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Abstract 

Background The proportion of nitrogen (N) derived from the atmosphere (Ndfa) is a fundamental component 
of the plant N demand in legume species. To estimate the N benefit of grain legumes for the subsequent crop 
in the rotation, a simplified N balance is frequently used. This balance is calculated as the difference between fixed 
N and removed N by grains. The Ndfa needed to achieve a neutral N balance (hereafter θ ) is usually estimated 
through a simple linear regression model between Ndfa and N balance. This quantity is routinely estimated with-
out accounting for the uncertainty in the estimate, which is needed to perform formal statistical inference about θ . 
In this article, we utilized a global database to describe the development of a novel Bayesian framework to quantify 
the uncertainty of θ . This study aimed to (i) develop a Bayesian framework to quantify the uncertainty of θ , and (ii) 
contrast the use of this Bayesian framework with the widely used delta and bootstrapping methods under different 
data availability scenarios.

Results The delta method, bootstrapping, and Bayesian inference provided nearly equivalent numerical values 
when the range of values for Ndfa was thoroughly explored during data collection (e.g., 6–91%), and the number 
of observations was relatively high (e.g., ≥ 100 ). When the Ndfa tested was narrow and/or sample size was small, 
the delta method and bootstrapping provided confidence intervals containing biologically non-meaningful values 
(i.e. < 0% or > 100%). However, under a narrow Ndfa range and small sample size, the developed Bayesian inference 
framework obtained biologically meaningful values in the uncertainty estimation.

Conclusion In this study, we showed that the developed Bayesian framework was preferable under limited data 
conditions ─by using informative priors─ and when uncertainty estimation had to be constrained (regularized) 
to obtain meaningful inference. The presented Bayesian framework lays the foundation not only to conduct for-
mal comparisons or hypothesis testing involving θ , but also to learn about its expected value, variance, and higher 
moments such as skewness and kurtosis under different agroecological and crop management conditions. This 
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framework can also be transferred to estimate balances for other nutrients and/or field crops to gain knowledge 
on global crop nutrient balances.

Keywords Delta method, Bootstrapping, N balance, Roots

Background
The biological nitrogen (N) fixation is an essential pro-
cess in legume species. This process is highly relevant 
in agroecosystems because it represents a sustainable 
strategy to possibly increase soil N stock [1], reducing 
the dependence on N fertilizers and thus minimizing 
agriculture’s environmental footprint [2]. The fixed N is 
stored in crop tissues until harvest, where a fraction of 
this N is exported with grains and other remains in the 
field as stover. The proportion of N that comes from the 
N fixation process, with respect to the crop N demand, 
is termed as N derived from the atmosphere (Ndfa). This 
quantity is typically computed as:

There is a general consensus in grain legume studies 
to compare the Ndfa with the proportion of N allocated 
to the grains (i.e., the N harvest index, NHI) for estimat-
ing N gains or losses in the cropping system [3, 4]. When 
the Ndfa (relative N input) is greater than the NHI (rela-
tive N output), legumes are expected to contribute with 
N to the overall soil N balance. The N balance of legume 
crops is usually estimated as the difference between the 
quantity of fixed N by the crop and removed N by har-
vestable organs (both expressed in kg  ha−1). This is a sim-
plification to calculate the N balance in agroecosystems 
because other N inputs (synthetic N fertilizers, manures, 
atmospheric N depositions, irrigation water) and outputs 
(leaching, volatilization, denitrification, surface runoff) 
are not considered [5, 6]. However, for the purposes of 
this study, it is defined that: (i) when the contribution of 
the belowground N (N in roots and rhizodeposition) is 
excluded, the N balance is referred to as partial N balance 
(PNB); and (ii) when this plant fraction is included, it is 
termed total N balance (TNB).

The Ndfa needed to achieve a neutral PNB or TNB 
can be estimated as a function of Ndfa [7, 8]. Usually, the 
relationship between Ndfa and PNB or TNB is described 
with the simple linear regression model (Fig. 1):

where yi is the PNB or TNB (in kg  ha−1) for the ith obser-
vation, xi is the ith observation of Ndfa (predictor vari-
able),  β0 (intercept) is the expected PNB or TNB when 
the crop did not fix N (i.e., when xi = 0 ), β1 (slope) is the 

Ndfa =

[

Fixed N
(

kg ha−1
)

Nuptake
(

kg ha−1
)

]

· 100%

(1)yi = β0 + β1xi + εi,

change in PNB or TNB per unit of Ndfa (note that our 
previous knowledge on the subject allows us to assume 
β1 ≥ 0 ), and εi is the residual error. After fitting the 
model, the expected value of PNB or TNB is set to zero, 
that is E

(

yi
)

= 0 . By doing so, it is said that PNB or TNB 
are expected to be neutral. Then, according to Eq. 1, the 
Ndfa to get a neutral PNB or TNB can be determined by 
finding the x value when E(yi) = 0 . We label this quantity 
θ , and it can be calculated according to

as it is shown in Fig. 1.
For modeling purposes, it is important to consider 

that the Ndfa is a proportion that can only take values 
between 0 and 100. Likewise, θ is the Ndfa to achieve a 
neutral N balance (PNB or TNB) that also can only take 
values between 0 and 100. Thus, 0 ≤ θ ≤ 100 . After θ is 
estimated using Eq.  2, its uncertainty must be quanti-
fied to enable formal statistical inference. Perhaps the 
two most common approaches to quantify the uncer-
tainty are the delta method [9] and bootstrapping [10], 
which enable the calculation of standard errors and 
confidence intervals on the estimates for θ . The delta 
method is an asymptotically (large sample size) based 
technique that implements Taylor series approxima-
tion to approximate the variance of a function of a ran-
dom variable. On the other hand, bootstrapping is a 

(2)θ = −β0
/

β1
,

Fig. 1 Illustration of the estimation of the Ndfa (proportion 
of the total crop N derived from the atmosphere) needed to achieve 
a neutral partial or total N balance ( θ ). That quantity called θ 
is calculated as a function of the intercept ( β0 ) and of the slope ( β1 ) 
of the common linear regression model for partial or total N balance 
( y ) as a function of Ndfa ( x)
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computational technique based on a resampling of the 
observed data. Alternatively, a third approach, Bayesian 
inference, may also be used to estimate θ and quantify 
its uncertainty.

