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Abstract
Background The automation of pest monitoring is highly important for enhancing integrated pest management 
in practice. In this context, advanced technologies are becoming increasingly explored. Hyperspectral imaging (HSI) 
is a technique that has been used frequently in recent years in the context of natural science, and the successful 
detection of several fungal diseases and some pests has been reported. Various automated measures and image 
analysis methods offer great potential for enhancing monitoring in practice.

Results In this study, the use of hyperspectral imaging over a wide spectrum from 400 to 2500 nm is investigated for 
noninvasive identification and the distinction of healthy plants and plants infested with Myzus persicae (Sulzer) and 
Frankliniella occidentalis (Pergande) on bell peppers. Pest infestations were carried out in netted areas, and images 
of single plants and dissected leaves were used to train the decision algorithm. Additionally, a specially modified 
spraying robot was converted into an autonomous platform used to carry the hyperspectral imaging system to 
take images under greenhouse conditions. The algorithm was developed via the XGBoost framework with gradient-
boosted trees. Signals from specific wavelengths were found to be associated with the damage patterns of different 
insects. Under confined conditions, M. persicae and F. occidentalis infestations were distinguished from each other and 
from the uninfested control for single leaves. Differentiation was still possible when small whole plants were used. 
However, application under greenhouse conditions did not result in a good fit compared to the results of manual 
monitoring.

Conclusion Hyperspectral images can be used to distinguish sucking pests on bell peppers on the basis of single 
leaves and intact potted bell pepper plants under controlled conditions. Wavelength reduction methods offer options 
for multispectral camera usage in high-grown vegetable greenhouses. The application of automated platforms similar 
to the one tested in this study could be possible, but for successful pest detection under greenhouse conditions, 
algorithms should be further developed fully considering real-world conditions.
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Background
Integrated pest management (IPM) is globally endorsed 
as a paradigm for crop protection. In practice, several 
pest management elements are combined, and chemi-
cal treatments are carried out only when nonchemi-
cal measures fail to control pest organisms. This failure 
is detected by monitoring and comparing the results to 
damage thresholds. Early and automated detection of 
plant damage is becoming an important part of this deci-
sion-making process [1] because it can help reduce the 
overall workload and costs, as well as the use of chemical 
products for plant protection.

In this context, advanced technologies are becoming 
increasingly explored. Hyperspectral imaging (HSI) is a 
technique that has been used frequently in recent years in 
the context of natural science, and the successful detec-
tion of several fungal diseases [2, 3] and some pests [4, 5] 
has been reported. In this study, bell pepper was selected 
as a model crop because of its smooth leaf structure, slow 
growth and uncomplicated culture to explore the poten-
tial of pest and pest symptom detection via HSI for veg-
etables. Additionally, infestations of two economically 
relevant pests that affect bell peppers, Myzus persicae 
and Frankliniella occidentalis, were distinguished from 
each other and from noninfested plants. For both pests, 
direct monitoring of adults via sticky traps is common, 
and there are several approaches used to identify these 
insects on traps or plants [6], such as HSI [7]. When traps 
are used for early detection, regular monitoring of plants 
is needed to estimate population densities, especially for 
aphids [8]. Therefore, regular, direct and nondestructive 
measurements of plants that include spatial information 
are the best choice for monitoring.

In this context, HSI can be used to automate the 
detection of pest damage on plants and to assess dam-
age unobservable via manual methods, such as systemic 
changes in plants [9]. Notably, HSI is an important tech-
nique in remote sensing, and the electromagnetic spec-
trum from the visible to the near-infrared wavelength 
ranges is obtained. Combining the main advantages of 
spectroscopy and computer vision, HSI methods can 
simultaneously acquire spectral and spatial informa-
tion in one system. HSI classification, i.e., assigning each 
pixel to a certain class on the basis of its spectral charac-
teristics, is a popular research task in the hyperspectral 
community and has drawn broad attention in the remote 
sensing field. In HSI classification tasks, two main chal-
lenges exist: (1) the large spatial variability of spectral sig-
natures and (2) the limited availability of training samples 
versus the high dimensionality of hyperspectral data [10]. 
In the current study, algorithms based on machine learn-
ing are used for the evaluation of hyperspectral images. 
These algorithms automatically learn to recognize pest 
symptoms from training datasets.

