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Abstract
Weeds are undesired plants competing with crops for light, nutrients, and water, negatively impacting crop growth. 
Identifying weeds in wheat fields accurately is important for precise pesticide spraying and targeted weed control. 
Grass weeds in their early growth stages look very similar to wheat seedlings, making them difficult to identify. In 
this study, we focused on wheat fields with varying levels of grass weed infestation and used unmanned aerial 
vehicles (UAVs) to obtain images. By utilizing deep learning algorithms and spectral analysis technology, the 
weeds were identified and extracted accurately from wheat fields. Our results showed that the precision of weed 
detection in scattered wheat fields was 91.27% and 87.51% in drilled wheat fields. Compared to areas without 
weeds, the increase in weed density led to a decrease in wheat biomass, with the maximum biomass decreasing 
by 71%. The effect of weed density on yield was similar, with the maximum yield decreasing by 4320 kg·ha− 1, a 
drop of 60%. In this study, a method for monitoring weed occurrence in wheat fields was established, and the 
effects of weeds on wheat growth in different growth periods and weed densities were studied by accurately 
extracting weeds from wheat fields. The results can provide a reference for weed control and hazard assessment 
research.
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Introduction
Weeds are unwanted plants that compete with crops in 
terms of light, nutrition, water, and growth space. Weeds 
can lead to the deterioration of the field environment, and 
inhibit the growth and development of wheat, resulting 
in slow growth, stunted growth, and reduced yield and 
quality [1, 2]. A large infestation of weeds can cause a 60% 
reduction in wheat yield. The degree of yield reduction 
mainly depends on the density of weeds and the length of 
time of weed interference [3]. Monitoring weeds is essen-
tial for targeted control and precise spraying, which can 
help reduce pesticide consumption and non-point source 
pollution while improving the accuracy and effectiveness 
of field management. Therefore, it is important to investi-
gate effective weed identification methods in wheat fields 
to achieve precise pesticide spraying and targeted weed 
control in future experiments. Grass weeds are among 
the most challenging weeds to control in wheat fields and 
represent the primary weed species during the wheat’s 
overwintering and jointing stages.

The current research methods for weed monitoring can 
be divided into artificial recognition, machine vision, var-
ious image acquisition technologies, and different image 
extraction methods. Ashraf and Khan [4] used two meth-
ods to separate weeds and crops: one classified weeds 
based on texture features, and the other classified weed 
images based on plant shape and anatomical structure. 
Sabzi and Sajad [5] used machine vision technology to 
segment potato plants and weeds; their method achieved 
correct detection, segmentation, and classification of 
potato plants and weeds at a speed of 0.15 m·s-1. Raja et 
al. [6] used machine vision technology and crop signal-
ing techniques to distinguish crops and weeds. Raveen-
dra et al. [7] demonstrated the capability of LabVIEW in 
performing machine vision to reduce human interven-
tion in agricultural production. Their method can pro-
cess the digital images acquired by the camera and match 
the captured weed leaves with a hypothetical database 
for health confirmation. Jiang et al. [8] proposed a weed 
detection method based on Mask R-CNN (a framework 
for image segmentation tasks), which combines target 
detection and semantic segmentation to classify weeds 
and crops while detecting weeds. In the above studies, 
RGB images were mostly used for weed identification. 
The use of hyperspectral images in weed recognition 
tasks can provide more information about the targets 
than RGB images. It is also very beneficial for improv-
ing recognition accuracy. Li et al. [9] constructed a clas-
sification of perennial weeds based on hyperspectral 
data. Pan et al. [10] used a variety of preprocessing and 
characteristic wavelength extraction methods to process 
the canopy hyperspectral data of plants and weeds, ana-
lyzed the spectra of different bands to establish the aver-
age reflectance spectrum curve of plants and weeds, and 

finally distinguished weeds and plants through principal 
component analysis.

The UAV remote sensing systems have clear advan-
tages, including being fast, non-destructive, low cost, 
and high throughput. In recent years, UAV remote sens-
ing technology has been gradually applied to monitoring 
crop growth in agriculture [11]. The UAV remote sensing 
system comprises UAVs and micro-miniature multispec-
tral and hyperspectral sensors, which can obtain high-
resolution images [12]. Zhao et al. [13] used the UAV 
remote sensing platform to obtain the characteristics of 
plants and weeds at the canopy scale, divided the vegeta-
tion and non-vegetation areas in the image by the maxi-
mum between-class variance method, and segmented 
the weed areas. Using hyperspectral and deep learning 
techniques can significantly improve the classification 
of farmland vegetation in UAV images [14]. The method 
also provides a reference for the identification of weeds.

