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Abstract 

Background Phenotyping of plant traits presents a significant bottleneck in Quantitative Trait Loci (QTL) mapping 
and genome-wide association studies (GWAS). Computerized phenotyping using digital images promises rapid, 
robust, and reproducible measurements of dimension, shape, and color traits of plant organs, including grain, leaf, 
and floral traits.

Results We introduce GRABSEEDS, which is specifically tailored to extract a comprehensive set of features from plant 
images based on state-of-the-art computer vision and deep learning methods. This command-line enabled tool, 
which is adept at managing varying light conditions, background disturbances, and overlapping objects, uses digital 
images to measure plant organ characteristics accurately and efficiently. GRABSEED has advanced features includ-
ing label recognition and color correction in a batch setting.

Conclusion GRABSEEDS streamlines the plant phenotyping process and is effective in a variety of seed, floral and leaf 
trait studies for association with agronomic traits and stress conditions. Source code and documentations for GRAB-
SEEDS are available at: https:// github. com/ tangh aibao/ jcvi/ wiki/ GRABS EEDS.

Keywords Image analysis, Phenotype, Seed traits, High throughput, QTL mapping

*Correspondence:
Haibao Tang
tanghaibao@gmail.com
Andrew H. Paterson
paterson@uga.edu
Won Cheol Yim
wyim@unr.edu
1 Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, 
Haixia Institute of Science and Technology and College of Life Sciences, 
Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
2 Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 
30605, USA
3 The Land Institute, 2440 E Water Well Road, Salina, KS 67401, USA
4 Department of Biochemistry and Molecular Biology, University 
of Nevada, Reno, NV 89557, USA
5 Institute of Plant Sciences, University of Bern, Altenbergrain 21, 
3013 Bern, Switzerland
6 State Key Lab for Conservation and Utilization of Subtropical 
Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, 
Guangxi University, Nanning 530004, Guangxi, China

7 National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, 
Guangdong Laboratory for Lingnan Modern Agriculture, Genome 
Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics 
Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 
Shenzhen 518120, Guangdong, China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-024-01268-2&domain=pdf
https://github.com/tanghaibao/jcvi/wiki/GRABSEEDS


Page 2 of 11Tang et al. Plant Methods          (2024) 20:140 

Introduction
Quantitative Trait Locus (QTL) mapping and genome-
wide association studies (GWAS) are crucial in unrave-
ling the genetic underpinnings of phenotypic traits 
in various plant parts, such as seeds, flowers, leaves, 
fruits, and nuts [1–5]. Research consistently shows that 
genome-wide association studies (GWAS) are effective 
for identifying and precisely mapping QTLs associated 
with complex agricultural traits. Precise morphologi-
cal measurements are essential in genetic research, yet 
they present challenges due to their labor-intensive and 
time-consuming nature [6, 7]. Additionally, there can be 
considerable variability in measurement and handling 
methods which contributes to data inconsistency. Non-
uniform operating protocols among data collectors fur-
ther impacts reliability and reproducibility [8]. Thus, 
improving the efficiency of these measurement tech-
niques is crucial to effectively utilize the extensive genetic 
resources available in both experimental and agricultural 
plant systems [9]. These improvements are essential for 
enhancing our understanding of plant genetics and suc-
cessfully applying this knowledge to progress in agricul-
ture [10].

The application of computer-aided image analysis is 
revolutionizing large-scale phenotyping experiments by 
incorporating image processing and machine learning 
techniques. This advanced approach enables the extrac-
tion of critical features such as size, shape, and color 
from digital images, facilitating the mapping of quantita-
tive traits vital for agricultural research [11]. In particu-
lar, machine learning algorithms such as convolutional 
neural networks, are broadening applications in high-
throughput plant phenotyping and accelerating the elu-
cidation of gene functions associated with traits in model 
plants [12, 13]. Notably, integration of image processing 
in various agricultural settings has illustrated how robot-
ics and computer vision are useful for automatic pheno-
typing [14].

