRV1 empty, GV3101 empty and water only did not have
the 400 bp fragment with TRV primers (Figure 3f, g, h re-
spectively). The S. hermonthica DNA amplification with
primers for Actin gene showed the 426 bp fragment indi-
cating the quality of the cDNA of plants from all the four
treatments (Figure 3i, j, k, 1).

VIGS efficiency on S. hermonthica

Statistical analysis using student’s ¢-test revealed that the re-
sults of VIGS were successful on plants targeted for PDS si-
lencing (treated with GV3101/TRV2/PDS + GV3101/TRV1)
in S. hermonthica. There was indication of photo-bleaching
by 60.2 + 2.9 percentage of S. hermonthica plants targeted

for PDS plants silencing in Agro-infiltration method,
while in agro-drench only 10.3 + 1.5. None of the nega-
tive control treatments indicated photo-bleaching ef-
fects in both methods (Table 1).

Discussion

Plants induce homology dependent defense mechanisms
in response to attack by virus, therefore engineering a
virus into a plant to target a gene of interest results in si-
lencing of the gene through PTGS [29]. The PTGS
mechanisms are similar to those of RNA interference in
plants [27]. Our experiments demonstrate that VIGS
using TRV vectors with the PDS gene resulted in inhib-
ition of carotenoid biosynthesis in S. hermonthica. This
was evidenced by down-regulation of the PDS gene in S.
hermonthica plants resulting in photo bleaching pheno-
types at 7 and 14 days post inoculation in agro-infiltrated
and agro-drenched plants respectively. The early appear-
ance of silencing in agro-infiltrated S. hermonthica plants
as compared to the agro-drenched ones could be ascribed
to high efficiency in the delivery of the signals that initiate
the innate silencing machinery of PGS in the S. her-
monthica leaves. In our case the VIGS vector was intro-
duced in S. hermonthica via A. tumefaciens infection. It is
also possible that A. tumefaciens was more efficient at
transferring the T-DNA containing the viral genome and
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Figure 2 Viral induced gene silencing (VIGS) via agro-infiltration method on S. hermonthica. a, b, ¢, d, and e are plants agro-infiltrated with
Agrobacterium strain GV3101 habouring TRV2-PDS (GV3101/TRV2-PDS), and mixed in 1:1 ratio with GV3101 containing TRV1 empty vectors
(GV3101/TRV2), in days 1, 7, 14, 21 and 28 after agro-infiltration respectively; f, g, h, i and j are plants agro-infiltrated with GV3101 vectors containing TRV1
empty (GV3101/TRV1) in days 1, 7, 14, 21 and 28 after infiltration respectively; k, I, m, n, and o are plants agro-infiltrated with GV3101 only, in days 1, 7, 14,

PDS into the host genome in the cells of the leaves than in
the root and stem cells, this could have therefore delayed
all the downstream silencing steps in agro-drenched
plants [30]. Further these results show that a better mech-
anism in spreading the silencing signal after introduction
exists in S. hermonthica leaf tissue than in the root or stem
tissue. The translocation of PTGS silencing factor may
utilize both short-range cell-to-cell movements through
plasmodesmata as well as phloem-associated long-range
transport mechanisms [35,36]. The RNA-dependent RNA
Polymerase6 (RDR®6) is required for long-range transport,
possibly by amplifying the silencing signal [33]. From our
experiments we are not able to verify if RDR6 in leaf, root
and stem cells of S. hermonthica is responsible for the dif-
ference in the efficiency. The silencing efficiency however
has been reported to be proportional to the number of si-
lencing molecules in the cells [37].

Phytoene desaturase (PDS) is a key enzyme involved in
carotenoid biosynthesis pathway [28]. It’s known that re-
duced levels of photo-protective carotenoids leads to
rapid destruction of chlorophyll by photo-oxidation that
results to white or bleached phenotypes [38]. The recov-
ery of the photo-bleached plants at 28 days post inocula-
tion is attributed to the transient nature by which VIGS

is expressed in cells. The negative control plants treated
with GV3101/TRV1, GV3101 empty and water did not
show bleaching characteristic of the PDS silencing ef-
fects, because for any silencing to occur, the PDS insert
must be contained in TRV2 expression vector that en-
code the virus coat protein genes responsible for viral
replication [39]. The control plants could not therefore
initiate the PTGs silencing machinery. The silencing of
the PDS was therefore as a result of the infected S. her-
monthica plants employing the innate PTGS as defense
mechanism against the TRV. The PTGS as a response
has been widely reported in plants [27,30,34].