A Bayesian framework is convenient for scenarios 
with a limited number of observations, especially when 
previous information exists [11]. Bayesian inference 
is a statistical technique based on Bayes and Laplace’s 
work early in the 1700’s, however, in the past 40 years 
rapid computational advancements have made Bayesian 
methods usable and accessible to scientists [12]. Bayes-
ian inference appears to be underutilized in legume 
research for estimating θ and quantifying its uncer-
tainty [7, 8, 13, 14]. In this article we will present how 
Bayesian inference, the delta method, and bootstrap-
ping effectively address the uncertainty quantification 
of θ when the data at hands contain valuable informa-
tion. Furthermore, we will depict how Bayesian infer-
ence can be effective to address such problems under 
limited data conditions.

In most cases, θ is estimated without quantifying or 
considering the uncertainty surrounding the estimate 
[7, 8, 13, 14]. This point estimate approach, while use-
ful, does not allow for formal statistical inference which 
is needed to obtain reliable scientific conclusions. Fur-
thermore, it is important to select an appropriate statis-
tical technique that matches the biological underlying 
assumptions of the range of values that the variable can 
take. In this article we demonstrate the delta method 
and bootstrapping, and we describe the development of 
novel Bayesian framework to quantify the uncertainty 
of the Ndfa needed to attain neutral N balance in leg-
ume crops ( θ ). We hypothesized that under limited 
data conditions, the developed Bayesian framework 
provided better uncertainty estimations of θ than the 
delta method and bootstrapping, while minor differ-
ences were expected among the three methods under 
greater data availability.

The aims of this study were to (i) develop a Bayes-
ian framework to quantify the uncertainty on the Ndfa 
needed to achieve neutral PNB or TNB in grain legume 
species, and (ii) contrast the use of this framework with 
the delta method and bootstrapping under different 
scenarios of data availability. The developed Bayesian 
framework can expand a new study niche in agriculture, 
offering opportunities for parameter estimations, formal 
statistical inference, uncertainty quantification and prop-
agation, among other applications. Furthermore, this 
article also serves as a practical guide for Bayesian non-
practitioners to apply Bayesian inference in other areas 
of study within the field of agriculture. We present a case 
study with the sole objective of illustrating a potential use 
of this statistical framework.

Materials and methods
We illustrate the three methods (delta method, boot-
strapping, Bayesian inference) for quantifying the uncer-
tainty on θ by retrieving the data from [13]. The workflow 
implemented in this study is depicted in the flowchart 
presented in Fig.  2. Furthermore, Fig.  2 provides infor-
mation to future users to decide in which cases apply 
the Bayesian framework developed in this article. Since 
there is no rule for defining when datasets are small, 
overall, it would be justified running the proposed Bayes-
ian framework in cases where information is available to 
define priors and/or the delta method and/or bootstrap-
ping provide unreliable uncertainty estimations (e.g. 
θ > 100% or θ < 0%).

Data collection and description
The variables (Ndfa, fixed N, seed N) were collected in 
chickpea (Cicer arietinum L.), common bean (Phaseolus 
vulgaris L.), cowpea (Vigna unguiculata L.), faba bean 
(Vicia faba L.), field pea (Pisum sativum L.), lentil (Lens 
culinaris Medik), white lupin (Lupinus albus L.), blue 
lupin (Lupinus angustifolius L.), and peanut (Arachis 
hypogaea L.). A similar literature search was conducted 
to retrieve the proportion of N that is allocated to the 
roots and rhizodeposition with respect to the total N 
in the plant (above + belowground N). For more details 
about the criteria to select papers for the database see 
[13]. We also included unpublished data for peanut in the 
current study.

Variable descriptions and calculations
The authors in [13] studied belowground N contributions 
retrieving the information from articles implementing 
physical recovery and 15N-labelling techniques for quan-
tifying belowground N [15]. With the collected informa-
tion, Palmero et al. [13] calculated a root factor as:

where Below ground N and Above ground N refer to the 
proportions of N found below and above the ground, 
respectively, relative to the total plant N demand. For 
instance, assume a scenario where the total N in a crop 
(considering above and belowground structures) is 
125 kg  ha−1, but this value is unknown. What is known is 
the amount of N (kg  ha−1) in the aboveground structures 
of the crop and the proportion of N allocated to the roots 
relative to the total N in the crop. Assuming that the 
aboveground N is quantified at 100 kg  ha−1 and the root 
N allocation is 20%. Therefore, we know that 100 kg of N 
 ha−1 represents 80% of the total N in the crop. Therefore, 

(3)Root Factor = 1+
Below ground N

Above ground N
,
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by calculating the root factor, and applying it to estimate 
the total N uptake (above + belowground structures), we 
have the following:

Thus, the root factor allows the incorporation of the N 
allocated to the roots when calculating the total fixed N 
by a crop (see Eq. 5).

The Ndfa (%) values, representing the proportion of 
total aboveground N derived from the N fixation process, 
were obtained through a literature review only for above-
ground parts of the crop. The fixed N (kg  ha−1) can be 
calculated by excluding the contribution of N from roots 
and rhizodeposition as follows:

Root Factor = 1+
0.20

0.80
= 1.25

Total N in the crop
(

kg ha−1
)

= 100 kg ha−1
· 1.25

= 125 kg ha−1

(4)

Fixed Aboveground N
(

kg ha−1
)

=Total Aboveground

Uptake N
(

kg ha−1
)

·

Ndfa(%)

100
.

In addition, assuming Ndfa did not differ between 
above- and below-ground structures [16], the Ndfa 
estimated for the aboveground tissues can be used to 
estimate the fixed N considering the belowground N con-
tribution according to Eq. 3 and Eq. 4 as

Lastly, the Fixed Aboveground N and Total Fixed N can 
be used to calculate the PNB and TNB, respectively, as 
follow:

If either of these balances are positive, it means that 
the fixed N (excluding (Eq. 6) or including (Eq. 7) below-
ground N contribution) is greater than the N exported in 

(5)

Total Fixed N
(

kg ha−1
)

=Total Aboveground

Uptake N
(

kg ha−1
)

·

Root Factor ·
Ndfa(%)

100
.