Among the major plant organs, seeds are a primary 
focus due to their fundamental role in the agricultural 
production of grains and legumes. Seed attributes such 
as weight, texture, and shape are closely linked to crop 
yield and germination effectiveness and are therefore 
subject of intensive breeding programs [15]. Automated 
seed identification through image processing algorithms 
has important applications in the quality control of seed 
production and for harvest classification [16].

A variety of image processing applications are avail-
able, each designed for recognizing different biological 
elements. For instance, ImageJ is an image processing 
program developed at the National Institutes of Health 
which was designed to manipulate and process micros-
copy images [17]. BISQUE provides a web-based 

framework to create, share, and analyze images, with 
options for tailored analyses [18]. CellProfiler excels in 
quantifying structures like yeast colonies and mouse 
tumors, and also in evaluating tissue topology [19]. 
SHERPA is adept at processing vast numbers of diatom 
micrographs through image segmentation techniques 
[20]. Nonetheless, these tools are primarily developed 
for microscopy imagery rather than standard digital pho-
tography, with limited capabilities in color adjustment or 
label recognition. The use cases in agriculture necessitate 
user-generated algorithms or macros for batch opera-
tions, which can be challenging for non-specialists [19, 
20].

In recent years, substantial progress has been made 
in plant phenotyping through the use of digital images, 
highlighting the increasing importance of digital tools in 
plant science [21]. For example, Plant phenotyping using 
Computer Vision (PlantCV) provides a comprehensive 
and flexible toolkit for complex plant image analysis [22]. 
Machine learning has also been integrated into advanced 
phenotyping systems, enabling precise plant segmenta-
tion and analysis [15, 23–25]. Techniques that combine 
thermal and visible images for detecting plant stress, 
offering comprehensive evaluations of plant health, 
were introduced [26–28]. The application of close-range 
hyperspectral imaging has been pivotal in digital pheno-
typing, particularly in addressing recent challenges such 
as illumination correction, which is crucial for accu-
rate phenotypic analysis [29]. Additionally, the Digital 
Imaging of Root Traits (DIRT)/3D is a groundbreaking 
platform that uses image-based 3D technology for phe-
notyping root traits [30]. Moreover, the development of 
cost-effective, Raspberry Pi-powered imaging systems 
has enabled high-throughput phenotyping, suitable for 
a wide range of plant applications [31]. An online data-
base has been created for plant image analysis software, 
aimed specifically at meeting the needs of plant science 
[32, 33]. These advancements underscore the continuous 
evolution of computer vision technologies in plant phe-
notyping, reflecting the growing sophistication of imag-
ing techniques in this field.

We present GRABSEEDS, an advanced software tool 
specifically engineered to accelerate the identification 
and phenotyping of plant seeds, leaves and flowers, with 
demonstrated efficacy across a wide range of grains and 
legumes [16]. GRABSEEDS is equipped with a robust, 
command-line interface designed for high-throughput 
batch processing, ensuring rapid and accurate perfor-
mance under diverse and challenging conditions, such as 
variable lighting, complex backgrounds, and closely clus-
tered or overlapping seeds. This tool integrates cutting-
edge image processing techniques, including adaptive 
color correction and intelligent label recognition, to fully 
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automate the seed phenotyping workflow. GRABSEEDS 
not only streamlines the identification, sorting, labeling, 
and measuring processes but also provides deep insights 
into the genetic architecture of related traits. By accu-
rately characterizing critical plant organ features, GRAB-
SEEDS enhances varietal identification and supports the 
discovery of key genetic traits, offering invaluable contri-
butions to plant breeding and agricultural research.

Implementation
Image processing
The image processing pipeline implemented in GRAB-
SEEDS has four core components including edge detec-
tion, object (seed) identification, image cropping and text 
label recognition. In this study, the “objects” specifically 
refer to the seeds that we seek to identify, but they could 
represent other general items of interest. GRABSEEDS 
supports several digital images, including PNG and JPEG 
formats. The JPEG format is the most common file out-
put format from digital cameras. The core image pro-
cessing routines within GRABSEEDS are based on the 
scikit-image Python library [34].