Training datasets for the bell pepper model and the 
pests F. occidentalis and M. persicae were generated from 
single-leaf images considering the corresponding pest 
symptoms. The accuracy of the resulting algorithm was 
assessed based on its ability to distinguish the two pests 
from each other and from a pest-free control with leaf 
images from test datasets. The most significant wave-
lengths for M. persicae and F. occidentalis detection were 
subsequently identified. Furthermore, the recognition 
accuracy of the developed algorithm was tested on potted 
bell pepper plants under controlled conditions and plants 
cultivated under practical conditions in a greenhouse.

Methods
Controlled condition experiment
General setup
Bell pepper plants of Bedingo F1 (Rijk Zwaan Welver 
GmbH, Welver, Germany) were sown in 5 batches from 
May to August 2021. After sowing, the young plants 
were germinated on substrate from Klasmann-Deilmann 
(Klasmann-Deilmann GmbH, Geeste, Germany) in 
600 × 400 × 60 mm plant bowls and were separated after 4 
weeks into 2 l pots 150 mm in diameter.

The plants were maintained at a constant tempera-
ture of 23 ± 1.5  °C and 50–70% relative humidity on 
grid tables in greenhouse chambers. The plants were 
then transferred to insectary cages with dimensions 
of 60 × 60 × 120  mm and a 160  μm mesh size (Bug-
dorm-2120 F, MegaView Science, Taichung, Taiwan). The 
cages were randomly placed on the tables. The plants 
were grown for 4 weeks at a constant 22  °C and 20% 
humidity, with a shading limit of 400 W.

Sixteen plants from each batch were used per pest 
treatment. These plants were inoculated with Myzus 
persicae [MP] or Frankliniella occidentalis [FO]. Addi-
tionally, 13 or 14 plants per batch were kept pest free as 
controls [UC]. The higher number of plants in pest treat-
ments was taken to account for non-establishment of 
pests. Higher numbers of plants in the pest treatments 
were used to balance cases where pest infestation may 
fail. If no pest was established, the plants were not sub-
jected to image acquisition. Insects were reared on pep-
pers at 25 °C with a 16/8 day/night cycle. Inoculation was 
carried out with 10 adult Myzus persicae individuals and 
20 adult Frankliniella occidentalis individuals two weeks 
before measurement via HSI. Insects were transferred to 
leaves in the upper third of each plant. All the plants were 
hand watered on average every 48 h, and the amount of 
water for the plants was adjusted according to the soil 
moisture level needed for healthy plant growth in each 
pot. At the time of HSI measurement, the bell pepper 
plants averaged 550 mm ± 150 mm in height.
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Hyperspectral image measurements under controlled 
conditions
For image acquisition, a dual camera setup consisting of 
a HySpex VNIR-1800 and a HySpex SWIR-384me was 
used. The cameras recorded files with the following speci-
fications: VNIR-1800, SN-0824 = 404–994 nm, 184 bands, 
resolution of 1800 × 4500, spectral resolution of 3.5  nm, 
and − 3.5 GB per image; SWIR-384me, SN-3122 = 954–
2511  nm, 288 bands, resolution of 384 × 988, spectral 
resolution of 7 nm, and a file size of approximately 150–
250 MB per image. The imaging of the cage-grown pep-
pers with the hyperspectral cameras was carried out at 
the “PhenoScan” measuring platform of the Julius Kühn 
Institute. PhenoScan is an opaque chamber in which the 
sample material is positioned on a reflectionless base. A 
linear motor moves the camera along a defined line at 
an adjustable distance. In this experimental setup, the 
camera was 800 mm above the plants or leaves that were 
placed horizontally below the camera. A 1 m-focus lens 
was used to obtain the images. An actively cooled stu-
dio lamp from Hedler (Runkel, Germany) was used for 
illumination. The illuminant used was an Osram HLX 
400 W (Munich, Germany). The lamp was screwed next 
to the camera and moved with it. A beryllium white plate 
served as a reflection reference for the camera and was 
included in each image.

Using this setup, first, an image of each individual plant 
was taken, with the plant placed horizontally under the 
camera. Then, all the leaves of an individual plant were 
dissected and arranged in one image with the top sides 
facing upward, and a second image with the bottom side 
of the leaves facing upward was taken. Some images 
were noisy or not saved correctly, reducing the number 
of available images; only image pairs that were available 
from both cameras and for both sides of leaves were used 
for further analysis. Table 1 shows the number of plants 
reared and the resulting number of available images.