(6)

PNB (kg ha−1
) = Fixed Aboveground N (kg ha−1

)

− Seed N (kg ha−1
),

(7)

TNB (kgha−1
) =Total Fixed N (kg ha−1

)

− Seed N (kg ha−1
).

Fig. 2 Flowchart depicting the workflow implementing in this study and showing the cases where it is worth applying the developed Bayesian 
framework
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seeds and a net soil N input occurs, resulting in a positive 
N balance. On the other hand, negative values indicate 
that the fixed N was not enough to compensate the N 
exported in seeds and a net soil N reduction takes place, 
resulting in a negative N balance.

Statistical models
In this section, we will provide details about the differ-
ent approaches to estimate the parameter of interest and 
introduce a few modifications in the original model [7, 
8] to incorporate previous knowledge in the statistical 
model.

Regression model
First, we used a simple linear regression model for PNB 
or TNB as a function of Ndfa. We introduced this model 
in Eq. 1 as

where yi , xi , β0 , β1 , and εi have the same interpretation 
than that mentioned in the background section for Eq. 1. 
This model has a deterministic part, β0 + β1xi , and a ran-
dom part, εi , which is usually assumed that εi ∼ N (0, σ 2

) . 
The Ndfa needed to achieve neutral N balances in grain 
legume species (called θ ) can be calculated as a function 
of β0 and β1 . The delta method and bootstrapping can be 
implemented to quantify the uncertainty of θ.

The delta method allows us to approximate sam-
pling distributions for functions of random variables. 
Since both β0 and β1 have their own variance estimation 
and θ is a function of the β′s , the delta method can be 
applied to estimate the variance of θ [17]. Then, under the 

yi = β0 + β1xi + εi,

assumption that the sampling distribution of the ratio −β0

β1
  

is asymptotically normally distributed, the approximated 
variance of θ (obtained via delta method) can be used to 
construct confidence intervals.

The bootstrapping technique utilizes the plug-in prin-
ciple to estimate the population distribution based on the 
empirical distribution of the observed data [10]. Applying 
this computational technique to a linear model consists 
of taking K random samples (with replacement) of the 
same size as the original data (n), and then fitting the lin-
ear model to each of the K samples of size n. Finally, the K 
estimates are utilized to construct the confidence interval 
of θ . In this study, K was equal to 10,000.

Bayesian inference
Bayesian inference offers an alternative to solve the chal-
lenges found when implementing the delta method and 
bootstrapping for this particular study. Through Bayesian 
inference, the estimation of the model parameters and 
their variability can be regularized by including previous 
knowledge into the model [18]. For example, in Fig.  1, 
values of θ greater than 100 are not possible. Therefore, 
it is realistic to incorporate this assumption into our 
linear regression model. Up to this point, the model as 
presented in Eq. 1 can be implemented under any frame-
work. However, a Bayesian framework is needed in some 
situations because it allows us to incorporate information 
about the model parameters in the form of probability 
distributions, known as prior distributions (regulator; 
Table 1).

As described, the regression model in Eq.  1 does not 
allow to incorporate knowledge about the θ , because θ 

Table 1 Glossary of terms and definitions

Term Definition

Moments A set of values used to quantify characteristics of a probability distribution, such as, its mean (expected value) and variance. 
Moments describe the shape, location, and spread of a probability distribution

Expected value The mean of a random variable weighted according to the probability distribution. It is the first moment of the probability distri-
bution of a random variable. It is represented as E(.)

Variance The second central moment of the probability distribution of a random variable. It measures the degree of spread of a distribu-
tion around its mean

Prior distribution An assumed function that maps the probability for a specific model parameter, that is independent of the data to be analyzed 
(e.g., θ ∼ N(0,2) ). The natural regulator in Bayesian models

Hyperparameter The parameter that defines the prior distribution that is assumed fixed and known (e.g., 0 and 2 in a prior distribution for θ 
that is θ ∼ N(0,2))

Likelihood A function that maps the probability or density of the model parameters given the observed data. It is the link between the data 
and the posterior distribution of the parameters in Bayesian models

Posterior distribution Probability distribution of the parameters after observing (given) the data

Marginal posterior Probability distribution of a single random variable in a Bayesian model that is conditional only on the data

Regularization The process of constraining a statistical inference problem (i.e., penalization or shrinkage)

Regulator Prior, penalty, or constraint
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is not directly but indirectly present in Eq.  1 by utiliz-
ing β0 and β1 (Eq.  2; Fig.  1). In Bayesian inference any 
unobserved quantity is considered a random variable. 
Therefore, the model parameters β0 , β1 are random vari-
ables under the Bayesian paradigm. Furthermore, a func-
tion of a random variable is also a random variable. We 
showed that θ =

−β0

β1
 . Therefore, θ becomes a parameter 

that models the proportion of N that the legume crop 
has to fix (Ndfa) to achieve a neutral N balance. Using 
the expression θ =

−β0

β1
 , we can write β0 as a function of 

θ and β1 represented as β0 = −β1θ . Now, we can use the 
last equality to plug it in Eq. 1. Thus, the original linear 
model can be re-written as

where yi is the PNB or TNB (kg  ha−1) for the ith observa-
tion, xi  is the ith observation of Ndfa, β1  represents the 
change in PNB or TNB per unit of Ndfa, θ is the Ndfa 
required to achieve a neutral N balance, and εi is the 
residual error. Since the framework we propose in this 
study is Bayesian, we need to provide priors (also called 
parameter models) for the model parameters in Eq.  8. 
We have assumed that εi ∼ N

(

0, σ 2
)

. Therefore, σ 2 ─or 
the standard deviation ( 

√

σ 2 = σ )─ is a parameter to be 
estimated as is β1 and θ . The parameter models (priors) 
selected on this study were:

(8)yi = −β1θ + β1xi + εi

(9)β1 ∼ gamma(1.6, 0.8),

(10)θ ∼ beta(α,β),

(11)σ ∼ gamma(2.5, 0.05).

