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Abstract
Background  The manual study of root dynamics using images requires huge investments of time and resources and 
is prone to previously poorly quantified annotator bias. Artificial intelligence (AI) image-processing tools have been 
successful in overcoming limitations of manual annotation in homogeneous soils, but their efficiency and accuracy is 
yet to be widely tested on less homogenous, non-agricultural soil profiles, e.g., that of forests, from which data on root 
dynamics are key to understanding the carbon cycle. Here, we quantify variance in root length measured by human 
annotators with varying experience levels. We evaluate the application of a convolutional neural network (CNN) 
model, trained on a software accessible to researchers without a machine learning background, on a heterogeneous 
minirhizotron image dataset taken in a multispecies, mature, deciduous temperate forest.

Results  Less experienced annotators consistently identified more root length than experienced annotators. Root 
length annotation also varied between experienced annotators. The CNN root length results were neither precise 
nor accurate, taking ~ 10% of the time but significantly overestimating root length compared to expert manual 
annotation (p = 0.01). The CNN net root length change results were closer to manual (p = 0.08) but there remained 
substantial variation.

Conclusions  Manual root length annotation is contingent on the individual annotator. The only accessible CNN 
model cannot yet produce root data of sufficient accuracy and precision for ecological applications when applied to 
a complex, heterogeneous forest image dataset. A continuing evaluation and development of accessible CNNs for 
natural ecosystems is required.
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Background
Artificial intelligence (AI) methods have transformed the 
scientific community in recent years due to their ability 
to automate the collection and preparation of empirical 
data which could previously only be carried out manu-
ally [1]. In ecology, studies most commonly adopt the 
use of convolutional neural networks (CNNs), a type of 
deep learning model well suited for analysing visual data, 
for identification of individuals or species from images, 
video, and sound [2]. Image segmentation, the identifica-
tion of individual pixels as belonging to a particular class, 
is increasingly being applied successfully to understand 
complex ecological systems [3–6]. A continuing syn-
ergy between AI and ecology could greatly improve data 
throughput for the understanding and restoration of eco-
systems in the face of global change [7].

Fine root systems are complex belowground systems 
which are an important driver of ecosystem responses 
to global change, as they are fundamental components 
of the carbon cycle and represent ~ 1/3 of net primary 
production (NPP) on a global scale [8]. The amount of 
carbon stored as root biomass [9] or released into the 
soil through autotrophic and heterotrophic respiration 
depends on root dynamics (i.e., ‘birth’, growth, death) 
and decomposition rates [10–12]. Studies investigating 
root dynamics are essential for the comprehensive under-
standing of global carbon budgets [13, 14] but remain 
rare due to the methodological difficulty in studying the 
dynamics of belowground plant tissue across ecosys-
tems [15–17]. Non-destructive techniques that allow 
for root dynamics to be observed by photographing the 
same points in the soil profile to obtain data on fine root 
production, mortality, and turnover rates include rhizo-
boxes, root observation windows and minirhizotrons [18, 
19]. Minirhizotrons are a widely used in-situ technique 
where images are taken periodically at fixed points along 
Perspex tubes fixed into the ground [18, 20–22]. A study 
by Jose et al. [23] indicated that minirhizotron and soil 
core techniques produce comparable results, displaying 
how minirhizotrons can be used to overcome some of the 
limitations of the labour intensive, destructive, and non-
repeatable traditional techniques such as excavation and 
coring [19, 24].

Root image analysis on images collected from root 
observation techniques typically require detection and 
quantification of the pixels depicting root tissue, via an 
image-analysis process usually known as segmentation 
[25, 26]. Traditionally, this has relied on humans to iden-
tify roots and trace each length and diameter by hand 
using root tracing software tools such as Rootfly (Wells 
and Birchfield, Clemson University, SC, USA) [27]. How-
ever, the employment of manual annotation has draw-
backs including the significant time investment required 
(1–1.5  h per 100 cm2 of image) and the potential for 

observer bias [28, 29]. It is not uncommon for long-term 
experiments to produce tens of thousands of images for 
analysis [18, 30, 31]. Inevitably, this could result in an 
analysis bottleneck, preventing the full potential of the 
root observation method being reached, because the 
images are taken orders of magnitude faster than manual 
root annotation can be carried out.