The number of plants grown in the treatments, the 
number of leaves on these plants, the number of images 
(with one plant per image) and the number of paired 
images of leaves (both side) are listed. All leaf images 
were taken from the top and bottom sides. All the leaf 
and plant images were obtained along the same line via 
the VNIR and the SWIR cameras.

Pest monitoring under controlled conditions
Additionally to the HSI process, the pests and pest dam-
age were evaluated. For this purpose, the pest numbers 
and typical symptoms in terms of percentage of leaf area 
damaged were recorded for each leaf from all plants 
per treatment. Nymphs and adults of aphids and thrips, 
respectively, were counted together. For M. persicae the 
percentage of the leaf area covered by honeydew and 
for F. occidentalis the area covered by feeding and feces 
spots, respectively, were estimated per leaf. Leaves of the 
control treatment were additionally checked for symp-
toms of pest damage and the presence of pests but were 
free of both.

Greenhouse experiment
General setup
The same variety of bell pepper plants used in the experi-
ment under controlled conditions was cultivated in a soil 
greenhouse in 2022. The plants were sown during calen-
dar week 14, cultivated in 100 mm pots and transferred 
to the greenhouse during calendar week 18. Three beds 
with widths of 500  mm were installed. Each bed con-
tained a row of 20 plants. The planting distance within 
each row was 500  mm. Irrigation was performed by 
spraying at ground level. Fertilizer was applied every sec-
ond week with Ferty 2 Mega/0.5‰ (Planta Düngemittel 
GmbH, Germany).

Twelve individual plants were inoculated in calendar 
week 33, with 20 adult M. persicae or 40 adult F. occiden-
talis. Insects were distributed on the upper and middle 
leaves. These plants were distributed evenly, with two 
plants per treatment in each row. Another 12 plants 
were used as uninfested controls. During the cultivation 
period in the soil greenhouse, the plants that were mea-
sured with the his method were subsequently covered 
with a net with a mesh size of 0.35 mm (BIOTHRIPS 346, 
MDB Texinov, France) during the full cultivation period. 
Additionally, the plants were inspected weekly through-
out the growing season, and unintended pest infestations 
were controlled by hand. As unintended pest occurrence 
was noticed and could not always be impeded during 
these inspections, some of the UC plants were replaced 
with remaining unused plants, which were then covered 
by nets accordingly. The final positions of the plants mea-
sured with the HSI method are shown in Fig. 1.

When the treatments were covered, additional benefi-
cial insects were introduced into the greenhouse to limit 
the natural occurrence of target pests. A one-unit para-
sitic wasp solution (“VerdaProtect”, from Katz Biotech 
AG, Baruth, Germany), which is recommended for aphids 
in a 200  m² greenhouse area and contains a mixture of 
Praon volucre, Aphidius matricariae, Aphidius colemani, 
Aphidius ervi, Aphelinus abdominalis and Ephedrus cera-
sicola, was applied. The mixture was distributed evenly to 

Table 1 Distribution of the available image files
Class Number 

of plants
Total 
number of 
leaves

Images of 
plants

Im-
ages of 
leaves 
per side

Control group 66 772 66 64
Myzus persicae 80 902 73 73
Frankliniella 
occidentalis

80 887 63 64
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the open-growth plants under the nets of the UC and FO 
treatments. The predatory mite Amblyseius cucumeris 
was used to control thrips, with 10,000 mites distributed 
among the open-grown plants and under the nets of the 
UC and MP treatments. The wasps and mites were evenly 
distributed on crops, including areas under nets, every 
2 weeks. The application of beneficial insects ended two 
weeks before the inoculation of the FO and MP treat-
ments, which took place two weeks before the first HSI 
measurement.