The numerical values within the parentheses in Eq. 9–
11 are the parameters that shape the probability distri-
bution. In Bayesian inference, these parameters (e.g., 
1.6 and 0.8 in Eq. 9) are referred to as hyperparameters 
(Table 1). In this study, we uniquely determined the val-
ues for the hyperparameters for the beta distribution ( α 
and β ) for each species, and their values are presented in 
Table 2. Setting the hyperparameters allows us to define 
the expected value and variance for the prior probabil-
ity distributions. The computed expected values were 
E(β1) =

1.6
0.8

 , E(σ ) = 2.5
0.05

 , and E(θ) = α

α+β
 . More details 

related to parameters and probability distributions 
selected as prior are provided in the subsequent sections.

Informative priors
The Bayesian framework consists of three core steps: (i) 
determining the likelihood function; (ii) capturing the 
knowledge about the parameters in the statistical model 
through the prior distribution; and (iii) combining the 
likelihood and the prior applying the Bayes’ theorem to 
obtain the posterior distribution of the model param-
eters (Table 1; Supplementary Note 1). The priors influ-
ence the posterior distribution of the model parameters, 
as the posterior is a balance between the data, the like-
lihood, and the priors [19, 20]. However, the impact of 
the priors on the posterior is usually reduced as sample 
size increases. Bayesian statistics allow us to incorporate 
previous scientific knowledge into our model through the 
use of priors. The information (data or expert knowledge) 
used for specifying the hyperparameters must be inde-
pendent from the data used to fit the parameters of the 
model [18]. In this study, we employed informative priors 
for the model parameters based on independent informa-
tion collected from previous studies.

Table 2 Moments and hyperparameters for the prior probability distribution of θ parameter for Partial N Balance (PNB) and Total N 
Balance (TNB)

The moments were calculated using the collected information about NHI and the hyperparameters were obtained by moment matching based on the previously 
calculated moments

Species Moments Probability 
distribution

Hyper parameters

PNB TNB

E(θ) Var(θ) E(θ) Var(θ) PNB TNB

Blue lupin 0.76 0.0066 0.59 0.0098 Beta (20.26, 6.33) (13.94, 9.51)

Chickpea 0.75 0.0078 0.42 0.0117 Beta (17.16, 5.76) (8.24, 11.41)

Common bean 0.69 0.0368 0.53 0.0553 Beta (3.30, 1.45) (1.85, 1.65)

Cowpea 0.61 0.0064 0.28 0.0096 Beta (22.06, 14.11) (5.82, 14.48)

Faba bean 0.84 0.0826 0.56 0.0124 Beta (12.99, 2.53) (10.58, 8.28)

Field pea 0.64 0.0152 0.44 0.0228 Beta (9.04, 5.00) (4.34, 5.45)

Lentil 0.72 0.0239 0.44 0.0356 Beta (5.35, 2.10) (2.56, 3.29)

Peanut 0.65 0.0162 0.57 0.0243 Beta (8.47, 4.62) (5.21, 3.84)

White lupin 0.82 0.0019 0.57 0.0029 Beta (62.52, 14.06) (47.94, 35.35)
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Because a greater Ndfa means a larger proportion 
of the total crop N being fixed, higher Ndfa results in 
larger N balances, making β1 to take positive values [7, 
8, 14]. The standard deviation parameter ( σ ) is the posi-
tive square root of the variance, and thus, can take only 
positive real numbers. The gamma distribution is a con-
tinuous distribution of the positive real numbers that can 
take different shapes. Therefore, we chose the gamma 
distribution to represent our prior knowledge of β1 and 
σ . The parameter θ represents a proportion, indicating 
the Ndfa required to achieve a neutral N balance. There-
fore, θ can take only positive values between 0 and 1 (or 
0 and 100 if scaled). Since the beta distribution mod-
els continuous random variables that can take values 
between 0 and 1, we selected it as prior for θ . Further-
more, the beta distribution has flexible shapes, which is 
not the case of a standard uniform distribution. Selecting 
beta as prior distribution for θ restricts its values, which 
are in fact delimited by the nature of the Ndfa concept to 
be 0 ≤ θ ≤ 1 . This exemplifies how priors can behave as 
regulators in Bayesian models [18].

The hyperparameters for the beta distribution used in 
Eq. 10 for θ were defined based on previous literature to 
best represent our prior knowledge of that parameter. 
However, no information was directly available for the 
θ . Thus, bringing Eq. 4 and Eq. 6 and considering that θ 
represents the Ndfa value when PNB (or TNB) is equal 
to zero:

This result indicates that the PNB equals zero when the 
Ndfa is equal to the N harvest index or NHI [3, 4]. This 
calculation uses PNB rather than TNB because most cur-
rent scientific literature calculates NHI without consider-
ing below-ground biomass contribution.

We conducted a literature review to collect informa-
tion about the NHI of the nine legumes species included 
in this study. This review was independent from that 
utilized by [13]. The literature search was conducted 
through Google  Scholar®,  Scopus®, and Web of  Science® 
search engines (last search on August 8, 2023) using the 
following keywords: ("legume scientific name" OR "leg-
ume vulgar names") AND ("nitrogen harvest index" OR 
"NHI" OR "N harvest index"). We retrieved a total of 
153 articles (excluding duplicates). The selection cri-
teria were: (i) the experiments were performed in field 
conditions; (ii) NHI has been reported, and calculated 

PNB
(

kgha−1
)

=Total Aboveground Uptake N
(

kgha−1
)

·
Ndfa(%)

100
− Seed N

(

kgha−1
)

,

Ndfa(%)

100
= NHI

excluding roots; and (iii) management information (e.g., 
N rate, sowing date, irrigation, insect, and pest manage-
ment) and potential stress factors (e.g., drought, heat, 
nutrient deficiency) were reported. If the crop perfor-
mance was severely affected by management practices or 
stress, the study was not included to avoid NHI values < 0 
or > 1. In addition, the study must not have been included 
in the previous review process used to build the original 
database to ensure data independence to build the priors 
for θPNB and θTNB . Ultimately, out of the pooled of arti-
cles, a total of 42 studies were included in the analysis 
(https:// figsh are. com/s/ 60a9c f527e cb9de 02166).