The potential for observer bias could be driven largely 
by variability in individual knowledge, training, and expe-
rience, and may result in inconsistencies between and 
within studies when root annotation is carried out by dif-
ferent individuals [32]. This may be particularly signifi-
cant in long-term experiments such as Free Air Carbon 
Enrichment studies [33], which are likely to experience 
turnover of staff over the years, and often decades, of 
the experiment’s duration. However, observer variation 
has only been assessed in one very recent study based 
in fen peatland where novice annotators were found 
to be reporting 3x the root length of expert annotators 
[32]. The complexity of image analysis and magnitude of 
variation between individuals may be further increased 
with system complexity, including higher variation in 
soil moisture and structure, variation in soil colour (e.g., 
by soil horizon), more plant species, the presence of 
soil animals, and the presence of non-root plant litter 
[34]. Such system complexity may cause variation even 
between experienced image annotators. To overcome 
the limitations of manual annotation, recent techno-
logical developments have allowed for the automation 
of root annotation using CNNs, which have the poten-
tial to eliminate inter-observer bias and reduce the time 
required for image annotation [29, 35–37].

RootPainter, an accessible CNN software which has 
combined annotation, training, and segmentation with 
an easy-to-use interface [38], has been successfully used 
for automated segmentation of images from roots in sim-
ple crop systems [26, 31, 38–43] and to an extent in two 
natural ecosystems [34]. However, despite good correla-
tions (R2 = 0.81 and 0.87) when comparing RootPainter 
and human annotation in Mediterranean tree-grass and 
temperate grassland, RootPainter still consistently over-
estimated root length [34]. Therefore, it remains unclear 
how accurately AI will perform when translated out of 
laboratory and agricultural sites and applied to more 
complex ecosystems, such as forests.

Quantifying the effect of inter-observer variation on 
manual annotation and understanding whether an acces-
sible CNN can successfully be applied to a complex eco-
logical system will help to improve the accuracy of future 
root dynamics studies. It will also promote research into 
the development and application of AI technology to 
complex ecosystems and aid their understanding and 
restoration in the face of global change. Here we used 
data from a long-term minirhizotron experiment in a 
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multispecies, mature, deciduous forest with character-
istically heterogeneous soil composition to (1) Quantify 
the variation in root annotation of different human anno-
tators with various experience levels (2), Understand the 
variation in root annotation between the same human 
annotator before and after training and (3) Investigate 
potential differences between manual root annotation 
and AI (CNN model trained using RootPainter) at (i) a 
single time point (root length) and (ii) across a time series 
(root length net change).

Methods
Experimental setup: a mature forest with a complex 
belowground system
We used minirhizotron images taken under an old 
growth forest. These highly complex, ambiguous and 
heterogeneous images reflect the in-situ ‘natural’ vari-
ability of forest soils (Fig.  1). Images were collected 
at the Birmingham Institute of Forest Research Free 
Air Carbon Enrichment (BIFoR FACE) experimental 
site; a temperate, deciduous forest in central England 
(52.801°N, 2.301°W) with an Orthic Luvisol soil. This for-
est is composed of a Common hazel (Corylus avellana 
L.) dominated understory and a 180-year-old English oak 
(Quercus robur L.) upper canopy. Ground flora is sparse, 

composed primarily of bramble (Rubus fruticosus agg.), 
honeysuckle (Lonicera periclymenum), grasses (Poaceae 
spp.), ivy (Hedera helix), and bluebells (Hyacinthoides 
non-scripta (L.)), with naturally regenerating tree seed-
lings in canopy gaps. A full description of the experimen-
tal set up can be found at Hart et al. [33].

The images were taken from 14 minirhizotron tubes, 
155 cm in length and 5.5 cm in diameter, installed at an 
angle of 40 ± 5°. Each minirhizotron tube was inserted 
perpendicular to an individual Q. robur tree, in areas free 
of any herbaceous species. The images are taken 2  cm 
apart, and a maximum of 70 images were taken per tube, 
equating to a maximum vertical depth of 80–100  cm. 
Images were taken in each tube once a month for 
15-months, to build up a bank of 7935 minirhizotron 
images, from which the 3 image datasets used in this 
study were created (see image datasets subsection). The 
images were collected using a minirhizotron camera 
(MS-190-UHD Minirhizotron camera, Vienna Scientific 
Instruments, Vienna). Each image represents a 1.5 cm x 
1.5 cm region of soil and was resized to 936 × 960 px so 
they were the correct size to be inputted into Rootfly for 
manual analysis.