In wheat cultivation, the predominant weed species 
can be categorized into members of the Poaceae fam-
ily (commonly referred to as grass weeds) and broadleaf 
weeds. The foliar morphology of broadleaf weeds mark-
edly differs from that of wheat seedlings, facilitating their 
identification. Conversely, grass weeds display consid-
erable morphological similarities to wheat seedlings, 
complicating their differentiation. Although previous 
research has exten- sively addressed the identification of 
broadleaf weeds within wheat fields, studies focusing on 
the identification of Poaceae weeds remain limited. There 
are also few published studies on the use of UAVs for 
monitoring weeds in wheat fields. This is primarily due 
to the minimal differences in color and spectral charac-
teristics between grass weeds and wheat, making it chal-
lenging to distinguish between them. In this study, we 
focused on wheat fields with varying levels of weed infes-
tation, acquired UAV images, and investigated the impact 
of different growth stages and weed densities on wheat 
growth. This research aims to provide valuable insights 
for weed management and risk assessment. The specific 
objectives of this study are as follows:

(1) To develop an identification model for grass weeds 
in wheat fields based on deep learning algorithms, 
pinpointing the locations of weeds;

(2) Construct a weed biomass estimation model utilizing 
hyperspectral imagery to assess the prevalence of 
weed infestations;

(3) Evaluate the impact of different models on the 
accuracy of weed identification;

(4) Investigate wheat yield data under various weed 
infestation scenarios and assess the implications of 
weed-induced damage.
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Materials and methods
Data acquisition
Our study was conducted in Yizheng and Sihong, Jiangsu 
Province, China, in 2019–2020 (Fig.  1). Eight test plots 
were selected as the research subjects, of which six 
plots had varying degrees of weed infestation, while the 
remaining two plots were kept weed-free as control. The 

species of weed are Alopecurus pratensis (Alopecurus 
aequalis Sobol.) and Poa pratensis (Poa annua L.). The 
images were obtained by UAVs during the wintering, 
seedling, and jointing periods. The sensor parameters 
used are shown in Table 1. The images were acquired on 
sunny days between 10:00 a.m. and 2:00 p.m. In hyper-
spectral image acquisition, there was a 50% overlap 

Table 1 Parameters of the image acquisition equipment
Equipment Camera technology Flight altitude
DJI Matrice 600 Pro
+
GaiaSky-mini Camera

Wavelength range: 400–1000 nm
Spectral resolution: 3.5 nm
Image resolution: 1920 × 2080
Weight: 1.5 kg

50 m

DJI Mavic 3 Positioning accuracy: 1–1.5 cm
CMOS: Mavic 3
Image resolution: 5280 × 3956
Field of view: 84°

15 m

Fig. 1 Study region
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between routes and a 60% overlap between waypoints. 
The corresponding percentages were 70% and 80% in 
multispectral image acquisition. The images of the stan-
dard gray cloths were obtained during image acquisition.

Field sampling and image acquisition of weeds and 
wheat were carried out simultaneously. The collected 
samples were fixed at 105℃ for 30  min and then dried 
at 80℃ to constant weight. The above-ground biomass of 
both wheat and weeds were measured, respectively.

Data processing
After lens calibration, reflectance calibration, and atmo-
spheric calibration through SpecView software (Jiangsu 
Dualix Spectral Imaging Technology Co., Ltd. China), 
hyperspectral images were stitched through HiSpec-
tralStitcher software (Jiangsu Dualix Spectral Imaging 
Technology Co., Ltd. China). RGB images were stitched 
through Metashape software (Agisoft LLC, Russia) to 
generate orthophotos images, and the accuracy of image 
stitching was further improved through ground control 

points. Vegetation indexes, i.e., normalized difference 
vegetation index (NDVI), ratio vegetation index (RVI), 
and soil-adjusted vegetation index (SAVI), were extracted 
on the acquired images [15]. The processing flow is 
shown in Fig.  2. All experiments were conducted on a 
high-performance computing setup with the following 
hardware and software specifications: CPU: Intel Core 
i7-9700  K, 8 cores; GPU: NVIDIA GeForce RTX 3090, 
24GB VRAM; Memory (RAM): 64GB DDR4; Storage: 
1 TB NVMe SSD.