Construction of the mobile measurement platform
The hyperspectral measurements in the soil greenhouse 
experiment were carried out via a custom-constructed 
mobile HSI measurement platform. The basis for the 
stand was the spray robot platform “Meto” (Berg Hor-
timotive, De Lier, Netherland), which has a length of 

1.70  m and a weight of 330  kg. The Meto platform can 
be automatically moved on heat rails at different speeds 
and is commonly used in soilless cultivation systems. 
With aluminum profiles from the company Mejo Metall 
Josten GmbH & Co., KG (Düsseldorf, Germany), a mea-
surement structure was constructed on the platform. The 
HSI cameras, an angle mirror, two full-spectrum lamps 
of 400 W (Osram, Munich, Germany) and a computer for 
camera control were attached to the platform (Fig. 2). An 
external cable provided the power supply, and a mobile 
rail system was placed on the ground to operate the 
platform.

Hyperspectral image measurements in the greenhouse
HSI images were taken continuously for two weeks in 
September via the constructed mobile hyperspectral 
measurement platform (Fig.  2). All the plants in each 

Fig. 1 Greenhouse test setup. Test setup with three rows in a soil greenhouse in 2022. The thin lines indicate the rails on which the mobile HSI measure-
ment platform was driven. The marked rows of symbols represent the individual plants, and the symbol shapes represent the respective plant treatments
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treatment group were measured on three dates: Sept. 
11, Sept. 15 and Sept. 23 in 2022. As an example, mea-
surements during the daytime with natural light and no 
shading are presented. Other scenarios, such as measure-
ments obtain at night with and without artificial light, 
were also explored, but did not perform better and are 
not shown in this paper.

Pest monitoring in the greenhouse
During the cultivation phase in 2022, bell pepper plants 
were inspected every week, such as via the use of yel-
low sticky traps and visual monitoring. Pests were moni-
tored one day after HSI measurement on the inoculated 
and control plants. Three height ranges were defined, 
one representing the measurement range of the spectral 
camera (0.60–1.20  m), one representing the area above 
this range (1.20  m from the shoot tip) and one below 
this range (0.60  m). The classification of pests was car-
ried out on the basis of the following categories: 0 = no 
insects, 1 = 1–5, 2 = 6–10, 3 = 11–15, 4 = 16–20, 5 = 21–30, 
6 = 31–50, 7 = 51–70, 8 = 71–100, and 9 = more than 100 
insects.

Implementation of the evaluation algorithm
Dataset for hyperspectral image analysis
To develop an algorithm for predicting pest symptoms 
in bell peppers, the focus was on specific detection and 
differentiation among M. persicae, F. occidentalis and the 
noninfested control group. For prediction, the XGBoost 
framework (decision trees) in Python was used.

To train the prediction algorithms, images were 
acquired in a controlled laboratory environment with 
strict settings for light, distance and leaf placement, as 
described in Chap. 2.1.

Data preprocessing and image labeling
The different training methods of the prediction algo-
rithms for two- and three-class classification were per-
formed. Different pest infestation cases were used with 
the three classes UC, MP and FO. The images were 
labeled with the specific features in their filenames.

Leaf segmentation
To improve the algorithm performance, it is helpful to 
remove the image background and retain only the leaf 
area for analysis (Fig. 3). As a first step in leaf segmenta-
tion, a 3-channel PNG image was created for each of the 
hyperspectral images. For each of the VNIR and SWIR 
images, the 20th, 120th and 180th bands of the data file 
were selected. These corresponded to the wavelengths of 
464, 780 and 972 nm, respectively, for the VNIR camera 
and the 1058 nm1605 and 1930  nm wavelength bands 
for the SWIR camera. The selection of wavelengths was 
performed experimentally with the aim of creating high-
contrast visualizations of the data, optimized for manual 
inspection and segmentation annotation.

Fig. 3 Visualization and segmentation of images. Example of a 3-channel 
visualization of an SWIR image (left) and a VNIR image (middle), together 
with the resulting leaf segmentation mask created via deep learning (right)

 

Fig. 2 HSI measurement platform. Self-constructed mobile HSI measure-
ment platform on rails in the experimental greenhouse with bell peppers 
grown in double rows. The stand consists of 300 W halogen spotlights 
(1–3), two hyperspectral cameras, a Hyspex Vis-NIR at 400,950  nm (4), a 
Hyspex NIR-SWIR at 950 bis 2500  nm (5), the control computer (6), the 
input device (7), the spraying robot control (8) and an angle mirror (9)
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For actual leaf segmentation, deep learning technology 
was used, namely, the Deeplab3 algorithm (Fig. 3). Dee-
plab3 is one of the best-performing image segmentation 
algorithms for the Pascal VOC dataset and is often used 
as a benchmark for segmentation quality.