Drivers of heterogeneity in the image dataset include 
variation in belowground biomass such as root species 

Fig. 1  Example images from the minirhizotron image dataset, illustrating the variety and complexity of images obtained from the BIFoR FACE 
minirhizotrons
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variation, with the potential for both tree and ground 
flora roots to be captured (Fig. 1) as well as the presence 
of ectomycorrhizal colonised root tips (B3, C1, Fig.  1), 
hyphae (A1, Fig. 1), and mycelium (D2, Fig. 1). Drivers in 
variation also include the presence of above-ground bio-
mass, including decomposing matter i.e. twigs and leaves 
(A2, A3, C3, Fig.  1), and presence of soil fauna. Abi-
otic factors such as differing soil types, stones/pebbles, 
water pockets, and light/dark contrast also contribute to 
heterogeneity of the images in this dataset (Fig.  1). It is 
impossible to ensure perfect contact between minirhizo-
tron tube and soil, not least because of networks of soil 
pores and channels. This can result in precipitation and, 
particularly in clay soil, streaking/smearing on the out-
side of the tube.

Image datasets
Three datasets of images (one training dataset and two 
datasets of test images) were created from an existing 
15-month bank of minirhizotron images from BIFoR 
FACE (Table 1).

Manual annotators
To understand how root annotation varied between indi-
viduals with different experience levels and between indi-
viduals with the same experience level (first objective), 
we used several persons (hereafter called annotators), 
including students studying environmental science, tech-
nicians, and scientists. Level of annotator experience was 
determined mainly by previous experience annotating 
roots on images, but previous experience of working with 

intact roots (e.g. root washing, scanning, collecting) was 
also considered (Table 2).

Methods for comparing manual annotation
To test for variation in manual annotation between and 
within experience levels, each annotator (n = 8) was pro-
vided dataset 1 (30 images). Here they were instructed to 
identify and trace what they considered to be live roots, 
which were absent of ectomycorrhizal colonisation, on 
each image. Each annotator used a common root anno-
tation software (Rootfly, Wells and Birchfield, Clemson 
University, SC, USA) to annotate root length, diameter, 
and colour on minirhizotron images. To reduce variation 
because of unfamiliarity with the software, each annota-
tor, regardless of previous experience, was provided with 
written, step-by-step instructions on how to use Rootfly. 
The deviation in root length output (mm) by Novice and 
Novice_OE from the Experienced annotators was then 
measured.

For our second objective, to understand how root 
annotation varied in the same individual before and after 
training, one originally Novice annotator spent 3 months 
after they first annotated dataset 1 working as a research 
technician manually tracing minirhizotron images using 
Rootfly. Their experience level therefore changed from 
Novice to Experienced. The annotator then repeated the 
root analysis process on dataset 1, and the average root 
length per image output (mm) of them as a Novice and 
an Experienced annotator was compared. This annotator 
then repeated the root analysis process a third time after 
1 year as an experienced annotator to ascertain whether 
root annotation continued to change after further train-
ing or plateaued once experienced status was met.

Methods for training the CNN
For our third objective, to investigate variations between 
manual and automated root annotation, a CNN model 
was trained in RootPainter using the training image data 
set. The CNN training process involved 15  h of correc-
tive annotation, including both CNN training, image seg-
mentation, and the human annotator viewing images and 
assigning corrections to the model segmentations. The 

Table 1  Description of the image datasets
Image data-
set name

Number of 
images

Image selection Dataset application

Training 
Dataset

966 Randomly selected from across all 14 tubes (1000 images originally 
selected, but images at the same window location as dataset 1 and 2 
were removed).

Train the CNN model using RootPainter.

Dataset 1 30 Three images (one from bottom 30%, one from middle 40% and one 
from top 30%) were randomly selected from ten minirhizotron tubes.

Compare (i) manual root length annotation 
between different human annotators with 
different experience levels and (ii) manual 
and CNN annotation, at a single point in time.

Dataset 2 2116 Four months (Mar – Jun 2023) worth of images from 14 minirhizotron 
tubes (n = 529 images per month).

Compare manual and AI root length annota-
tion across a time series.

Table 2  Description of the manual annotators
Experience 
category

Research experience Number of 
annotators

Novice < 50 root images annotated pre study 4
Novice_OE < 50 root images annotated pre study 

but has > 500 h experience with 
intact roots

1

Experienced > 1000 root images annotated pre 
study and > 8 years experience regu-
larly annotating roots

3
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CNN trained by RootPainter is a variant of U-Net [44] 
using Group norm [45] and implemented in PyTorch. The 
RootPainter training process trains a CNN via stochastic 
gradient descent with momentum. Internally RootPainter 
assigns approximately one out of every five annotated 
images to a validation set that is used to select the best 
model so far, which is used for subsequent segmentation 
tasks, including generating the segmentations that the 
user corrects in the interface and the final segmentations. 
A more detailed explanation of the RootPainter training 
process can be found in Smith et al. [38].