We used the NHI values collected for each species to 
calculate its mean and variance, which represent the 
mean and the variance of the Ndfa required for a neu-
tral PNB, herein termed as θPNB . Then, the mean and the 
variance were used to calculate the parameters ( α and β) 
of the beta distribution via moment matching (Supple-
mentary Note 2), which was used as prior distribution 
for each of the studied species (Table 2). For the Ndfa to 
achieve a neutral TNB, we reduced the expected value 
of the Ndfa in a proportion equivalent to the propor-
tion of N that is allocated to root according to previous 
information [13, 21]. Given the low certainty of this prior 
information, we increased the variance of the prior dis-
tribution by 50% to account for this uncertainty. Finally, 
we used the recalculated mean and variance to calculate 
the hyperparameters of the beta distribution for θ , now 
referred as θTNB (Table  2). Supplementary Fig.  1 illus-
trates the discrepancies between prior probability distri-
butions of θPNB and θTNB.

Model fitting and parameters of the posterior probability 
distributions
The model presented in Eq.  8 to Eq.  11 was fitted to 
the nine species in the original database [13] for both 
response variables (PNB and TNB). The expected value 
and variance of the model parameters ( β1, θ , and σ ) were 
computed from their marginal posterior probability dis-
tributions (Table 1; Supplementary Note 1) for the PNB 
and TNB. Subsequently, we used the estimated expected 
values and variances to determine the parameters of 
the probability distribution of β1, θ , and σ via moment 
matching (Supplementary Note 2). Those parameters 
are reported in Table 3, facilitating their use as priors in 
future applications of the method presented in this study.

Case study
In this section, we bring and describe a case study to 
showcase a potential use of the method presented in 
this article. This illustration is applied after estimating 
θ , and quantifying its uncertainty, to formally determine 
whether the PNB underestimates the true N balance 

https://figshare.com/s/60a9cf527ecb9de02166
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in legume species. The first step is computing the PNB 
and TNB using independent observations. Then, these 
observed PNB and TNB are used to fit the Bayesian 
model presented in Eqs.8–11. Once the model is fitted, 
the posterior probability distribution for θPNB and θTNB 
are selected. The Ndfa comparison is made simply by 
subtracting the posterior probability distribution for θPNB 
and θTNB parameters. Then the quantiles of the desired 
credible interval are computed. Finally, it is observed 
whether zero is included in the credible interval of the 
distribution of the difference: (i) if zero is included, we 
conclude θPNB and θTNB are not different, (ii) if zero is not 
included, θPNB and θTNB are different.

For simplicity, we implemented this case study only 
for two species, chickpea, and common bean, using data 

from a literature review [13]. Before fitting the model, we 
split the data into half by randomly sampling the collected 
studies (without replacement), which resulted in five 
chickpea and two common bean studies per subset. Then 
PNB and TNB were computed in each subset indepen-
dently. The data was split to make comparisons between 
θPNB and θTNB . Next, we fitted the Bayesian model (Eq. 8 
to Eq. 11) to these subsets within each species. The pos-
terior probability distribution for θPNB and θTNB were 
obtained and subtracted. The 95% credible interval was 
determined by computing the 0.025 and 0.975 quantiles 
of the probability distribution of the difference. Finally, it 
was observed whether zero was included in the credible 
interval.

Table 3 Moments and hyperparameters for the model parameter for Partial N Balance (PNB) and Total N Balance (TNB)

The moments were obtained from the posterior probability distribution and the hyperparameters were calculated using moment matching based on the previously 
obtained moments. For the gamma distributions, the first value between the parenthesis in the hyperparameter columns is the shape parameter ( α ) while the second 
is the rate parameter ( β ). For the beta distributions those values are called shape ( α and β ) The hyperparameters might be used as priors in future applications of the 
model presented in this study

Species Parameter Moments Probability 
distribution

Hyper parameter

PNB TNB

E(x) Var(x) E(x) Var(x) PNB TNB

Blue lupin β1 1.98 0.616 3.17 0.310 Gamma (6.36, 3.21) (32.41, 10.22)

θ 0.592 0.0063 0.569 0.0007 Beta (22.10, 15.23) (198.77, 150.56)

σ 57.58 128.40 20.10 26.68 Gamma (25.82, 0.45) (15.14, 0.75)

chickpea β1 0.70 0.014 1.72 0.032 Gamma (35.00, 50.00) (92.45, 53.75)

θ 0.644 0.0037 0.308 0.0007 Beta (39.26, 21.70) (93.47, 210.01)

σ 19.63 5.76 25.59 12.56 Gamma (66.90, 3.41) (52.14, 2.04)

Common bean β1 1.15 0.0912 1.23 0.083 Gamma (14.50, 12.61) (18.23, 14.82)

θ 0.574 0.0043 0.511 0.0022 Beta (32.07, 23.80) (57.53, 55.05)

σ 24.46 14.29 22.98 12.78 Gamma (41.87, 1.71) (41.32, 1.80)

Cowpea β1 1.53 0.084 2.81 0.328 Gamma (27.87, 18.21) (24.07, 8.57)

θ 0.542 0.0085 0.284 0.0048 Beta (15.28, 12.92) (11.74, 29.61)

σ 23.36 7.92 60.76 51.66 Gamma (68.90, 2.95) (71.46, 1.17)

Faba bean β1 1.61 0.048 2.76 0.110 Gamma (54.00, 33.54) (69.25, 25.09)

θ 0.609 0.0007 0.454 0.0013 Beta (206.55, 132.61) (86.11, 103.56)

σ 33.06 7.20 51.36 17.13 Gamma (151.80, 4.59) (153.99, 3.00)

Field pea β1 1.31 0.035 1.88 0.049 Gamma (49.03, 37.43) (72.13, 38.36)

θ 0.585 0.0008 0.449 0.0009 Beta (176.94, 125.52) (122.97, 150.91)