During training, the neural network weights were 
fine-tuned via the training script provided by Google 
Research. The neural network was used to analyze image 
patches of size 5122 pixels. To train the network, ran-
domly cropped labeled image patches from the training 
dataset were used. 80% of the labeled data were used for 
training, and 20% were used to evaluate the segmenta-
tion quality (the test data). Each dataset was trained until 
the training error converged. Using the test data, it was 
verified that no overtraining occurred. To train the leaf 
segmentation algorithm, a dataset consisting of 80 of the 
created 3-channel images was used.

Features and tiles
To increase the number of data points, each image was 
divided into several tiles (Fig.  4). With respect to tile 
size, 25 × 25 pixels were used for the SWIR images, and 
111 × 111 pixels were used for the VNIR images. The size 
ratio between the SWIR and VNIR tiles was related to 
the size ratio of the complete images. This supported the 
convenient combination of both image types for process-
ing with one prediction algorithm. As features for the 
training of the gradient boosted trees, the mean values 
for each tile and wavelength were calculated. Adding the 
standard deviation of each wavelength within each tile as 
an additional feature did not have a positive effect on the 
training results.

Fitting and hyperparameters
For training and prediction, the XGBoost framework, 
which is available in Python, is an algorithm based on 
gradient-boosted trees. Gradient-boosted trees are state-
of-the-art submodels in terms of processing speed and 

are highly popular in the machine learning community. 
Many parameters of this algorithm can be modified, such 
as the learning rate, the maximum depth of a tree or the 
number of trees. To find appropriate hyperparameters 
for this regression problem, a grid search was conducted, 
and the most appropriate hyperparameters yielding 
the lowest RMSE were used for further evaluation. The 
parameters obtained via grid searches that typically yield 
the lowest prediction error are 0.05 for the learning rate, 
10 for the maximum tree depth and approximately 100 
for the number of trees.

To assess the accuracy of detection, 70% of the data 
were used for training, and 30% were used to evaluate 
the prediction quality (the test data). The dataset was 
split into training and testing sets, which were random-
ized with an equal number of images per class. A broad 
variety of 2-class and 3-class training methods for both 
image types were implemented.

After the trained algorithms were evaluated with sepa-
rate images of the top and bottom sides of leaves, a test 
was performed with images of whole plants. To perform a 
robust test, only images of whole plants whose cut leaves 
were not used for training of the algorithm were used.

Selection of important wavelengths
A benefit of using gradient boosting is that after the 
boosted trees are constructed, it is relatively straightfor-
ward to retrieve importance scores for each attribute. 
In general, the importance score indicates how use-
ful or valuable each feature is in the construction of the 
boosted decision trees within the model. The more an 
attribute is used to make key decisions in decision trees, 
the greater its relative importance. Functions integrated 
into XGBoost were used in a three-class prediction algo-
rithm to assess the importance of features, and important 
wavelengths were identified.

Fig. 4 Visualization of tiles. Visualization of the different mean values for a single wavelength in a tiled image
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Application of the algorithm to the greenhouse dataset
For use in a greenhouse environment, the algorithm 
trained with images of the top and bottom sides of leaves 
was tested regarding the distinction of the three classes 
of pest infestation. By using images of both sides of leaves 
in the training data, a high variety of image content was 
ensured while also significantly increasing the size of 
the training dataset. Notably, this approach was used to 
make the algorithm more robust to variable orientations 
of leaves in later analyses with images from the green-
house environment. After one image was taken per row 
of plants, the horizontal pixel range of the test plants 
was labeled manually. After images were analyzed via the 
three-class prediction algorithm with combined camera 
data, a percentage was calculated per plant regarding 
the number of tiles for which the algorithm calculated a 
probability of > 80 for an infestation of M. persicae or F. 
occidentalis. Additionally, the overall trends were ana-
lyzed. The percentage of tiles with a predicted > 80% 
infestation probability per plant was obtained and com-
pared to the pest information manually observed for the 
same plant.