Semantic segmentation algorithm
In this research, DeepLabV3 + was used to segment 
weeds and wheat. Based on the DeepLabV3 + framework 
of deep learning, using the Encoder-Decoder structure 
has a relatively better effect in boundary extraction appli-
cations, which can significantly improve the accuracy 
of image segmentation [16, 17]. The encoder uses the 
ResNet-50 residual network as a skeleton network for 
feature extraction. ResNet-50 introduces the components 

Fig. 2 The flow chart of this research
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of residual modules to deepen network depth but does 
not add additional parameters and calculations to 
the network. In addition, compared with VGGNet, it 
increases the training speed and obtains better training 
effects and model accuracy. First, the first three groups 
of residual blocks of ResNet-50 are serially concatenated, 
and then the fourth group of residual blocks is modified 
to use dilated convolution. Atrous spatial pyramid pool-
ing (ASPP) is introduced, which can capture multi-scale 
information through different sampling rates and aggre-
gate the prediction results from five parallel branches 
to obtain a 1 × 1 convolution feature map, which is then 
input to the decoder for use. The decoder draws on fully 
convolutional networks (FCNs) characteristics by com-
bining low-level feature and high-level feature prediction. 
In the detailed information of low-level features passing 
through, to reduce the number of channels, we first use 
48-channel 1 × 1 convolution to convolve the low-level 
feature map to obtain the prediction map. We then fuse 
it with the high-level feature map that is upsampled at 

4-fold and perform a 3 × 3 convolution operation. The 
original resolution is restored after upsampling at 4-fold 
again. Finally, we use the Softmax classifier to classify 
each pixel to obtain the pixel classification probability 
map. The principle is shown in Fig. 3A.

A total of 1,000 RGB images of wheat field weeds in the 
wintering period and jointing period were collected dur-
ing this study, and 10,000 sub-images were cropped into 
318 × 318 pixels, of which 7,000 images were used for the 
simple semantic segmentation model, and 3,000 images 
were used for verification. The training images were man-
ually annotated using LabelMe software (MIT, Computer 
Science and Artificial Intelligence Laboratory, USA), as 
shown in Fig. 3B, where red labeled areas indicate wheat, 
blue indicates weeds, and black indicates soil. The model 
was developed based on Python 3.7. The study employs 
the deep learning model to perform weed extraction, 
consequently calculating the weed canopy cover (CC) for 
weed biomass estimation.

Fig. 3 Extracting weed coverage using deep learning. (A) The network structure of deep learning; (B) The labeling processes and results
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Accuracy evaluation
One of the important indicators to measure the accuracy 
of the remote sensing image semantic segmentation algo-
rithm is Mean Intersection over Union (MIoU), which is 
the average of the ratio of the intersection and the union 
of the ground truth and predicted segmentation sets, 
i.e., the average value after the sum of Intersection over 
Union (IoU) of each type of ground feature. Identifying 
wheat field weeds is a three-class issue (wheat, weeds, 
and land). We use F1 values, precision, and recall as the 
accuracy evaluation indicators. The specific calculation 
formulas are as follows:

 IoU = TP
FN+FP+TP  (1)

 MIoU = 1
k+1

∑k
i=0

TP
FN+FP+TP  (2)

 F1 = 2×TP
N+TP−TN  (3)

 Precision = TP
TP+FP  (4)

 Recall = TP
TP+FN  (5)

where TP is true positive, TN is true negative, FN is 
false negative, FP is false positive, N is the total number 
of samples, and k is the segmentation of k-type ground 
features.

The coefficient of determination (R2) values of the 
models, the root mean square error (RMSE), and the rel-
ative error in prediction (REP) are used to test the perfor-
mance of the model. R2 and RMSE are used to describe 
the stability of the model and the average deviation of the 
measured value from the true value.