σ 38.07 7.33 46.74 10.87 Gamma (197.72, 5.19) (200.98, 4.30)

Lentil β1 0.94 0.021 1.31 0.042 Gamma (42.07, 44.76) (40.86, 31.19)

θ 0.637 0.0006 0.428 0.0025 Beta (244.85, 139.53) (41.48, 55.44)

σ 18.55 2.74 26.62 5.48 Gamma (125.58, 6.77) (129.31, 4.86)

Peanut β1 2.17 0.143 2.36 0.130 Gamma (32.93, 15.17) (42.84, 18.15)

θ 0.581 0.0008 0.515 0.0007 Beta (176.22, 127.08) (183.25, 172.57)

σ 39.56 19.78 38.62 18.19 Gamma (79.12, 2.00) (81.99, 2.12)

White lupin β1 2.41 0.217 3.17 0.310 Gamma (26.76, 11.11) (32.41, 10.22)

θ 0.859 0.0007 0.569 0.0007 Beta (147.77, 24.25) (198.77, 150.56)

σ 23.63 37.53 20.09 26.68 Gamma (18.89, 0.71) (15.13, 0.75)
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Computation and reproducibility
The Bayesian model presented in Eq. 8 to Eq. 11 was fit-
ted using a Markov Chain Monte Carlo (MCMC) algo-
rithm called Non-U-Turn Sampling (NUTS). A total of 4 
chains were implemented with 20,000 iterations in total 
and 10,000 iterations as warm-up. The convergence of 
the chains was assessed visually through trace plots and 
analytically via the Gelman-Rubic diagnostic [22]. A seed 
was set for reproducibility. We performed the Bayesian 
analyses using Stan probabilistic programming language 
via rstan package [23]. The bootstrapping technique 
was implemented using the rsample package [24], while 
the delta method was carried out with the msm package 
[25]. All the statistical analyses were performed using the 
R software [26] in RStudio interface [27]. The code for 
the analyses is publicly available in https:// github. com/ 
Franc iscoP almero/ Ndfa_ uncer tainty and https:// figsh are. 
com/s/ 60a9c f527e cb9de 02166. The databases used in this 
article are available at https:// figsh are. com/s/ 60a9c f527e 
cb9de 02166.

Results
Delta method, bootstrapping, and Bayesian inference 
performance
We evaluated the delta method, bootstrapping, and 
Bayesian inference in two contrasting scenarios. These 
methods provided nearly equivalent numerical val-
ues when the range of possible values for Ndfa was 
thoroughly explored (e.g., 6–91%), and the number of 

observations was relatively high (e.g., n ≥ 100 ) (Scenario 
A in Fig.  3). In the opposite case (Scenario B in Fig.  3) 
was when the Ndfa observations were closer to their 
upper limit, the range of the Ndfa was poorly explored 
(e.g., 46–78%), and the number of observations was low. 
Under these conditions, the delta method and bootstrap-
ping provided uncertainty estimates, such as confidence 
intervals, that contained nonviable values in the real 
world, i.e. less than 0% or more than 100% (Scenario B 
in Fig.  3). Therefore, these results show that, in a data 
deficiency scenario, bootstrapping and delta method 
could yield values outside the expected biological range, 
0–100%.

Posterior probability distributions
The expected value and variance of the model parameters 
for the nine species, computed from their marginal pos-
terior probability distributions, are shown in Table 2. The 
θ parameter values fell within the biologically plausible 
range of [0, 100] (Fig. 4). This depicts how priors act as 
regulators in Bayesian models.

Initially, the hyperparameters for β1 and σ in the 
gamma distribution were the same across species. How-
ever, those values are now different, which is also the case 
for the parameters of the beta distributions for θ (see 
Table  2 and Table  3). This depicts how Bayesian frame-
work can be used to combine prior knowledge (expressed 
as probability distributions) with the observed data 
to update our understanding about a given process in 

Fig. 3 Point estimation and uncertainty quantification of θ implementing delta method, bootstrapping and Bayesian inference under two 
contrasting scenarios. In scenario A, the range of possible values for Ndfa is thoroughly explored (e.g., 6–91%), and the number of observations 
is relatively high ( n ≥ 100 ), and the three methods work similarly. In scenario B, observations of Ndfa are concentrated closer to its upper limit, 
the range of the Ndfa is poorly explored (e.g., 46–78%), and the number of observations is low (approximately 10), delta method and bootstrapping 
provide confidence intervals of θ that contain nonviable values in the real world. Field pea (Pisum sativum L.) (Scenario A) and white lupin (Lupinus 
albus L.) (Scenario B) data from [13] were implemented

https://github.com/FranciscoPalmero/Ndfa_uncertainty
https://github.com/FranciscoPalmero/Ndfa_uncertainty
https://figshare.com/s/60a9cf527ecb9de02166
https://figshare.com/s/60a9cf527ecb9de02166
https://figshare.com/s/60a9cf527ecb9de02166
https://figshare.com/s/60a9cf527ecb9de02166
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nature using concepts from probability theory. The influ-
ence of the observed data on the posterior probability 
distribution (updating process) depended on the number 
of observations for a given species. The greater the num-
ber of observations, the lower the influence of the prior 
on the posterior. This is depicted in Fig. 4 based on the 
proximity of the prior and posterior distribution peaks 

(the closer the peaks, the higher is the influence of the 
prior on the posterior).

We obtained the expected value and the variance of the 
model parameters from their marginal posterior prob-
ability distributions and utilized them to calculate the 
hyperparameters of their respective assumed distribu-
tions (priors). Therefore, the probability distributions 

Fig. 4 Histograms of samples from the prior (blue) and posterior (posterior) probability distributions for the θ parameter for Partial N Balance ( θPNB ) 
and Total N Balance ( θTNB ). The numbers inside the plot of each species indicate the number of observations. Priors are beta probability distributions 
based on the previously collected data from the literature, and posterior probability distributions were obtained as the marginal distributions of θPNB 
and θTNB via MCMC sampling

Fig. 5 Posterior probability distribution of the difference between θ for Partial N Balance ( θPNB ) and Total N Balance ( θTNB ) in chickpea and common 
bean. The red dashed lines indicate the 0.025 and 0.975 quantiles, and the blue dashed lines indicate the median (0.5 quantile) of the posterior 
probability of the difference. The green solid lines indicate zero
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shown in the last three columns of Table 3 can be used 
as prior distributions on future applications of the model 
presented in this study.