Edge detection: GRABSEEDS incorporates a suite of 
edge detection algorithms, such as Canny, Sobel, Roberts 
and Otsu’s methods [34]. The Canny edge detector, set 
as the default option, operates on the principle of utiliz-
ing the derivative of a Gaussian distribution to calculate 
image gradients. By adjusting the Gaussian’s variance, or 
sigma (configurable, default = 1), the method effectively 
diminishes noise interference in the image, enhanc-
ing the Canny detector’s resilience against cluttered 
backgrounds.

Object identification: following edge detection, a clos-
ing operation is applied to mend any gaps or ‘cracks’ in 
the outlines of potential objects, which might result from 
background noise or insufficient lighting. This process 
ensures that all areas enclosed and 4-connected (linked 
to their adjacent pixels on the top, bottom, left, and right) 
are recognized as distinct objects. By default, any object 
touching the image’s border is automatically excluded 
from consideration. For more difficult cases, a deep 
learning model, Meta AI’s Segment Anything (SAM) is 
also available to generate the mask for each object [35].

Image cropping: to omit non-target elements (such 
as background features) from analysis, images could 
be cropped by directly slicing them. This technique is 
particularly beneficial in batch processing scenarios, 
allowing for the exclusion of specific areas, like those 
containing text labels, from the final analysis.

Text label recognition: GRABSEEDS uses the Google 
tesseract-OCR to identify and extract the text in the label 
[36]. To enhance the speed and accuracy of text recog-
nition, users have the option to input a cropped area 

specifically containing the label. In the batch process-
ing, where the label’s location remains largely consistent, 
this approach significantly speeds up the label extraction 
process.

Optimizing accuracy
There are several common issues with image quality that 
affect the accuracy of object recognition, including noisy 
background, blurred edges, heterogeneous and often 
overlapping objects. GRABSEEDS resolves these prob-
lems through tuning of key parameters through com-
mand line options. These adjustments typically involve 
balancing the software’s sensitivity and specificity for 
object identification and segmentation, thereby enhanc-
ing the accuracy of recognition.

Noisy background: for images with noisy backgrounds, 
such as those featuring cloth or other materials with 
rough textures, users can adjust the sigma values for 
Gaussian de-noising within the Canny edge detector. 
Increasing sigma values allows the algorithm to better 
handle background noise, although it might also increase 
the likelihood of overlooking smaller seeds due to the 
smoothing effect. Additionally, there is a feature that 
allows changing the background to a color that contrasts 
with the seed color and its complementary color, facili-
tating better seed detection.

Addressing blur edges: in cases of low lighting that lead 
to blurred edges, resulting in open edges that do not 
properly enclose regions identifiable as seeds, GRAB-
SEEDS offers the option to set a closing morphology with 
a specific kernel size (the default being 2 pixels). This set-
ting helps close ’cracks’ with a radius of up to 2 pixels. 
In blurry pictures, the kernel size could be increased to 
refine the edge of the objects but has the additional risk 
of falsely connecting objects that are further apart from 
one another.

Managing heterogeneous sizes: certain objects in the 
background might be recognized as seeds. The “size” of 
certain object is defined by the number of contiguous 
pixels covered by the object. This could be effectively fil-
tered out by setting minimum or maximum size thresh-
olds. This feature directly excludes features that are 
incorrectly recognized as target objects based on their 
size.

Separating overlapping objects: watershed segmenta-
tion is used to separate the touching seeds [34]. This fea-
ture uses the furthest points from the detected edges as 
markers, and the ’flooding’ of basins from these markers 
separates overlapping objects along a delineated ’water-
shed’ line. This approach allows GRABSEEDS to accu-
rately identify and delineate individual seeds even when 
they are in close contact, ensuring precise phenotypic 
measurements [37]. For the more difficult cases, the deep 
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learning model SAM is also available to separate back-
ground with foreground [35], but at a cost of higher com-
putational cost.

Visual debugging
GRABSEEDS offers a visual debugging tool by generat-
ing a PDF document that overlays object details on top 
of the original image for analysis (Fig. 1). This document 
is structured into four sections, including the original 
image, edge detection results, object detection outcomes, 
and a list of detected objects (Fig.  1). These panels are 
useful in exploring the best parameters for fine-tuning 
the object detection. Within the Object detection panel, 
the contours of the identified objects are drawn, as well 
as the two major axes showing the length and width of 
the seed, respectively. In the Object list, several identified 
objects are listed for visual validation. This advanced level 
of visual debugging aids significantly in adjusting param-
eters for image batches. Given the consistency of camera 
settings across a batch, optimizing parameters based on 
a small sample can reliably improve accuracy across the 
entire set.