Results
Experiment under controlled conditions
For FO, an average of 1.8 ± 1.25 [mean ± SD] F. occidenta-
lis individuals per leaf were found on each of 887 leaves, 
and 9.56 ± 4.15% [mean ± SD] of the leaf area displayed 
feeding symptoms and/or feces. In the case of MP, an 
average of 46.55 ± 62.55 (mean ± SD) M. persicae indi-
viduals per leaf were found on each of the 902 leaves, 
and 90.62 ± 9.19 (mean ± SD) of the leaf area was covered 
by honeydew. Leaves from control plants were free of 
insects and symptoms.

The predictions for both the MP and FO treatments 
compared with those for the control group UC are 
shown in Table 2. Generally, high prediction success was 
achieved, with the correct classification greater than 80% 
for precision and recall when a test set of single leaves 
was used and approximately 70% when full plants were 
used in the test set.

Prediction under controlled conditions for single leaves 
and full plants for the two classes of M. persicae or F. 
occidentalis versus the control group and all three classes 
were performed. The analyses included data from the 
SWIR and VNIR cameras as well as images of the top and 
bottom sides of the measured leaves in the training data-
set. Algorithms were then applied to test datasets with 
images of leaves and full plants.

On the basis of the results of XGBoost, the 15 (10) 
most significant bandwidths for the prediction of the 
three classes UC, FO and MP were 455, 502, 720, 955, 
980, 1340, 1356, 1370, 1518, 1525, 1532, 1833, 1840, 
1496, and 2500 nm. Development of the algorithm’s per-
formance is shown in Fig. 5.

Table 2 Predictions under controlled conditions
Precision Recall F1-score Support

Single leaves, two classes (M. persicae, control group)
Control group 0.90 0.81 0.85 32
M. persicae 0.83 0.91 0.87 32
Accuracy 0.86 64
Macro avg 0.86 0.86 0.86 64
Weighted avg 0.86 0.86 0.86 64
Single leaves, two classes (F. occidentalis, control group)
Control group 0.86 1.00 0.92 30
F. occidentalis 1.00 0.83 0.91 30
Accuracy 0.92 60
Macro avg 0.93 0.92 0.92 60
Weighted avg 0.93 0.92 0.92 60
Single leaves, three classes (M. persicae, F. occidentalis, control 
group)
Control group 0.90 0.84 0.87 31
F. occidentalis 0.94 0.97 0.95 31
M. persicae 0.91 0.94 0.92 31
Accuracy 0.91 93
Macro avg 0.91 0.91 0.91 93
Weighted avg 0.91 0.91 0.91 93
Full plant, three classes (M. persicae, F. occidentalis, control group)
Control group 0.68 0.74 0.71 31
M. persicae 0.70 0.61 0.66 31
F. occidentalis 0.66 0.68 0.67 31
Accuracy 0.68 93
Macro avg 0.68 0.67 0.68 93

Fig. 5 Influence of wavelength number on accuracy. Changes in the ac-
curacy of the three-class prediction algorithm under controlled conditions 
when reducing the number of wavelength channels used. Analyses were 
carried out via the XGBoost integrated functions with images of the top 
and bottom sides of leaves
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Greenhouse test
During visual monitoring, none of the net-covered treat-
ments remained free of aphids during the trial. At the 
first sampling date, Sept. 11, M. persicae was present 
on all the plants in all the treatment groups, including 
those in the UC and FO groups (Fig.  6). For F. occiden-
talis, the numbers were generally low, and the plants in 
the UC and MP treatments remained free of thrips. How-
ever, neither the numerical differences in pest densities 
between the treatments at the daily scale nor the trends 
in the densities over time were similar to the predictions 
of the algorithm applied.

Discussion
Hyperspectral imaging has high potential for the detec-
tion of plant quality parameters and plant stress. How-
ever, most studies have not tested the possibility of 
distinguishing among different stress factors or, as in the 
present study, the presence of different insects or pests. 
For example, Zhao et al. [11] reported that the detec-
tion of M. persicae infestation on Chinese cabbage was 
possible, and Mohite et al. [12] were able to discrimi-
nate low-level thrips infestations on capsicum leaves 
in relation to healthy leaves. Peignier et al. [7] reported 
that aphid species on plants can be distinguished via 
HSI. In the present study, M. persicae and F. occidenta-
lis infestations were distinguished from each other and 
from an uninfested control. Furthermore, the developed 