Modeling and validation
The results of previous showed that regression model 
such as linear regression, partial least squares regres-
sion (PLSR), Lasso regression, support vector regression 
(SVR) and many other regression methods could be used 
to estimate these agronomy parameters like biomass, LAI 
and the content of nitrogen. In this study, the SVR algo-
rithm is employed to construct a weed biomass estima-
tion model. This study compared the effects of common 
regression models with or without weeds CC calculated 
by DeepLab V3+. RMSE and R2 were used for model 
evaluation. Of the field data, 50% of 2022 and 2023 data 
were selected for modeling and 50% for validation.

 RMSE =
√

1
m
∑m

i=1(pyi − tyi)
2 (6)

 SSE =
∑m

i=1(pyi − tyi)
2 (7)

 SST =
∑m

i=1(tyi − ȳ)2 (8)

 R2 = 1 − SSE
SST  (9)

where m is the sample size, pyi is the predicted value 
of model, tyi is the true value, and ȳ is the mean of the 
observed data from the field.

Results
The characteristics of weeds and wheat
The fundamental reason for the difficulty in identifying 
weeds in wheat fields is that the color difference between 
weeds and wheat is small. As shown in Fig. 4, in the RGB 
image, the histograms of weed and wheat on the three 
channels of red (R), green (G), and blue (B) are very simi-
lar, so it is very difficult to distinguish weeds from wheat 
directly using color images.

We analyzed the spectral curves and common char-
acteristic parameters of wheat and weeds. As shown in 
Fig. 5, the curves of weeds and wheat in the 400–1000 nm 
band are very similar, and there are some differences only 
in the green and red regions of visible light. Furthermore, 
there is a large amount of overlap in other areas, making 
it challenging to distinguish weeds and wheat by spec-
trum. In accordance with previous research advance-
ments, vegetation cover and canopy vegetation indices 
such as NDVI are closely related to vegetation biomass. 
Biomass regression models constructed using cover and 
NDVI typically exhibit a high level of accuracy. However, 
as evidenced by the results of this study (Fig.  6), it can 
be observed that the biomass regression models devel-
oped using canopy cover and NDVI for weed estimation 
yield relatively poor performance. Notably, the estima-
tion accuracy is relatively better during the overwintering 
period, although the RMSE values exceed 10, and they 
escalate to over 40 during the regreening period. Over-
all, the estimation performance using canopy cover is 
slightly superior to that of NDVI. Several factors contrib-
ute to the suboptimal estimation performance, including: 
(1) The DeepLab model used for weed cover estimation 
cannot distinguish the extent of weed infestation, and it 
can only differentiate between the presence and absence 
of weeds; (2) When calculating weed biomass using veg-
etation indices, it is challenging to differentiate between 
weeds and wheat. The calculation of biomass is influ-
enced by wheat, especially during the regreening period, 
where increased biomass leads to larger errors.

Semantic segmentation effect of weeds
There was still some overlap between wheat and weeds 
in the orthophotos during the wintering stage, which 
resulted in large errors when attempting to distinguish 
weeds directly from wheat. In this research, five semantic 
segmentation methods were used to distinguish weeds, 
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and the results were shown in Table  2. Most models 
have high recognition accuracy for cultivated land, with 
IoU values above 90; the UNet model was found to have 
the highest IoU value. However, models other than Dee-
pLabV3 + have poor recognition effects on weeds and 
wheat. It can recognize weeds and wheat with an MIoU 
value of over 85, which can identify weeds and wheat 

more accurately. The ResNet-38 model has the short-
est processing time per image, while the PSPNet has the 
longest. The processing time for DeepLabV3 + is 46.5ms, 
which is within an acceptable range.

As shown in Fig.  7, the segmentation performance of 
different models on the original RGB images indicates 
that DeepLabV3 + achieves the best results, accurately 
identifying almost all wheat and weeds, with good per-
formance in the edge regions of the wheat. The main 
issue with the lower accuracy of the other models is the 
high rate of missed wheat identification and the high 
rate of weed misidentification. PSPNet, which performs 
the worst, can only identify the central regions of row-
planted wheat, with the edge areas almost entirely mis-
identified as weeds. Additionally, the models show little 
difference in their ability to identify land, with all models 
accurately recognizing land.

The choice of seeding method and different growth 
stages have an impact on the results of the semantic 
segmentation of weeds (Fig. 8). The results showed that 
the F1, MIoU, precision, and Recall values of the model 
for weed and wheat monitoring were higher than 85%. 