To speed up the training process, each image in the 
training dataset was cropped to a 50% sub region. Images 
are annotated with RootPainter using a human-in-the-
loop process referred to as corrective annotation, where 
an annotator aims to correctively annotate all false posi-
tives and all false negatives in the model’s predicted 

segmentations for each image. Training was stopped 
once all images in the image training dataset had been 
annotated (n = 966). This was deemed an appropriate 
point to stop as the highest rolling dice score (n = 50) had 
not improved for the last ~ 200 images. A dice score mea-
sures the agreement between the image segmentation 
and the ground truth. In this context the ground truth 
is the corrected segmentation i.e. the segmentation with 
the users’ annotations of false positive and false negative 
regions applied.

Methods for comparing manual annotation and 
CNN performance
The trained CNN model was applied to dataset 1 to 
extract the total root length per image. The deviation in 
root length output (mm) by the CNN model from the 
individual Experienced annotators was then measured.

Fig. 2  Examples of images annotated by a Novice Annotator, Experienced Annotator and CNN model. For the manual annotation, the red lines represent 
traced length, and the circles represent traced diameter. For the CNN model annotation, the red represents all areas where the model predicted root to 
be present. Row one; O Horizon, 2.6 cm vertical depth. Row two; A Horizon, 19 cm vertical depth. Row three; O Horizon, 2.7 cm vertical depth
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To test the accuracy of the model output, we then com-
pared total root length per image output from the CNN 
model with an expert consensus manual annotation. The 
expert consensus manual annotation is separate from 
the individual annotations. Every object that had been 
identified by at least one of the 8 individual annotators 
across test image set 1 was decided to be root or not 
root based on a majority agreement between the expert 
annotators. Expert consensus total root length was sub-
sequently decided by this method. This expert consensus 
manual annotation was deemed to represent the consen-
sus ground truth for the annotation of the images in test 
image set 1.

Methods for comparing manual annotation and 
CNN performance over a time series
All images from test image set 2 were manually anno-
tated in Rootfly by an experienced user, and root length 
per image was calculated by adding up the total lengths 
of the individual roots on each image. The CNN model 
was then applied to this same data set and the root length 
outputs per image from each month were compared to 
manual outputs. For each image, the net change in root 
length per image between month 1 and month 4 was cal-
culated by subtracting total root length in month 1 from 
total root length in month 4, using both manual and 
CNN outputs. Net root length change across time was 
compared between the two techniques.

Statistical analyses
All datasets were found to be not normally distributed 
after using the Shapiro-Wilk test. For research ques-
tion one, a Lin’s concordance correlation coefficient was 
used to quantify the agreement, combining precision and 
accuracy, between annotators of the same experience 
level i.e. the agreement between the two most experi-
enced annotators and agreement between the two least 
experienced annotators. For research question two to 
understand the variation in root annotation between the 
same human annotator before (as a Novice annotator) 
and after training (as an experienced annotator work-
ing 3 months as a part time research assistant and again 
after working 1 year as a part time research assistant), a 
Friedman test was used. Post hoc analysis with Wilcoxon 
signed-rank tests was conducted with a Bonferroni cor-
rection applied.

For research question three (i) to investigate poten-
tial differences between manual root annotation and AI 
(CNN model trained using RootPainter) at a single point 
in time (root length), a Wilcoxon signed-rank test was 
used to determine whether there was a significant differ-
ence between the root length output of the CNN model 
and the manually annotated expert consensus. A Lin’s 
concordance correlation coefficient was then used to 

quantify the agreement, combining precision and accu-
racy, between the manual and CNN root length outputs 
[46, 47].

For research question three, to compare the perfor-
mance of an expert manual annotation and the CNN 
over a time series, a Wilcoxon signed-rank test was used 
to determine whether there was a significant difference 
between the total root length outputs of the CNN model 
and the manual annotation of an experienced Rootfly 
user in each of 4 consecutive months. A Lin’s concor-
dance correlation coefficient was again used to quantify 
the agreement for precision and accuracy between the 
manual and CNN root length outputs. Finally, a Wil-
coxon signed-rank test was used to determine whether 
there was a significant difference between the net change 
in root length outputs across a 4-month period of the 
CNN model and the manual annotation of an experi-
enced Rootfly user.

Results
Results for comparing manual annotation and CNN 
performance
The CNN model took ~ 160 person-hours (hours spent 
by a person training to use the software and trialling dif-
ferent ways to train the model on RootPainter) prior to 
training the final CNN model. It took ~ 15 CPU-hours 
(hours for which a computer’s central processing unit 
(CPU) was used for processing instructions of a com-
puter program) to train and test the final model using 966 
images.