Calibration
In scenarios where photo sessions span multiple days, 
it might be important to calibrate before each batch of 
images to maintain a unified standard of feature extrac-
tion. The calibration serves several purposes. First, cali-
bration allows the calculation of “pixel-to-inch ratio”, 
then the seed length and width can be converted to 
physical lengths such as inch or centimeter (cm). Sec-
ond, calibration normalizes the effect of lighting and 
corrects the RGB code. Through calibration, results 
remain consistent despite variations in camera settings, 

lighting conditions, or distance between the lens and 
the subject table. This step is especially vital for accu-
rately assessing size and color traits.

For precise calibration, the use of a “ColorChecker” 
to perform the calibration, which is a palette of colors 
with 24 prearranged color samples [38]. Users can make 
a ColorChecker by simply printing it out [39], and then 
snap a picture of the printout. Users then measure the 
individual boxes on the paper and record the size in 
squared cm units. The ColorChecker is identified by 24 
boxes, the boxes are then aligned to a 6 × 4 grid using 
K-means clustering. Color correction employs a linear 
color transformation or "channel re-mixing" [38]:

This is a model that has nine parameters. Given two 
color points, the distance is defined by:

We then seek to find the best estimates for the nine 
parameters that minimizes the above distance between 
the ‘observed’ and the ‘target’. GRABSEEDS applies a 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm 
to solve the minimization problem [40]. The linear 
transform can then be applied to correct the ‘observed’ 
colors back to their original hue. Like seed image pro-
cessing, color correction can be visually debugged 
(Fig.  2). Ensuring proper calibration is critical so that 
GRABSEEDS accurately recognizes most of the 24 
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File: Intensity 2.JPG

Label: 2013 Sh Backcross 401-02B

1 length=80 width=60 area=3720
195,105,25 chocolate

2 length=79 width=60 area=3696
185,85,15 chocolate

3 length=83 width=62 area=3982
190,100,25 chocolate

4 length=78 width=65 area=3929
225,150,50 orange

5 length=85 width=65 area=4300
200,100,25 chocolate

6 length=82 width=60 area=3856
225,140,50 peru

(A total of 6 objects displayed)

Fig. 1 Visual output from GRABSEEDS on sorghum seeds. The four panels (from left to right) are original picture, picture after edge detection, 
picture after seed detection, and a list of identified seeds and text label. The visual output provides a rapid debugging method to ensure accuracy
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squares, maintaining the integrity of feature extraction 
and analysis.

Metrics extraction
During batch processing, GRABSEEDS produces a com-
posite PDF for visual inspection and generates detailed 
metrics for each detected object in a spreadsheet or as 
CSV (comma-separated values) files, facilitating sub-
sequent statistical analysis (Fig. 3). For each object, axis 
length, area, circularity, and color are assigned to each 
recognized seed. The spreadsheet also tracks the infor-
mation extracted from the EXchangeable Image file For-
mat (EXIF) header such as the time that the photo was 
taken and a useful subset of camera settings. A total of 16 
main attributes are extracted for each identified seed.

Dimensional data track the distance and shape meas-
urements, acknowledging that many seeds exhibit an oval 
form. Thus, both the major and minor axes of the seeds 
are recorded. We also track shape in the ‘circularity’ 
metric, which is a numeric value between 0 and 1 (with 

1 being perfectly circular and 0 resembling a line or an 
elongated shape), is calculated as below [17]:

A richer set of shape embeddings can be derived from 
Elliptic Fourier Descriptors (EFDs) [41, 42]. The EFDs 
are a list of numbers corresponding to the calculations of 
Fourier power (default order of 10). The shape EFDs have 
the advantage of normalizing complex contours for com-
parisons, and are especially suitable for simplifying peri-
odic contours, e.g. flower or leaf edges.