Fig. 5 Reflectance curve of wheat and weeds

 

Fig. 4 Histogram of wheat and weeds
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The segmentation accuracy of the model for wheat was 
slighter than that of weeds. What’s more, we found that 
sowing methods had a greater influence on the segmen-
tation results than under different growth stages, with 
scattered wheat fields showing higher precision in detect-
ing both wheat and weeds. The segmentation precision 

value for the scattered wheat was 91.27%, whereas for 
drilled wheat, it was only 87.51%. In weeds, both missing 
and improper segmentation occurred in the edge areas 
regardless of the sowing method.

The DeepLabv3 + model exhibits clear advantages in 
distinguishing weeds from wheat, but it is unable to 

Fig. 6 The estimation of weed biomass using canopy cover or vegetation indices under different conditions. The unit of the RMSE is kg·ha-1
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determine the amount of weeds and formulate preven-
tive measures. The vegetation index has been proven to 
be highly reliable in estimating biomass. As shown in 
Fig. 9, the common vegetation index correlates well with 
wheat and weeds biomass in different growth periods. 
Notably, the NDVI shows a higher correlation than other 
vegetation indexes. The (960  nm, 733  nm) combination 
of NDVI combination has the highest correlation with 
wheat during the wintering period, whereas the (960 nm, 
719  nm) combination has the highest correlation with 
weeds during the same period. Similarly, the (960  nm, 
710  nm) combination of NDVI has the highest correla-
tion with wheat during the jointing period, while the 
(960  nm, 700  nm) combination has the highest correla-
tion for weeds during the same period. The correlation 
between the combinations mentioned above and their 
respective biomass all exceeds 0.92, indicating that they 
can be utilized to estimate the corresponding biomass.

Estimation of weed biomass
Considering the difficulty of solely utilizing CC and 
vegetation indices to estimate weed occurrences, and 
recognizing the strong correlations between CC and 
multiple vegetation indices with weed biomass, this study 
employed CC and several vegetation indices as input 

variables for SVR models to assess weed occurrences 
during the wintering and regrowth stages of both drilled 
and broadcast wheat. Remarkably, favorable results were 
obtained, with modeling R2 consistently exceeding 0.85. 
Weed biomass estimation during the wintering period 
demonstrated higher precision, with modeling RMSE 
remaining below 8  kg·ha-1 for both drilling and broad-
casting scenarios. However, during the regrowth stage, 
due to the increased wheat population, modeling preci-
sion slightly diminished, with RMSE values not exceed-
ing 20  kg·ha-1. Model validation was conducted on 
independent samples, as depicted in Fig.  10. The preci-
sion of weed biomass estimation substantially improved 
for both seeding methods and growth stages. During 
the wintering period, weed biomass estimation exhib-
ited superior accuracy compared to the regrowth stage, 
with an average RMSE of only 40.03 kg·ha-1. Among the 
winter scenarios, weed estimation accuracy was highest 
for drilled conditions, with an RMSE of only 9.28 kg·ha-1. 
Conversely, under broadcast conditions during the 
regrowth stage, weed biomass estimation was the least 
accurate, with an R2 of only 0.6 and an elevated RMSE 
of 30.38 kg·ha-1. In summary, weed monitoring accuracy 
was generally higher under drilled conditions, with an 

Table 2 The detection results of different models
Method Weed Wheat Land MIoU Recall F1 Time (ms)
ResNet-38_MS_COCO 67.2 71.6 91.3 76.7 89.3 76.7 30.6
PSPNet 61.5 68.6 92.5 74.2 90.7 73.3 76.7
DeepLabV3 70.6 70.3 94.2 78.4 90.5 79.3 37.6
UNet 77.4 79.5 95.8 84.3 94.2 85.1 39.2
DeepLabV3+ 83.3 87.5 95.6 88.8 90.6 96.8 46.5

Fig. 7 The semantic segmentation performance of different models
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average RMSE 2.17 kg·ha-1 lower than that under broad-
cast conditions.