This study has established a VIGS protocol that can be
used for reverse genetics or functional genomics studies
in S. hermonthica. This approach also ensures that the
gene validation can proceed without laboring with stable
transformation of the injurious parasite or its recalci-
trant monocot hosts. Although there is limited evidence
that genetic material can be exchanged between S. her-
monthica and its hosts [20,21], the developed tools could
be independently used without having to worry about
delivery of enough of the silencing molecules through
from the host to parasite via the haustoria. In fact once
the factors that enable S. hermonthica to uncontrollably
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Figure 3 RT-PCR to confirm silencing of PDS gene on S. hermonthica. The PDS and TRV gene specific primers were used. (a) S. hermonthica
treated with GV3101 with the TRV2 vector containing the PDS gene insert (GV3101/TRV2-PDS) + GV3101/TRV1) and amplified with PDS primers. Lane
kb ladder while 1, 2, and 3 are the replicates. (b) The cDNA plants treated with GV3101 containing TRV1 empty vectors (GV3101
with three replicates (1, 2 and 3) and amplified with PDS primers. (c) Three replicates (1, 2, 3) of plants treated with GV3101
PDS primers. (d) Represents plants treated only with water and amplified with PDS primers. (e) S. hermonthica cONA amplified with TRV primers from
plants treated with GV3101/TRV2-PDS + GV3101/TRV1 vectors with three replicates (1, 2, 3). (f) S. hermonthica cDNA from Plants treated with GV3101/
2, and 3) amplified with TRV primers. (g) Plants treated with GV3101 empty, three replicates (1, 2, 3) amplified
with TRV primers. (h) Plants treated with water only, three replicates (1,2,3), cDNA amplified with TRV primers. Images (i, j, k and I) are the internal
control using Actin primers for the S. hermonthica cDNA from plants treated with GV3101/TRV2-PDS + GV3101/TRV1, Plants treated with GV3101/TRV1
only, Plants treated with GV3101 only and plants treated with water only, respectively.

GV3 101 Water

/TRV1)
empty and amplified with

colonize its host are identified, the parasite could be
basted by boasting host defense mechanisms through
gene over-expression techniques along the identified
pathways. In such a case delivery of resistance molecules
will not be in question, as the host will directly exhibit
resistance to S. hermonthica on attachment.

Conclusion

We have demonstrated that TRV VIGS vectors could be
used in functional genomics in the parasitic weed S. her-
monthica. Although VIGS was more efficient through
agro infiltration than agro-drench, using the PDS gene
obviously results in an above ground leaf phenotype, it
remains to be seen what will be observed during valid-
ation in S. hermonthica parasitism genes where most of
the promising phenotypes are expected to occur in the
roots where haustoria colonizes. Finally, with the avail-
able genetic resources at the Parasitic Plant Genome

Table 1 VIGS efficiency in S. hermonthica

Project, and the developed tools will aid in the validation
and identification of genes responsible for unabated S.
hermonthica parasitism. The identification could lead to
a variety of transgenic approaches that could lead to de-
velopment of S. hermonthica resistant germplasm not
only in maize but in other cereal hosts as well.

Materials and methods

VIGS plasmids

Tobacco rattle virus (TRV)-derived vectors were pro-
vided by Prof. Dinesh Kumar from the University of
California-Davis. The Tobacco rattle virus contains bi-
partite positive-sense RNA genome (RNA1 and RNA2).
The TRV1 vector represented RNA1 which encodes two
viral replication proteins, a movement protein and a
seed transmission factor. The provided TRV2 repre-
sented the RNA2 and encodes the coat protein and a
nematode transmission plant kingdom [40]. The two

Treatment No of transformed plants

% of PDS transformed plants
(photo-bleached)

% of PDS negative plants
(not photo-bleached)