Seed color is determined using RGB values across red, 
green, and blue channels. GRABSEEDS outputs famil-
iar color names from the "web colors" palette, such as 
"lightslategrey", "sandybrown", "olive", "darkseagreen", 
matching each seed to the closest web color (Fig. 2). The 
similarity between the web color and extracted color is 
based on the Delta E (CMC) function between any two 
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File: calibration.JPG

Label: calibration

1 length=83 width=83 size=5178
145,100,65 saddlebrown

2 length=84 width=84 size=5311
220,160,105 sandybrown

3 length=83 width=82 size=5187
135,140,135 lightslategrey

4 length=83 width=82 size=5183
135,125,70 olive

5 length=83 width=83 size=5224
155,140,140 rosybrown

6 length=83 width=82 size=5225
135,160,120 darkseagreen

7 length=83 width=83 size=5182
245,150,80 sandybrown

(A total of 24 objects displayed)

Fig. 2 Visual output from GRABSEEDS on ColorChecker for calibration. The four panels (from left to right) are original picture, picture after edge 
detection, picture after box detection, and a list of identified boxes with their observed color. The observed color of each box is then compared 
with the expected color to calculate the color correction

Fig. 3 Sample spreadsheet from GRABSEEDS on sorghum seeds. A comprehensive set of dimension, shape and color metrics are extracted 
from the seeds, useful for QTL analyses of seed traits
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colors, which approximates human perception of color 
differences. Assigning discrete color names enables eas-
ier grouping and comparison of seeds by color, offering 
an advantage over the direct application of RGB numeri-
cal values.

Results
Camelina seeds
GRABSEEDS has demonstrated its robust capabilities 
in the image provided, specifically highlighting the phe-
notyping of Camelina seeds. Notable features that have 
been exemplified include Text Label Recognition, where 
the tool has successfully identified and read the label 
"349–3" associated with the seeds (Fig.  4). Image Crop-
ping has been utilized to focus on the seeds, excluding 
extraneous background elements. Object Identification 
has been adeptly executed, with individual seeds being 
recognized and quantified despite their proximity to one 
another. Edge Detection, a critical component of the pro-
cess, has been fine-tuned with a sigma value of 3 and a 
kernel size of 2, which successfully delineates the edges 
of the Camelina seeds against the Noisy Background. The 
feature also effectively addresses Blur Edges that might 
result from lower lighting conditions or camera focus 
issues, ensuring each seed is enclosed accurately for fur-
ther analysis.

This integrated approach by GRABSEEDS, managing 
various challenges such as noisy or blurred backgrounds, 
reinforces its utility in accurately phenotyping seeds for 
genetic and agricultural research. The program extracts 
detailed metrics—length, width, and area, alongside the 
mostly uniform color designation of ‘saddlebrown’, for 
each Camelina seed. The lengths of the seeds span from 
82 to 97 pixels, widths from 42 to 53 pixels, and areas 

from 2991 to 4004 pixels. With a total of 10 objects ana-
lyzed, the tool’s proficiency in processing and quantifying 
a cluster of seeds in a single frame is emphasized, reflect-
ing GRABSEEDS’s robust functionality in accurately 
extracting and highlighting the phenotypic characteris-
tics of Camelina seeds.

Teff seeds
GRABSEEDS also processed images displaying sev-
eral teff seeds arrayed randomly (Fig.  5). The software’s 
edge detection, configured with a sigma value and ker-
nel size both set to 1, effectively outlined the seeds on a 
blue background. The object detection has accurately 
enclosed each seed with a bounding box, confirming 
their individual identification. Among the seeds ana-
lyzed, seven detailed metrics have been provided, reveal-
ing variations in size with lengths ranging from 56 to 73 
pixels and widths from 35 to 44 pixels. The areas covered 
by these seeds span from 1541 to 2473 pixels, and all are 
marked with the color ‘saddlebrown’, with RGB values 
ranging between (110,85,65) and (130,100,75). A total of 
29 objects were distinguished in the analysis, showcasing 
GRABSEEDS’s capability to perform text label recogni-
tion, handle noisy backgrounds, address blurry edges, 
and extract critical seed metrics in a consistent and auto-
mated manner.