The median deviation from the Experienced annota-
tions by the Novice annotations (median increase of 
1.1 mm (MAD ± 3.1)) was larger than the deviation by the 
Novice_OE (Image-analysis novice but with other root 
experience) annotations (Novice_OE median increase of 
0.4 mm (MAD ± 2.4)), but neither were significant. How-
ever, the skewed distribution of the data indicates that 
deviations by the Novice and Novice_OE annotations 
from the Experienced annotations were mostly small but 
occasionally very large (Fig.  3). This was predominantly 
driven by over- rather than under-annotation (Fig.  3). 
The median deviation from the Experienced annotators 
by the CNN was the largest (median increase of 14.2 
(MAD ± 14.2)) (Fig. 4), again driven by over-annotations. 
Segmentation by the CNN was also often unsatisfactory 
when inspected by eye (Fig. 2).

There was a statistically significant difference in root 
length annotation when image dataset 1 was anno-
tated by the same individual, depending on their level 
of training, X2 [2] = 29.19, p = < 0.01. There was a signifi-
cant reduction between root length output from when 
the individual was classified as a novice and after they 
had spent 3 months as a part time research assistant 
who worked as the principle annotator of minirhizotron 
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Fig. 4  The relationship between root length annotation of the two most and two least experienced annotators. Annotation was carried out manually on 
the same images (n = 30) using Rootfly. Novice A; most novice, Novice B; second most novice; Experienced A; most experienced, Experienced B; second 
most experienced. Level of experience determined by the number of images previously annotated for roots. The dashed line is a 1:1 line and the solid 
line represents Lin’s CCC

 

Fig. 3  Deviation in root length annotation from experienced annotators by less experienced annotators and a CNN. Each point represents the differ-
ence in total root length estimated for an image (n = 30) by Novice (n = 3), Novice_OE (Image-analysis novice but with other root experience) (n = 1) and 
the CNN from the median of the root length estimated by the experienced annotators to the same image. The red dashed lines represent ± the median 
absolute variation (MAD) from the median estimation by experienced annotators
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images for this minirhizotron experiment (p = < 0.05), 
reducing from mean 21.9  mm (SE ± 4.1) and median 
15.6  mm (MAD ± 13.1) to mean 8.4  mm (SE ± 2.2) and 
median 3.1 mm (MAD ± 3.1) of root annotated per image. 
There was also a significant reduction between when the 
individual was classified as a novice and after they had 
spent 1 year as a part time research assistant annotating 
roots on minirhizotron images (p = < 0.05), reducing to 
mean 10.6 mm (SE ± 2.9) and median 2.1 mm (MAD ± 2.1) 
per image. However, there was no statistically significant 
change between root length output between when the 
individual had spent 3 months as a part time research 
assistant annotating roots on minirhizotron images and 
when they had spent 1 year as a part time research assis-
tant in the same role.

As well as variation between the experience groups, 
there was variation within the experience groups i.e. 
variation between the individual annotators within the 
experienced group and variation between the individual 
annotators within the Novice group. Novice annotators 
had an average range of root length output per image 
of 23.4  mm (SE ± 3.8) and the Experienced annotators 
had an average range of root length output per image of 
9.2  mm (SE ± 2.1). When considering the two most and 
two least experienced annotators the concordance corre-
lation coefficient quantifying the agreement for precision 
and accuracy was 0.65 between the two least experienced 
annotators (Fig. 4A) and 0.56 between the top two most 
experienced annotators (Fig.  4B). Depending on the 

descriptive scale used, these values of concordance can 
be described as poor to moderate [46, 47].

There was a significant difference between the total 
root length output per image from the expert consen-
sus and the CNN (Fig.  5A). The CNN values for root 
length (mean = 17.9  mm and median = 4.7  mm) were 
almost double the human generated expert consen-
sus (mean = 8.7  mm and median = 2.7  mm) (Fig.  5A). 
The concordance correlation coefficient quantifying 
the agreement for precision and accuracy between the 
manual and CNN root length outputs was 0.52 (Fig. 5B). 
These values of concordance can be described as poor to 
moderate [46, 47].

Measurements from CNN were consistently signifi-
cantly higher (8–9 times) when compared to manually 
annotated measurements in every month of this study: 
March (V = 139522, p = < 0.0005), April (V = 139527, 
p = < 0.0005), May (V = 139423, p = < 0.0005) and June 
(V = 1392744, p = < 0.0005) (Fig.  6A). The concordance 
correlation coefficient quantifying the agreement 
between the manual and CNN root length outputs were 
0.12 for March, 0.11 for April, 0.14 for May and 0.1 for 
June (Fig.  6B). These values of concordance can be 
described as poor [46, 47].