GV3101/TRV2-PDS + GV3101/TRV1

Agro-infiltration 129+29
Agro-drench 122+15
GV3101/TRV1 80£15
GV3101 80+10

60.2 £29% 398+5
103 £15% 89.7+3
0.0 100.0*
00 100.0%

*Significant values; P < 0.05.
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binary vectors were separately transformed in the A. tume-
faciens Strain GV3101 which was the delivery vehicle for
the viral vectors into plants through agro-inoculation and
agro-drench. Agrobacterium colonies carrying TRV1, and
TRV2 vector with the PDS insert (Figure 4) were grown
separately in Luria bertani (LB) liquid media containing
Kanamycin 50 mg/l and rifampicin 1 mg/l overnight.
From the overnight culture, 1 ml was picked from each
tube and again sub-cultured separately for 2 hours in
10 ml LB media containing Kanamycin 50 mg/L and
rifampicicn 1 mg/L and 150 pM of acetosyringone to in-
duce the virulence genes. The separate 10 mL liquid cul-
tures were grown at 28°C in darkness until they attained
an optical density (OD) of 0.6. The two cultures were then
spinned for 15 minutes at 10000 revolutions per minute
(RPM) and resuspended in an induction buffer containing
150 pM acetosyringone, 10 mM of MES and 10 mM of
MgCl, adjusted to PH 5.6 and grown again for 2 hours.
Agrobacterium strains GV3101 containing TRV1 and
TRV2-PDS were then mixed in a 1:1 ratio and used in the
agro-inoculation experiments (Figure 4).

Agro-drench

Agro-drench involved applying the mixture of GV3101/
TRV2PDS and GV3101/TRV1 (1:1) ratio directly onto
the soil adjacent to the crown part of 3—4 week old S.
hermonthica plants as described by [39] with slight mod-
ifications. The experiments involved six plants and were
repeated three times. The negative controls were six
plants treated with GV3101/TRV1, GV3101, and water
separately. All the negative controls were replicated
thrice as well. Pictures were taken after every seven days
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and the numbers of plants showing photo-bleaching ef-
fects were recorded.

Agro-infiltration

For leaf agro-infiltration in S. hermonthica, all the young
leaves on the upper part of the plant were infiltrated by
pricking the lower side of the leaves with a wire brush.
Using cotton wool the GV3101/TRV2-PDS and GV3101/
TRV1 mixture was gently applied on the pricked leaves
until they became fully wet. Eight S. hermonthica plants
were used and the experiment was repeated three times.
The control S. hermonthica plants were separately infil-
trated with GV3101 empty, GV3101/TRV1 and water only.
Plants were photographed every seven days and the num-
ber of plants showing photo-bleaching effects recorded.

Screening for silencing of phytoene desaturase gene
through reverse transcriptase-polymerase chain reaction
(RT-PCR)

Leaf tissues from three of plants from all the treatments
were collected and ground in liquid nitrogen using a
pestle and mortar. Approximately 20 mg of ground tis-
sues was used for total RNA extraction as per the in-
structions of the RNeasy® mini kit (Qiagen, Cat no
74104, Valencia. U.S.A). The total RNA was subjected to
DNAse treatment and incubated at 37°C for 15 minutes.
The total RNA extracted was then reverse transcribed to
¢DNA synthesis using Superscript™ III first stand synthesis
system (Invitrogen, CAT 18080-051, Carlsbad, U.S.A).
The first strand cDNA synthesis reactions were primed
using random heximers. The synthesized cDNA was then
amplified using PDS primers and TRV primers. The PDS

LB

K,,,,,\

pB R3220n

PVS1-REP

pVS1Sta

using Vector NTI software, version 11.5.2.

Pstl (6)

pTRV2-PDS

o072 bp

Figure 4 TRV2 vector with the PDS insert.using the TRV2 vector details provided in the ABRC database [41], the map was constructed

P35S

\ TRVZRNA2
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primers were (Forward primer 5'-GAGAAACATGGTTC
AAAAATGG-3"and reverse primer 5-AACACAAAAG
CATCTCCCTC-3"). The PDS primers were designed to
prime outside the region of homology between the VIGS
vector and the target mRNA. The TRV primers were
(Forward 5-ACTCACGGGCTAACAGTGCT-3" and re-
verse primer 5'-GACGTATCGGACCTCCACTC-3'. The
PCR was set with 94°C denaturation temperature, 55°C
annealing temperature and 74°C extension temperature
for 40 cycles. Gel electrophoresis was performed at 100
volts using 1% of agarose loaded with 5 pl of each sample
reaction. Gel pictures were taken under a Ultraviolet light
illuminator after a 30 minutes run.
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