The impact of weeds
To further clarify the effects of weeds on wheat, we ana-
lyzed the impacts on wheat dry weight and grain yield 

under different treatments. As shown in Fig.  11, an 
increase in the number of weeds led to a corresponding 
decrease in wheat dry weight, with a maximum reduc-
tion of 71% compared to areas without weeds. Similarly, 
the number of weeds also harmed yield, with a maximum 
reduction of 4320  kg·ha-1, or a 60% drop. However, the 

Fig. 8 Segmentation results of DeepLabV3+. (A) and (B) are the original images of the broadcast sowing wheat field and drilled sowing wheat field; (C) 
and (D) are the segmentation results; (E) and (F) are the segmentation accuracy values of wheat and weeds
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impact of weeds varied depending on the sowing meth-
ods. Planting density and growth stages. Specifically, scat-
tered wheat was more susceptible to weeds than drilled 
wheat, and wheat in high density was more affected than 
in low density. Additionally, weeds that emerged during 
the wintering stage had a greater impact on wheat yield.

Discussion
The identification of farmland weeds has always been a 
research focus in smart agriculture. Traditional meth-
ods primarily rely on extracting image color, morphol-
ogy, and texture features [5, 18], or distinguishing weeds 
and crops through morphological features [19]. However, 
wheat field weeds, especially grass weeds and wheat, 
share similar features, making it difficult to differentiate 
them. Gašparović et al. used UAV images to distinguish 
between oats and weeds [20]. They found that weed iden-
tification methods based on color features have large lim-
itations, especially when the crop and weeds are similar 
in color. Moreover, due to the color and spectral similari-
ties between wheat and weeds, it is not easy to success-
fully distinguish the two using conventional machine 
learning classification methods. Consequently, scholars 
have turned to deep learning algorithms to identify farm-
land weeds. For instance, the SegNet segmentation net-
work has been used to distinguish sugar beets and weeds 

[21], convolutional neural networks have been used to 
distinguish crops and weeds during the seedling period 
[22], and deep convolutional neural networks have been 
used to identify weeds among rapeseed rows [23]. How-
ever, these methods are limited to the seedling stage, 
where the difference between weeds and crops is more 
significant, and the images are mostly collected near the 
ground. Similar characteristics of weeds and wheat make 
monitoring weeds with UAVs more difficult. Considering 
that the convolutional neural network model can better 
identify weeds [24], the filtered convolution structure can 
identify weeds in UAV images.

Therefore, this study constructed a comprehensive 
wheat field weed dataset by acquiring images from mul-
tiple locations. What’s more, given the complexity of 
precisely distinguishing these regions, some boundary 
inaccuracies between these classes were unavoidable 
when preparing the dataset. The primary focus was on 
maximizing weed identification while minimizing the 
labeling of wheat and bare soil. This strategy was cho-
sen to reduce the risk of missed weed detection, even 
if it led to a higher false positive rate. In practical weed 
management, intervention is usually required only when 
weed populations reach a certain threshold, making 
false positives less critical than missed detections. We 
selected several classical semantic segmentation models 

Fig. 9 Correlation analysis between spectrum and biomass of weeds and wheat
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based on this dataset to perform weed segmentation in 
wheat fields. To ensure the accuracy of the segmentation 
results, this study compared the performance of different 
models and continuously tuned parameters, ultimately 
optimizing the DeepLabV3 + model, which exhibited the 
best performance for weed segmentation in wheat fields. 
This model utilizes an encoder-decoder architecture, 
where the encoder architecture uses DeepLabV3, and the 
decoder uses a simple but effective module to restore the 
target boundary details. It can use expanded convolution 

to control the resolution of features under specified com-
puting resources, resulting in better weed identification 
accuracy. The model used in this research can identify 
weeds in wheat fields and has an MIoU value of 88.8.

The findings of this study demonstrate that, with 
proper tuning and adequate training, classical semantic 
segmentation models can effectively segment wheat field 
weeds and achieve satisfactory accuracy. However, these 
classical models have certain limitations. For instance, 
they typically require large datasets for effective training, 

Fig. 10 Model testing results using an independent dataset. The unit of RMSE is kg·ha-1
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and their model sizes are relatively large, which may 
pose challenges in practical applications. Future research 
could build upon the results of this study by further 
optimizing these classical models to reduce the training 
data requirements and decrease the model size, thereby 

enhancing their efficiency and applicability in real-world 
scenarios.