The CNN model suggested a greater decrease in total 
root length net change (mean − 1.8  mm and median 
− 3.8  mm) over the 4-month period than the human 
annotation net change (mean − 0.7  mm and median 
0 mm) and a greater variation in net change per image in 

Fig. 5  Root length comparison between an expert consensus manual annotation and CNN A Total root length output per image (n = 30) from an expert 
consensus manual annotation, and from a CNN model trained using RootPainter. Wilcoxon signed-rank test (v = 63, p = 0.01). B The relationship between 
total root length output per image (n = 30) from an expert consensus manual annotation and from a CNN model trained using RootPainter. The dashed 
line is a 1:1 line and the solid line represents Lin’s CCC
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the CNN measurements (Fig. 7). The difference between 
the total root length net change output of the two image 
analysis methods (v = 63714, p = 0.08, Fig. 7) was substan-
tial and close to statistically significant (Fig. 7).

Discussion
Variation in manual annotation between individuals
Less experienced annotators consistently identified more 
root length than experienced annotators (Fig. 3). This is 
consistent with Peters et al. [32], building on the sugges-
tion that observer bias is present in manual root image 
annotation and inconsistencies between and within stud-
ies could be driven largely by variability in individual 

knowledge, training, and experience. Root length anno-
tation by the same annotator reduced significantly by 
about 8-fold after 3 months of practice but then pla-
teaued, remaining more or less the same after 1 year. This 
highlights the need for the annotator to be fully trained 
before commencing annotation to ensure consistency 
across a long-term dataset, but encouragingly shows that 
3 months working as a part time research assistant, in 
this case, is enough time whereafter further experience 
does make a statistical difference to skill in root length 
annotation.

Manual segmentation is also subjective regardless of 
experience level, as variation in root length outputs were 

Fig. 6  Root length comparison between an expert manual annotation and CNN in 4 consecutive months A Total root length per image (mm) (n = 529) 
from an expert consensus manual annotation and a CNN model trained using RootPainter. Annotated images were taken in the same locations in March, 
April, May and June. B The relationship between total root length output per image (n = 529) from an expert consensus manual annotation and from a 
CNN model trained using RootPainter, in March, April, May and June. The dashed lines are 1:1 lines and the solid lines represent Lin’s CCC
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also present between individuals within the same experi-
ence categories (Fig. 4). The variation between annotators 
was ~ 2.5 times larger in the Novice group but still pres-
ent in the experienced group, which is consistent with 
previous research [32] and displays potential for vari-
ability between annotations even when exclusively con-
sidering experienced image annotators. The high degree 
of variability between and within experience groups 
strongly suggests that this image-analysis data challenge 
is not suitable for crowdsourcing [48, 49].

Manual image analysis in this section of the study was 
carried out on images at a single time point. Minirhi-
zotron image analysis normally consists of analysing 
images taken at the same point over a time-series [18, 20, 
21]. Growing roots across a time-series would be easier 
to detect which would likely reduce the variation seen 
between manual annotations. It could also be that the 
high levels of complexity and heterogeneity displayed in 
this image dataset are a driver for this variation in anno-
tation between experienced individuals [32]. Addition-
ally, a lack of experience in a specific ecosystem could 
result in variation between even the most experienced 
minirhizotron image annotators i.e. individual previous 
minirhizotron image analysis experience likely focussed 
on one ecosystem that was different to the temperate for-
est ecosystem used in this study. Furthermore, it could be 
said that root ecologists often have a wider knowledge of 
what to expect in the system prior to analysing minirhi-
zotron images i.e. by analysing site specific soil core 

samples. Therefore, a lack of previous analysis experience 
in a temperate forest ecosystem and limited site knowl-
edge likely contributed, alongside the heterogeneity seen 
in the image dataset, to the discrepancy seen between 
individuals within this study.

It is evident that there needs to be more consistency in 
manual image annotation between annotators as varia-
tion persistently occurs between individuals, regardless 
of experience level. A universally applied public protocol 
or methods paper that focuses on the process of manual 
minirhizotron annotation across a wide range of ecosys-
tems is therefore recommended, to enhance data quality 
and reduce bias between and within studies.

Variation between manual annotation and CNN 
performance
The CNN model overestimated mean and median root 
length in comparison to the expert manual annotation 
(Fig. 5). Differences in individual image annotation show 
mainly large positive, but also negative, deviations in the 
CNN annotation (Fig. 5). The CNN model cannot, there-
fore, be regarded as wholly successful in producing accu-
rate root length data at a single point in time in this forest 
context. It is important to note that this study compared 
the CNN output with an expert manual consensus as a 
measure of accuracy. The CNN is therefore being vali-
dated against human best practice which is considered to 
be the best representation of ‘ground truth’.