Case study
A potential use of the proposed method was applied 
to chickpea and common bean to determine differ-
ences between θPNB and θTNB . This case study is graphi-
cally represented in Fig. 5. The probability distribution 
for the difference between θPNB and θTNB are depicted 
through histograms. The lower and upper limits of the 
confidence interval were indicated with red-dashed 
lines. For chickpea, the absence of zero in the credible 
interval suggests a significantly lower Ndfa require-
ment for neutral N balance when belowground plant 
N is considered (Fig.  5). Specifically, chickpeas would 
require fixing between 22 and 58% less N, with a 
median of 41%, to achieve a neutral N balance if roots 
were considered. In contrast, for Common Bean, the N 
contribution from belowground plant structures was 
not substantial enough to show a significant difference 
in Ndfa requirement for neutrality (zero was included 
in the 95% credible interval; Fig. 5).

When interpreting this analysis, two main aspects 
should be noted: (i) The direction of the difference 
between θPNB and θTNB . In this case, the difference was 
computed as θPNB − θTNB . This means that positive val-
ues indicate a lower Ndfa needed to achieve a neutral N 
balance when belowground plant N is considered. If the 
difference is computed as θTNB − θPNB , the conclusions 
about the significance of the difference are not affected 
(if zero is included or not), but the interpretation of the 
values is different. (ii) This method employs Bayesian 
inference, using credible intervals instead of confidence 
intervals common in classical analyses. The confidence 
intervals are understood as the proportion of experi-
ments that would contain the true difference under a 
long series of replications of the experiment. While the 
credible interval is understood as the probability of the 
difference lying between the limits of the interval.

Discussion
In this study, we developed a Bayesian framework 
to quantify the uncertainty on the Ndfa required to 
achieve neutral N balances in grain legume species. This 
approach was contrasted with the use of delta method 
and bootstrapping. The developed a framework allowed 
us to solve common issues in fitting N balance models, 
like obtaining unrealistic estimates and results, especially 
when using small datasets. This is the first study intro-
ducing new perspectives on using Bayesian inference 
for reliable estimations and uncertainty quantification of 
the Ndfa needed to achieve neutral PNB ( θPNB ) or TNB 

( θTNB ) in grain legume species. We demonstrated the 
incorporation of previous knowledge into the model, as 
well as providing information for improving the infer-
ence in future studies. The hyperparameters of the pos-
terior probability distribution of model parameters were 
presented, which can be implemented as prior in future 
investigations [28]. This article can also serve as a prac-
tical guide for agricultural scientists new to the Bayes-
ian framework. Moreover, a case study demonstrated a 
potential application of the method, showcasing its use-
fulness in global estimations of N fixation contributions 
in grain legume species.

By applying the Bayesian framework, the probability 
distribution of θ was obtained for each of the addressed 
legume species. Previous studies analyzing the impor-
tance of grain legumes to N balance in agroecosystems 
reported point estimations for θ [7, 8, 13, 14]. The lack of 
uncertainty quantification does not enable researchers to 
make formal statistical inference. Therefore, the Bayesian 
framework proposed in this study opens new avenues for 
studies determining the role of grain legumes in nutrient 
balances in agroecosystems. Obtaining the probability 
distribution of θ provides us with complete information 
about the minimum Ndfa needed to achieve neutral PNB 
or TNB in grain legume species. Therefore, the Bayesian 
framework developed in this article lays the foundation 
not only to conduct formal comparisons or hypothesis 
testing involving θ , but also to learn about its expected 
value, variance, and higher moments such as skewness 
and kurtosis under different agroecological, soil, and crop 
management conditions.

Beyond Bayesian inference, other statistical tech-
niques were explored to quantify the uncertainty of θ . 
One alternative was implementing the delta method to 
approximate the variance and confidence interval of θ 
[17]. Additionally, bootstrapping [10] was also utilized to 
obtain the empirical confidence intervals of θ . Under lim-
ited data conditions, these two methods provided confi-
dence intervals for θ that contain nonviable values in the 
real world. Usually, in non-Bayesian statistical inference, 
procedures are evaluated under asymptotic behavior, i.e. 
under large sample sizes. Since the delta method is justi-
fied under asymptotic conditions [29], it is expected that 
this method will not be consistent and efficient under 
small sample sizes, leading to an unreliable estimation of 
the uncertainty of θ under low data availability. Further-
more, although the delta method tends to underestimate 
the standard errors in comparison to bootstrapping [30], 
bootstrapped confidence intervals can still be erratic for 
small sample sizes [10].

Regularization techniques (Table  1) can be imple-
mented to solve the issue of obtaining extremely wide 
or unrealistic confidence intervals on the estimation of 
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a model parameter [18]. Although regularization tech-
niques (e.g. ridge and Lasso regressions, and random 
effects in linear mixed models) might introduce bias on 
the estimation of the model parameters (e.g. β1 and θ ), 
these techniques reduce the variance of those estima-
tions, thereby narrowing the confidence intervals of the 
estimated parameters. However, the classical regulariza-
tion approach does not provide guidance to select the 
penalization term [18, 31]. Iterative cross-validation can 
be implemented to select appropriate regulator parame-
ters [18]. Nevertheless, this approach depends on out-of-
sample data, which is an undesirable characteristic under 
limited data conditions. As well as, using cross-validation 
for determining the penalization term still yields point 
estimates for the model parameters, making it difficult or 
even impossible to quantify their uncertainty [18].