The convolutional neural network has clear advan-
tages in distinguishing field weeds and wheat, but it is not 
effective in evaluating the amount and degree of damage 
of weeds. To realize the precise prevention and control 

Fig. 11 Effects of weeds on wheat growth. (A) The effects of weeds on wheat dry weight, (B) The effects of weeds on wheat grain yield. J: jointing stage, 
W: wintering stage, B: Broadcast sowing, D: drill sowing, L: plant density of 180 × 104 plant·ha-1, H: plant density of 300 × 104 plant·ha-1
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of weeds, improve the UAV plant protection spray effi-
ciency, and protect the ecological environment, it is 
necessary to construct a distribution map of the occur-
rence of weeds in the field. Although previous studies 
have proposed methods for estimating vegetation bio-
mass with RGB images [25, 26], the estimation of weed 
biomass in wheat fields based on RGB images is not sat-
isfactory due to the sowing methods and the interaction 
between weeds and wheat. After analysis, some spectral 
indexes have very significant correlations with the bio-
mass of wheat and weeds. After locating the weed occur-
rence area, we extract the spectral characteristics of weed 
areas, use the vegetation index to estimate the occur-
rence of weeds, and evaluate its image of wheat growth. If 
only hyperspectral UAVs are used to obtain images, and 
then weeds are classified, the flying height of the UAV 
must be set below 25  m to effectively train the Deep-
LabV3 + model, which will result in low image acquisition 
efficiency. Therefore, our research combined the images 
taken by hyperspectral UAV and the small RGB UAV 
to achieve the highest image acquisition efficiency. This 
study utilized a combination of hyperspectral cameras 
and high-definition cameras to monitor the biomass of 
graminaceous weeds in wheat fields. The reasons include: 
graminaceous weeds in wheat fields have a high similar-
ity to wheat in terms of spectral and color characteristics, 
but they can be distinguished based on leaf structure 
and other texture information. These details can only be 
captured by high-definition cameras. If deep learning 
algorithms are to be used for the identification of grami-
naceous weeds in wheat fields, it is necessary to obtain 
canopy images with high-definition cameras. While 
hyperspectral cameras can effectively reflect the biomass 
of crop populations, most current hyperspectral cameras 
do not have a high enough resolution, making it difficult 
to distinguish between graminaceous weeds and wheat 
through spectral images. This research has confirmed 
that the 960 nm and 710 nm bands are closely related to 
the biomass of graminaceous weeds. In the future, with 
the improvement of the resolution of spectral sensors, it 
will be possible to estimate the occurrence of gramina-
ceous weeds using only multispectral drones.

The method proposed in our study can realize the 
monitoring of the occurrence of weeds in wheat fields, 
but there is still no better way to solve the occlusion 
problem. According to experimental surveys, different 
wheat planting densities, sowing methods, and the occlu-
sion of wheat on weeds during growth periods are dif-
ferent. In the wintering period, the occlusion of wheat 
on weeds generally did not exceed 5%, while the occlu-
sion increased in the jointing period but generally did 
not exceed 10%. Increasing the planting density from 
180 × 104 plant·ha-1 to 300 × 104 plant·ha-1 resulted in a 
3% increase in occlusion during the wintering stage, with 

a maximum occlusion of 20% during the jointing stage. 
The wider row spacing of drilled wheat led to heavier 
weed occlusion compared to scattered wheat. The occlu-
sion issue affects the accuracy of weed monitoring, but 
it has less impact on the occurrence of weeds and fixed-
point weeding. Therefore, we did not collect further data 
pertinent to the occlusion issue.

Conclusions
This study developed a method for monitoring weed 
occurrence in wheat fields using deep learning algo-
rithms and spectral analysis techniques. The findings 
indicate that traditional image attributes such as color 
and texture pose challenges in distinguishing grass 
weeds in wheat fields. However, the application of deep 
learning algorithms significantly enhances weed iden-
tification accuracy. Among the evaluated algorithms, 
DeepLabV3 + demonstrated superior performance, sur-
passing segmentation methods like UNet and PSPNet. 
By selecting sensitive NDVI bands, weed biomass can 
be effectively estimated, establishing a robust framework 
for assessing the impact of weed infestations. The deep 
learning-based weed canopy cover identification model 
in this study accurately estimates weed canopy cover. Fur-
thermore, integrating canopy cover with vegetation indi-
ces enhances the precision of weed biomass estimation. 
This proposed method facilitates efficient UAV-based 
weed monitoring in wheat fields and the development of 
targeted plant protection strategies, providing technical 
support for UAV and precision plant protection.
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