Fig. 7  Root length change estimation across a 4-month period by an expert manual annotation and CNN. A Root length change comparison from an 
expert manual annotation of minirhizotron images (n = 529) using Rootfly and from a CNN model trained using RootPainter. B The relationship between 
total root length change per image (n = 529) from an expert consensus manual annotation and from a CNN model trained using RootPainter. Adjusted 
r-squared = 0.1

 



Page 11 of 14Handy et al. Plant Methods          (2024) 20:154 

The relative weakness of the CNN to produce accurate 
root length data at a single point in time contrasts pre-
vious studies which have presented successful automa-
tion of root annotation using CNNs both trained [26, 34, 
38] and not trained using RootPainter [29, 32, 35–37]. 
However, most studies where CNN’s have been applied 
to root image analysis focussed on single crop species in 
agricultural soil in fields [26] or pot/laboratory experi-
ments [29, 35–37]. This likely resulted in image datasets 
featuring more homogenous mineral soils and rooting 
profiles and a rarity in the more complex, heterogenous 
images that are present in the forest image datasets used 
in this study. The impossibility to ensure perfect contact 
between minirhizotron tube and soil has the potential 
negatively affect image quality through precipitation and 
streaking/smearing on the outside of the tube. This may 
cause of over- or under-estimation by the CNN model in 
any type of ecosystem using minirhizotrons for data col-
lection, not exclusively complex ecosystems like that used 
in this study.

The RootPainter trained CNN in Smith et al. [38] 
exhibited some over- and under-estimation of root length 
in more complex images featuring ‘bunching’ of roots, 
suggesting, not unexpectedly, that increased image com-
plexity reduces model accuracy even in homogenous soil 
profiles. A good correlation between expert human anno-
tation and output of a CNN trained in RootPainter has 
previously been reported in natural ecosystems (mediter-
ranean tree-grass and temperate grassland) (R2 = 81% and 
87%), but there remained consistent overestimation by 
the model [34]. This mirrors the overestimation seen in 
this study and reiterates that a CNN model trained using 
RootPainter does not perform as well when translated 
out of laboratory and agricultural sites and applied to 
more natural ecosystems with increased image complex-
ity and heterogeneity.

A CNN model not trained using RootPainter con-
trasted the results of this study and showed high capabil-
ity to correctly segment roots on minirhizotron images 
taken in multiple species, heterogeneous wetland sub-
strate [32]. However, the specific neural network archi-
tecture used in RootPainter is a lower parameter U-Net 
model designed for fast convergence in an interactive 
training scenario [38]. Prior work has indicated that 
larger models with more parameters can reduce false 
positive errors in root segmentation in comparison to the 
network used in RootPainter [50], but this may result in a 
trade-off between a more accurate model and the acces-
sibility of RootPainter to the average root scientist with 
limited machine learning experience.

Overestimation by the RootPainter CNN may also be 
related to how ambiguity is handled with the two dif-
ferent types of annotation in the RootPainter train-
ing process (dense vs corrective) [38]. When the user is 

annotating ‘manually’ i.e densely annotating the entire 
image, if they are unsure whether a structure is a root 
they may be conservative and not annotate it as a root 
when it is a root i.e. incorrect annotation of root absence. 
Corrective annotation on the other hand is to be assigned 
when the annotator sees a clear error [38]. Therefore, 
when the annotator is uncertain, it’s likely that many 
regions identified as root by the CNN are not corrected 
by the annotator to soil when they are in fact soil i.e. 
incorrect annotation of root presence. The difference in 
the way the decision is made between the two annotation 
styles represents the difference between an opt-in vs. opt-
out approach to root annotation. This may provide some 
explanation for the model over-estimating roots in com-
parison to the manual annotation in this study. Addition-
ally, extreme class imbalance bias in the dataset i.e. the 
majority of pixels in the images representing soil, means 
that there is more opportunity for false positives in the 
data than false negatives [50]. This again may contribute 
to the CNN model over rather than under-segmenting 
root length in this dataset.

A potential solution that may mitigate false positive 
errors whilst ensuring fast interactive training could be 
to use RootPainter alongside, rather than as a replace-
ment for, manual annotation. This could involve manu-
ally removing all the images that do not contain roots as a 
pre-processing step to address some of the issues associ-
ated with class imbalance and over-estimation. Another 
solution could also be to finetune larger pre-trained mod-
els, using approaches similar to Chen et al. [39]. enabling 
both faster convergence and the benefits of larger net-
work architectures in segmenting complex images with 
reduced false positives.