The batch processing reveals a comprehensive phe-
notype analysis of teff seeds, capturing dimensions 
and color variations in significant detail. These results 
offer an in-depth analysis of teff seed phenotypes, 
detailing the intricacies of size and color. Each seed 
is meticulously cataloged with a unique SeedNum 
and exact coordinates, reflecting areas between 1442 
and 2769 pixels that showcase the array of seed sizes. 
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File: IMG 2593.jpg

Label: 349-3

1 length=97 width=53 area=4004
55,30,10 saddlebrown

2 length=82 width=48 area=3052
60,30,0 saddlebrown

3 length=94 width=51 area=3748
50,30,5 saddlebrown

4 length=92 width=42 area=2991
50,25,0 saddlebrown

5 length=88 width=50 area=3396
75,35,5 saddlebrown

6 length=90 width=44 area=3069
65,35,5 saddlebrown

7 length=89 width=46 area=3182
75,40,0 saddlebrown

(A total of 10 objects displayed)

Fig. 4 Visual output from GRABSEEDS on camelina seeds
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The circularity metric provides insight into the seed 
shapes, which vary from elongated to nearly round.

A calibrated transformation, using a PixelCMratio 
set at 60.14, translates the pixel measurements of seed 
length and width into centimeters. This critical scal-
ing, which yields lengths between 0.91 and 1.31  cm 
and widths from 0.55 to 0.75 cm, ensures the accuracy 
of physical dimensions regardless of the camera setup 
used during the capture. Additionally, calibration rig-
orously corrects color distortions from varied lighting 
or camera specifics, employing RGB transformation to 
ensure fidelity to the seeds’ true colors. Initial colors, 
mostly ‘saddlebrown’, after correction, may become 
‘peru’ or ‘darkgoldenrod’, as evidenced by the adjusted 
RGB values. This adjustment not only changes the 
nominal color but also reflects correction based on 
the imaging conditions, illustrating the capability of 
GRABSEEDS to accurately represent phenotypic traits.

Petunia flowers
To extract color traits for QTL analysis, images of 
flowers were taken from mapping populations along 
with anthocyanin measurements. Despite the name 
of GRABSEEDS, flower images can also be readily 
processed with little modifications of protocols. Usu-
ally, images were taken from 12 flowers at a time with 
a guide stripe as a size reference (on the right). Using 
GRABSEEDS, several flowers can be isolated on the 
images along with the stripe (Fig. 6). The petunia flow-
ers contain a diverse range of floral shapes (best repre-
sented as harmonic EFDs) and petal colorings.

Tobacco leaves
Diseased leaves often have a different shape, size, or 
color than healthy leaves. To identify the diseased 
leaves, we measured the color, area, length, and width 
of Nicotiana tabacum leaves. We collected photo-
graphs of the lesser and more severe cases of the dis-
ease as well as normal leaves. For example, leaf 1 is an 
example of normal leaf with yellow green color, while 
leave 2 and 3 are tobacco leaves carrying disease, which 
can show much more pale colors, such as floral white 
and ivory (Fig.  7). By establishing a linear relationship 
between leaf color and disease severity as measured by 
GRABSEEDS (Fig. 7), it is possible to identify leaves at 
an early stage of the disease, thereby preventing poten-
tial yield losses.

Sorghum kernels
In a recent study, we examined the genetic and phe-
notypic variation and kernel size, shape and color for 
two sorghum  BC1F2 populations derived from Sor-
ghum bicolor BTx623 and Sorghum halepense Gypsum 
9E [42]. A total of 246  BC1F2 families and the parents 
were phenotyped in terms of seed size (area, length, 
width, and aspect ratio), shape (circularity) and color 
(RGB) (Fig.  1). Associations were found between sev-
eral kernel traits, including area, length, width, color, 
and shape EFDs with certain linkage group intervals 
in both populations. All the kernel traits can be collec-
tively analyzed and viewed in a Principal Component 
Analysis (PCA) plot to illustrate the phenotype space of 
sorghum kernels (Fig. 8).
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File: Dessie-1 Rep2.JPG