algorithm proved to be robust to differences in the pre-
sentation of leaves to the camera, as long as the light 
and background conditions remained the same. This 
was demonstrated by applying the algorithm developed 
on single, horizontally presented leaves without overlap 
to full single plants that included other organs, such as 
stems, and displayed leaf overlap and various leaf posi-
tions, angles and distances to the camera. Evaluating the 
performance of the algorithm on the basis of single plants 
can be seen as an intermediate step between applications 
under controlled conditions and greenhouse conditions. 
The overall performance of the algorithm decreased from 
approximately 90% to approximately 70% when it was 
applied to full single plants. However, the bell pepper 
plants used for this study were chosen because of their 
simple leaf structure and smooth leaf surface, making 
them easy to study with machine learning algorithms. It 
remains to be tested whether such an algorithm would 
perform similarly if applied to more complex leaves, such 
as leaves covered with trichomes, as typically found in 
solanaceous greenhouse vegetable crops. Additionally, 
the feeding habits and damage types were quite different 
for the insects tested in this study. Thrips feed on single 
plant cells, leaving whitish spots on plants and dark fecal 
droppings on leaves. Aphids, on the other hand, feed on 
phloem sap without causing major damage to plant tis-
sues [13], but they produce honeydew that covers the 
surrounding leaves. This coverage is shiny due to the high 

Fig. 6 Comparison of visual and algorithm results under greenhouse conditions. Visual estimates based on insect count categories from 0 (no insect) to 
9 (> 100 insects) (gray) and algorithm estimates given as the percentage tiles with > 80% predicted infestation probability (black). The different treatments 
are shown separately, as are the infestations of M. persicae and F. occidentalis in each treatment
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sugar content and may be covered by sooty mold later. 
These differences likely facilitated discrimination via HSI, 
whereas distinguishing several phloem feeders may be 
more challenging.

To test the robustness of the developed algorithm on 
the basis of a prototype automated system under green-
house conditions, the described mobile hyperspectral 
measurement platform was constructed and applied to 
assess bell peppers grown under practical conditions. 
Unfortunately, the detection of pest infestations failed 
under these conditions. There are several possible rea-
sons for this result, such as technical, environmental 
and human-related issues. Technically, it was not pos-
sible to fine-tune the speed of the prototype to the speed 
of the linescan setup used under controlled conditions, 
resulting in slightly compressed images. Additionally, 
the range of the distance to the leaves was highly vari-
able in this case given the more voluminous structure of 
the larger plants in the greenhouse. Moreover, the envi-
ronmental conditions, especially light conditions, were 
not controlled under greenhouse conditions. Although 
installed lamps comparable to those in the controlled 
setup were used on the measurement platform, ambi-
ent light likely influenced the outcome of the prediction 
process. However, this problem was also not overcome 
by performing night measures because artificial light was 
not bright enough to obtain effective measurements (data 
not shown). Additionally, the age of the plant could have 
played a role in the detection result, with the greenhouse 
plants being older than the ones in the controlled setup 
owing to limitations in the cage and setup size under 
controlled conditions. In addition, comparing predic-
tion outputs with visual monitoring data is not trivial. 
The first output of the algorithm was a heatmap, which 
shows the analyzed image tiles. For comparison, a rating 
was extracted by calculating the percentage of tiles with 
a high probability of pest damage or presence compared 
with the overall number of tiles. However, as labeling 
of the plant width in images could only be performed 
manually, different shares of tiles without plant tissue on 
them may have been included in the analysis because leaf 
segmentation, as in the controlled setup, was not pos-
sible. Leaf segmentation was attempted by using black 
cardboard as the background, but this did not enhance 
the results of the analyses (data not shown). Addition-
ally, the visually monitored plant segment was generally 
the same as that in images, but some variability likely 
occurred. Moreover, treatments in the greenhouse envi-
ronment could not be kept free of unintended pests, such 
as aphids. As a result, the algorithm, which was trained 
using images of leaves with only one pest species, strug-
gled to detect multiple infestations under greenhouse 
conditions. Therefore, it cannot be clearly confirmed that 
the algorithm would have failed if multiple infestations 

in the greenhouse could have been controlled. However, 
in practice, multiple infestations are common, and the 
robustness of algorithms to these scenarios is needed 
for practical use. As the inclusion of multiple infections 
would greatly increase the size of necessary training 
datasets and computing power, development of HSI for 
practical conditions is challenging. The application of 
algorithms trained under controlled conditions in single-
pest scenarios to multiple-infestation scenarios should 
be tested in the future to assess robustness to these 
variations.