Variation between manual annotation and CNN 
performance over a time series
There was consistent over estimation of root length in 
each individual month of the four-month time series 
(Fig. 6). The difference between the total root length net 
change output calculated over the 4-month period of 
the manual and CNN image analysis methods was also 
substantial and close to statistically significant, with the 
CNN reporting a greater decrease in total root length net 
change. However, the difference between the two meth-
ods’ outputs was much less for root length net change 
data (p = 0.08) (Fig.  7) than root length data at a single 
point in time (p = < 0.0005) (Fig. 5). This is likely because, 
whilst root length on an image may be over- or under-
estimated at a single point in time, if the over- or under-
estimation remains consistent across a period, there is 
potential for meaningful net root length change data to 
be a viable measure [34].

Although understanding net root length change is use-
ful for root ecologists, no information can be acquired 
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on the dynamics driving this change with current CNN 
models i.e. the respective contributions of root growth 
and mortality. To achieve the ability to acquire data on 
root growth, mortality and turnover rates, and subse-
quently gage a greater understanding of root dynamics, 
from a RootPainter trained CNN model, the potential to 
track single roots, as seen on manual annotation software 
such as Rootfly, would be highly beneficial [26].

Applications and implications
The number of images used in training the model in 
this study was 766 more (n = 966 vs. n = 200), and time 
spent annotating was ~ 12 CPU hours more (n = ~ 15 vs. 
n = < 2), than in a previous example of successful model 
training using RootPainter [38], likely required due 
to the heterogeneous nature of the forest image data-
set. However, the CPU-hours required to annotate root 
images using a CNN model trained using RootPainter 
is substantially less than manual annotation [26, 32, 38]. 
15 CPU-hours were required to train this CNN model, 
whereas the manual annotation of the same 4 months 
of data took ~ 80 h. It is important to note that once the 
CNN is trained the time investment remains the same, 
whilst the time investment required for manual annota-
tion increases with every new image taken i.e. 12 months 
of images in the same dataset would require the same 
15  h of active training on RootPainter but an increase 
to 240  h of manual image analysis. If the trade-off 
between throughput and accuracy [26] is acceptable, AI 
approaches such as CNNs are attractive; in this study the 
accuracy of the CNN fell below our acceptance threshold, 
which was based on our experience of the data require-
ments in this ecological setting.

This study did not seek to make comparisons between 
different ecosystems, different minirhizotron cameras 
or different CNN software. If not bounded by practical 
limitations, these comparisons, alongside a larger cohort 
of manual annotators, would strengthen the research 
conclusions.

Conclusions
The results of this study show that, in manual annota-
tion, the same annotator who is fully trained on analys-
ing minirhizotron images before analysis begins and has 
a full understanding of the system in question, should 
be used throughout studies of highly heterogeneous and 
class-imbalanced images (i.e., few targets amongst much 
noisy background) such as forest root image sets from 
minirhizotrons. As it is not always viable to use the same 
individuals within and between the studies, the value of 
highly yet consistently trained individuals is clear. This 
reiterates the need for a universally applied public proto-
col on minirhizotron image analysis to reduce the impact 
of bias within and between studies. Crowdsourcing, 

or naive applications of AI are very unlikely to provide 
results with sufficient accuracy and precision.

The literature suggests that, when a CNN model can 
be trained successfully on a set of images from the spe-
cific site in question, it is the obvious choice over manual 
annotation for minirhizotron root image analysis. They 
have been reported to greatly reduce the time invest-
ment required and have the potential to overcome the 
effects of observer bias on data outputs, especially in 
regard to long term datasets. However, this study finds 
that, despite ~ 160 person-hours and ~ 15 CPU hours of 
testing and refining, this CNN model cannot yet be relied 
on to produce root length data of sufficient accuracy and 
precision for ecological applications of the kind tested 
here. The model may still produce meaningful measures 
of relative change, but the trade-off between accessibility 
to researchers without a machine-learning background 
and the accuracy and precision of the results remains too 
strong for the analysis of images taken in natural ecosys-
tems of a high level of complexity and heterogeneity. AI-
enhanced manual segmentation may be the best option 
in the forest setting given the current state of the AI tech-
nology but would require development of a robust ana-
lytics pipeline linking the two processes.

The development and application of CNNs have greatly 
improved the accuracy and feasibility of minirhizotron 
image analysis for agricultural and lab-based environ-
ments thus far, but a continuing evaluation and devel-
opment of accessible CNNs for natural ecosystems is 
required for the understanding and restoration of eco-
logical systems in the face of global change.
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