In the developed framework, we applied Bayesian infer-
ence for estimating and quantifying uncertainty while 
constraining (regularizing) the estimation of the model 
parameters via informative priors (regulator). There-
fore, with respect to the classical regularization perspec-
tive (penalized likelihood), Bayesian models have the 
advantage of (i) providing formal guidance to define the 
hyperparameters for the priors (regulator), and (ii) utiliz-
ing formal probability theory for constraining the model 
parameters [31]. Priors can be selected so that the influ-
ence of the prior on the posterior is minimized (which are 
called weakly informative priors) or based on the prior 
knowledge about the parameters (informative priors) 
[28]. In this study, the use of informative priors, mainly 
under limited data conditions, enabled to: (i) combine 
independent datasets (collected from previous studies) 
into a simple modeling framework to obtain meaningful 
inference, and (ii) formally constrain the model param-
eters while estimating their uncertainty as it was previ-
ously depicted in ecology-related studies [20, 32].

In this study, we showed that the developed Bayesian 
framework excelled under limited data conditions as it 
was shown in other field of studies such as epidemiology 
and medicine [33, 34]. However, the power of Bayesian 
inference under low number of observations was paid 
by adding stronger assumptions into the model, which 
were the use of informative priors. The informative priors 
must be correctly justified by collecting information from 
sources such as literature, previous experiments, expert 
knowledge, natural or biological conditions, among oth-
ers to make the inference reliable [11]. Furthermore, the 
developed Bayesian framework was worthwhile when 
the collected data were close to biological limits and 
the model parameter estimations had to be regularized 
to obtain meaningful inference [18]. Under large sam-
ple sizes, the influence of the priors on the posterior is 
reduced [35], the delta method improves its consistency 

and efficiency because of their asymptotic behavior [36, 
37], and the bootstrapped confidence intervals are more 
consistent [10]. Therefore, with a high number of obser-
vations, the developed Bayesian framework, bootstrap-
ping, and delta method provided similar uncertainty 
quantification of θ.

Bayesian inference is an available statistical tool that 
seems to be underutilized in agriculture studies address-
ing the N contribution by legumes and the estimation 
of θ . The framework presented in this article can also be 
applied to gain knowledge about the maximum N out-
put that a grain legume species can achieve to contribute 
with N to the system. Furthermore, this Bayesian frame-
work can also be implemented to obtain the distribution 
of the minimum N uptake needed before a legume crop 
is able to start fixing N [13, 21, 38]. However, the use of 
Bayesian inference in agriculture transcends these poten-
tial applications in the field of N fixation in grain legume 
species. Bayesian inference is a pertinent tool in agricul-
tural sciences, where uncertainty is present everywhere, 
and previous and expert knowledge hold significant 
importance. Therefore, we hope this article also serves as 
an initial guide for Bayesian non-practitioners in the field 
of agriculture to apply Bayesian inference (regarding that 
other approaches can also be valid).

The databases and the code utilized in this study 
have been made publicly available. Science utilizes data 
(evidence) to answer accurate questions (hypotheses) 
by inductive reasoning developing new knowledge or 
theories that are then used as a benchmark to formu-
late further questions that are proved or disproved in 
future studies [39]. Therefore, science is a continuous 
built from a community sharing its knowledge. By mak-
ing the utilized databases and codes publicly available, 
our objective was to contribute to the development of 
a more robust, transparent, and reliable approach to 
advancing scientific knowledge [40]. The available data-
sets can be implemented to test new hypotheses related 
to N balance in legume species, such as whether the con-
tribution by roots is substantial in a given species (differ-
ences between θPNB and θTNB ), identify potential changes 
in the PNB or TNB per unit of Ndfa among species or 
within species (differences in β1 ), or analyzing the uncer-
tainty around relative N outputs (i.e. NHI) between and 
within species. Building such datasets demands a sig-
nificant investment of time and effort. Consequently, we 
seek to engage additional collaborators in the ongoing 
process of database updating. This entails the incorpo-
ration of new studies, additional N inputs and outputs 
(e.g.,  N2O and/or  NH2 emissions,  NO2 leaching), and the 
addition of metadata, including crop rotation, weather 
conditions, topography, and tillage practices, among 
other variables.



Page 13 of 14Palmero et al. Plant Methods          (2024) 20:134  

Simplified N balances of the legume crops were imple-
mented in this study to estimate the uncertainty of θ . 
Although this a common a practice to evaluate the N 
benefit of grain legume species to cropping systems [7, 8, 
13, 14, 38, 41–43], this approach does not consider other 
N inputs and losses [5, 6], leading to oversimplified N bal-
ance estimations. Therefore, upcoming research should 
study θ considering other N inputs and outputs beyond 
the fixed N and the N exported in seeds, respectively, 
to better understand the role of grain legume species in 
the N balance of the agroecosystems. Furthermore, there 
exist different techniques to measure the N contribution 
of belowground components [15]. The variety of tech-
niques along with the difficulty in recovering nodules, 
and thin and fragile roots generate uncertainty on the 
N contribution of belowground components and conse-
quently on the root factor [13]. Hence, subsequent stud-
ies should account for this variability on belowground N 
contribution when computing the uncertainty of θTNB . 
Additionally, a higher quantity and quality of data to 
estimate the proportion of Ndfa derived from roots are 
needed to improve the accuracy of the prior information 
to be included in the presented Bayesian framework.

Conclusion
This study explored the use of the delta method, boot-
strapping, and Bayesian inference to quantify the uncer-
tainty of the Ndfa that grain legume species need to 
attain neutral PNB or TNB ( θ ). For Bayesian models, 
regularization is a natural consequence of using inform-
ative priors. This article depicted the usefulness of 
Bayesian approach to obtain meaningful inference and 
formally constrain the model parameters via the combi-
nation of independent data sets into the same modeling 
framework. Since there exists knowledge about the Ndfa 
needed to achieve neutral PNB or TNB in grain legume 
species, we expect that the use of informative priors 
takes more relevance when estimating this quantity and 
its uncertainty. Future studies should provide informa-
tion of the slope ( β1 ) and the Ndfa needed to achieve 
neutral PNB or TNB ( θ ) to develop informative priors, 
being crucial to fully embrace the potential of regulari-
zation. The developed Bayesian inference framework 
can be transferred to estimate balances for other nutri-
ents and/or field crops to gain more knowledge on global 
crop nutrient balances.
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