For further development of the detection system, 
reducing the cost of the hardware system is necessary. In 
the current setup, the hyperspectral cameras are the most 
expensive components. For practical application, it could 
be necessary to switch to a cheaper system, such as one 
with industrial multispectral cameras. Such multispec-
tral cameras provide information at significantly fewer 
wavelengths. In this study, the use of information from 15 
wavelengths reduced the accuracy only slightly compared 
with the use of information from 200 wavelengths. How-
ever, most of the important wavelengths were monitored 
by the SWIR camera only (10) and not the VNIR cam-
era (3); two wavelengths were detected by both cameras. 
Given that cameras for monitoring the SWIR spectrum 
are expensive, cost constraints may limit the applicabil-
ity of the proposed technique, at least for the given crop-
pest combination.

In this study, the focus was not on early detection based 
on possible changes within the plant in response to a pest 
attack; rather, the pest population had two weeks to dam-
age the plant and develop different developmental stages. 
Notably, the authors saw major value in the automated 
detection of pest symptoms using plant images obtained 
via automated monitoring. That is, pictures can be taken 
and analyzed automatically in high numbers throughout 
large-scale, specialized greenhouses. These greenhouses 
already have highly developed infrastructure for the 
deployment of autonomous tools within the greenhouse, 
for example, spray robots that navigate automatically 
between rows moving on installed heat pipes or other 
structures. This infrastructure could be used without 
high adaptation costs. As manual monitoring is highly 
time and labor intensive, it is seldom carried out in depth 
throughout the growing season [14, 15]. Automated 
monitoring could therefore markedly increase accuracy 
in time and space, regardless of whether detection is pos-
sible earlier than human observations are effective. Nev-
ertheless, this HSI approach should be considered in a 
later step. However, as good results using images in the 
visible spectrum or RGB images have been previously 
obtained [16], the benefits of HSI alone or in combina-
tion with other methods should be evaluated.
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Overall, the transition from image analyses under 
controlled conditions to analyses in the greenhouse 
environment was challenging in this study. Many stud-
ies have shown the high potential of HSI for the detec-
tion of infested plants from pest-free controls under 
very controlled conditions [11, 17–21], but few studies 
have successfully shown the same results under real-
world conditions [4, 22] or that the symptoms of differ-
ent pest organisms can be distinguished under real-life 
conditions [23, 24]. Given the greenhouse conditions in 
this study, the authors feel that a prediction algorithm 
using HSI should be developed under conditions that are 
closer to those in practice in the future, thus allowing the 
algorithm to be applied under real-life conditions, such 
as in greenhouses or in the field. Also, in this context, a 
significant expansion of the training dataset is neces-
sary to improve generalization of the algorithms. On the 
technical side, potential is seen in improving the light-
ing conditions. Additionally, from our perspective, the 
use of distance data, which can be obtained, for example, 
through an additional stereoscopic RGB camera, as an 
additional feature during the training of the algorithms, 
can help to improve the application of the algorithms in 
the greenhouse environment.

Conclusion
In this study, hyperspectral imaging over a wide spec-
trum from 400 to 2500  nm enabled noninvasive deter-
mination and the distinction of healthy plants and plants 
infested with M. persicae and F. occidentalis on bell pep-
pers. Important wavelengths were associated with the 
infestation patterns of different insects. The method 
was successful for single-cropped leaves and, with some 
loss in accuracy, for small whole plants under controlled 
conditions. However, applications under greenhouse 
conditions did not result in a good fit with the results of 
manual monitoring. This study shows the potential of 
using hyperspectral images for the detection of sucking 
pests on bell peppers, even when multispectral camera 
systems are used. To generalize our approach, it would 
be beneficial to include additional pests or stress factors 
in subsequent studies. The application of automated plat-
forms similar to the one tested in this study is possible, 
but for successful pest symptom detection under green-
house conditions, algorithms based on real-world condi-
tions should be developed. Overall, the transition from 
images analyses under controlled conditions to analyses 
in the greenhouse environment was too complex in this 
study. It remains to be determined if this is a specific 
problem for the given plant–pest combination consid-
ered in our experiments or if this is a general finding.
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