Label: Dessie-1 Rep2

1 length=77 width=42 area=2500
95,50,20 saddlebrown

2 length=58 width=37 area=1661
125,85,55 saddlebrown

3 length=61 width=36 area=1668
105,65,40 saddlebrown

4 length=61 width=36 area=1713
85,45,25 saddlebrown

5 length=72 width=41 area=2238
105,60,35 saddlebrown

6 length=63 width=39 area=1894
110,65,40 saddlebrown

7 length=56 width=35 area=1520
115,70,40 saddlebrown

(A total of 20 objects displayed)

Fig. 5 Visual output from GRABSEEDS on teff seeds
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Discussion
Achieving high recognition accuracy is a primary goal 
in the development of GRABSEEDS. Accuracy, which 
is measured by both sensitivity (true positive rate) and 
specificity (true negative rate), is essential for reliable 
seed phenotyping. Although GRABSEEDS offers a seam-
less and automatic pipeline for seed phenotyping, the 
sensitivity of seed recognition can be challenged by low-
quality images, which may be affected by poor lighting, 
low contrast, or noisy backgrounds.

To overcome these issues, GRABSEEDS integrates 
advanced filtering techniques, including the Canny 
Gaussian filter, adjustable Gaussian sigma values, and 
optimized closing procedures, which together enhance 

image quality and boost recognition accuracy. Speci-
ficity is further refined by employing size filters that 
effectively distinguish seeds from non-seed objects in 
the background. Additionally, the watershed algorithm 
used by GRABSEEDS excels in segmenting overlapping 
seeds, a frequent challenge in densely packed samples, 
by accurately separating seeds that are in close contact. 
GRABSEEDS offers significant improvements over tools 
like ImageJ, BISQUE, CellProfiler, and SHERPA [17–20], 
which, while powerful in their respective domains, are 
not optimized for seed phenotyping. Unlike ImageJ and 
BISQUE, which require extensive customization for seed 
analysis, GRABSEEDS is designed specifically for agri-
cultural applications, providing built-in capabilities to 
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1 length=188 width=71 area=9934
200,210,165 lightgoldenrodyellow

2 length=181 width=150 area=20184
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3 length=156 width=148 area=17791
160,125,170 plum

4 length=152 width=141 area=16439
165,70,55 brown
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180,155,195 thistle

6 length=191 width=159 area=23171
165,100,100 indianred

7 length=146 width=138 area=14909
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(A total of 13 objects displayed)

Fig. 6 Visual output from GRABSEEDS on petunia flowers
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File: tobacco4.jpg

Label: tobacco4

1 length=364 width=176 area=43716
150,190,85 yellowgreen

2 length=337 width=184 area=43852
220,220,210 floralwhite

3 length=331 width=170 area=40486
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4 length=196 width=92 area=13655
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6 length=316 width=110 area=25734
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(A total of 7 objects displayed)

Fig. 7 Visual output from GRABSEEDS on tobacco leaves. Leaves 2 and 3 carry more pale numbers compared to the remaining healthy tobacco 
leaves, that are primarily identified as yellow green
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handle challenges such as variable lighting and overlap-
ping seeds.

In comparison to previous approaches [43–45], GRAB-
SEEDS offers a significant improvement in handling the 
segmentation of adhered or overlapping seeds. Tradi-
tional methods have often struggled with maintaining 
accuracy in such complex scenarios, whereas GRAB-
SEEDS, through its advanced watershed segmentation 
algorithm, successfully mitigates these challenges. More 
difficult cases can be solved with the deep learning model 
SAM [35], but with a higher computational cost.

This represents a noteworthy advancement in seed 
phenotyping, demonstrating GRABSEEDS’ robustness 
and innovation in accurately extracting phenotypic 
traits even in difficult conditions. Compared to tools 
like SmartGrain and SeedGerm [43, 44], which focus 
on specific tasks like shape measurement or automated 
imaging, GRABSEEDS integrates these functions into 
a single, user-friendly platform optimized for a wide 
range of seed phenotyping tasks. Although we do not 
include direct comparisons with other tools for seg-
menting adhered or overlapping seeds, as these tools 
often lack such functionality, the superior segmenta-
tion capabilities of GRABSEEDS clearly demonstrate 
its effectiveness in seed phenotype extraction. Machine 
learning-based software can extract multiple pheno-
typic features from plant seeds, enabling detailed analy-
sis and efficient separation based on qualities such as 
clarity and vigor [13, 15]. In contrast, GRABSEEDS 
stands out by offering a streamlined, user-friendly 

approach to seed phenotyping. It simplifies the process 
by focusing on the most critical aspects such as seed 
size and color, allowing for rapid, accurate measure-
ments without the need for complex model training. 
GRABSEEDS is designed to be accessible and efficient, 
providing quick results while maintaining the accu-
racy needed for reliable seed analysis. Its simplicity 
and speed make it an ideal choice for users who need 
an effective yet straightforward tool for seed phenotype 
extraction, without the overhead of machine learning 
complexities. We still support the out-of-the-box use of 
state-of-the-art machine learning models, such as SAM 
[35], but processing efficiency remains our primary 
focus.

GRABSEEDS’ accuracy in seed recognition can be 
compromised by poor-quality images, such as those 
with low lighting, low contrast, or noisy backgrounds. 
While the tool incorporates advanced filters to miti-
gate these issues, it may still struggle with suboptimal 
image conditions, potentially affecting the reliability 
of results. To maximize the precision and efficiency of 
GRABSEEDS in large-scale phenotyping experiments, 
we offer a few recommendations below.

Leveraging the tool’s sophisticated algorithms, 
users can optimize outcomes by ensuring that seeds 
occupy a significant portion of the image frame, which 
enhances the efficacy of the size filter and minimizes 
misidentification of seeds as background noise. By 
employing high-resolution imaging and precise focus, 
GRABSEEDS can more accurately distinguish seeds 
from smaller artifacts, further refining its segmenta-
tion performance. Moreover, to fully capitalize on 
GRABSEEDS’ adaptive image processing capabilities, 
it is advisable to control environmental variables such 
as lighting and background texture. Reducing shad-
ows and using a low-texture background minimizes 
the noise input to the Gaussian de-noising algorithm, 
thereby improving the clarity of seed edges and over-
all detection accuracy. While the watershed algorithm 
within GRABSEEDS is highly effective at separating 
closely packed seeds, it is recommended that seeds 
be appropriately spaced within the image to further 
enhance the algorithm’s ability to accurately delineate 
individual seed boundaries, ensuring precise size and 
shape measurements even in dense samples. Although 
GRABSEEDS is highly effective for seed phenotyp-
ing (with leaves and flowers also supported as demon-
strated), it is specialized for this purpose and may not 
be as versatile as more general image analysis tools that 
can be adapted to a broader range of applications. This 
specialization could be a limitation for users needing a 
more flexible tool for different types of biological image 
analysis such as Image J.

Fig. 8 Principal Component Analysis (PCA) plot for sorghum kernel 
measurements. Each scatter dot represents a sorghum kernel 
collected from a total of 249 varieties. The size of the dot shows 
the relative area size of the kernel, while the color of the dot matches 
the extracted color from each kernel
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Conclusions
GRABSEEDS is an advanced software platform that har-
nesses state-of-the-art image processing techniques to 
extract a comprehensive set of key metrics from seeds, 
leaves and flowers. Engineered for exceptional robustness, 
GRABSEEDS performs reliably under a wide range of chal-
lenging conditions, including variable lighting, noisy back-
grounds, and diverse seed sizes and colors. The algorithms 
within GRABSEEDS have been rigorously validated across 
a broad spectrum of seed types, including Camelina, teff, 
sorghum, flower traits in petunia, and leaf traits in tobacco, 
showcasing its versatility and dependability. By integrating 
cutting-edge technologies, GRABSEEDS redefines high-
throughput phenotyping, delivering unmatched accuracy 
and efficiency. This powerful tool empowers researchers 
to conduct large-scale phenotyping studies with ease, mak-
ing it an essential asset in the pursuit of deeper insights 
into plant biology. GRABSEEDS not only streamlines the 
phenotyping process but also facilitates the discovery of 
genetic traits, thereby driving significant innovation in 
plant science and agricultural research.
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