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Abstract 

Background Ripeness is a phenotype that significantly impacts the quality of fruits, constituting a crucial factor 
in the cultivation and harvesting processes. Manual detection methods and experimental analysis, however, are inef-
ficient and costly.

Results In this study, we propose a lightweight and efficient melon ripeness detection method, MRD-YOLO, based 
on an improved object detection algorithm. The method combines a lightweight backbone network, MobileNetV3, 
a design paradigm Slim-neck, and a Coordinate Attention mechanism. Additionally, we have created a large-scale 
melon dataset sourced from a greenhouse based on ripeness. This dataset contains common complexities encoun-
tered in the field environment, such as occlusions, overlapping, and varying light intensities. MRD-YOLO achieves 
a mean Average Precision of 97.4% on this dataset, achieving accurate and reliable melon ripeness detection. Moreo-
ver, the method demands only 4.8 G FLOPs and 2.06 M parameters, representing 58.5% and 68.4% of the baseline 
YOLOv8n model, respectively. It comprehensively outperforms existing methods in terms of balanced accuracy 
and computational efficiency. Furthermore, it maintains real-time inference capability in GPU environments and dem-
onstrates exceptional inference speed in CPU environments. The lightweight design of MRD-YOLO is anticipated to be 
deployed in various resource constrained mobile and edge devices, such as picking robots. Particularly noteworthy 
is its performance when tested on two melon datasets obtained from the Roboflow platform, achieving a mean Aver-
age Precision of 85.9%. This underscores its excellent generalization ability on untrained data.

Conclusions This study presents an efficient method for melon ripeness detection, and the dataset utilized in this 
study, alongside the detection method, will provide a valuable reference for ripeness detection across various types 
of fruits.
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Background
The melon, a fruit of the Cucurbitaceae family with sig-
nificant economic value, is renowned for its distinc-
tive aroma and sweet taste, making it highly favored by 
consumers and presenting a broad market prospect [1]. 
Additionally, melon is recognized for its health benefits, 
as it is exceptionally rich in nutritional value [2]. Beyond 
common factors like soil quality, climate, moisture, pests, 
and diseases, fruit ripeness plays a crucial role in deter-
mining fruit quality [3]. As a phenotype that significantly 
influences the growth and harvesting process of melon, 
achieving appropriate harvesting maturity ensures opti-
mal sweetness, flavor, and nutritional value.

Ripeness denotes the stage at which fruit reaches full 
development, and the timing of harvest maturity signifi-
cantly influences both the quality and marketability of 
the fruit. Real-time detection of fruit ripeness during its 
growth not only ensures the quality of harvested fruit but 
also mitigates post-harvest losses [4]. Harvesting fruit 
prematurely, before it reaches full ripeness, can result 
in diminished flavor and nutrient content. Additionally, 
unripe fruit typically exhibits a firmer texture and is less 
palatable compared to fully ripe fruit [5]. Conversely, 
overripe fruit is more prone to mold, rot, and spoilage, 
thereby shortening its shelf life and diminishing overall 
quality. Furthermore, certain nutrients may degrade in 
overripe fruit, leading to a potential loss of nutritional 
value [6]. Therefore, fruit ripeness detection is crucial 
to maximizing the flavor, texture, nutrient content, and 
shelf life of various fruits, such as melon.

Numerous methods exist for gauging the ripeness 
of melon, each differing in cost, time investment, and 
accuracy. Traditionally, growers rely on their experi-
ence to assess ripeness, considering factors such as color, 
aroma, texture, and weight, or resorting to tasting sam-
ples directly. However, these traditional methods, though 
economical, are marred by time-consuming procedures, 
labor-intensive practices, and subjective evaluations, 
resulting in imprecise determinations. Furthermore, the 
diverse ripening traits exhibited by various melon types 
hinder the universal applicability of these approaches.

More precise methods for detecting melon ripeness 
have emerged with advancements in inspection tech-
niques. Mitsuru et al. investigated the temporal variation 
of the elasticity index of melons as a means to predict rip-
ening progression [7]. They also utilized a non-destruc-
tive acoustic vibration method to monitor the elasticity 
index, thereby estimating the time required for melons 
to achieve optimal ripeness [8]. Sun et al. utilized hyper-
spectral imaging for the non-invasive evaluation of melon 
texture, enabling the prediction of various quality attrib-
utes [1]. Yang et al. conducted optical measurements to 
analyze fruit quality and investigate the propagation of 

light through fruits, providing insights into the correla-
tion between optical properties and fruit quality [9]. 
Calixto et  al. implemented a non-destructive computer 
vision-based approach, utilizing textural differences in 
the yellow color of melon skin to determine ripeness [10]. 
These methods offer enhanced accuracy over traditional 
approaches for assessing melon quality and ripeness from 
diverse perspectives. However, these experiment-based 
detection methods inevitably entail higher costs and 
lower efficiency.

With the rapid progress of technologies like deep 
learning and computer vision, fruit ripeness detection 
methods are no longer confined to traditional manual 
judgment or experimental analysis [11]. Halstead et  al. 
introduced a vision system that accurately estimates the 
ripeness of sweet peppers using the Faster R-CNN frame-
work, validated through field data [12]. Wan et al. devised 
a tomato ripeness detection method leveraging computer 
vision technology to assess the ripeness level of tomato 
samples based on their color features [13]. Tu et al. devel-
oped a machine vision method to detect passion fruit 
and determine its ripeness using a linear support vector 
machine classifier [14]. Chen et  al. proposed a method 
that integrates visual saliency with object detection algo-
rithms for citrus ripeness recognition [15]. Wang et  al. 
utilized the category balancing method along with deep 
learning techniques to detect and segment tomatoes at 
various maturity levels [16].

Compared to traditional methods and experimental 
analyses for determining fruit ripeness, computer vision 
and deep learning-based methods offer higher detec-
tion efficiency without the need for costly and labor-
intensive experimental processes. However, as far as we 
are aware, most existing methods, while capable of accu-
rately detecting melon ripeness, rely on experimental 
techniques that measure specific attributes of the fruit. 
Moreover, computer vision-based methods for assessing 
melon ripeness are typically limited to analyzing individ-
ual fruit images and have not yet been deployed in real 
field environments.

One of the main factors contributing to the scarcity 
of research focusing on melon ripeness in large field 
environments is the absence of high-quality large data-
sets. Existing melon datasets suffer from various issues, 
including low image resolution, insufficient volume of 
data, and absence of systematic ripeness classification 
in image annotations [17, 18]. Furthermore, detecting 
melon ripeness in field environments imposes stricter 
demands on methodologies. These requirements extend 
beyond achieving high detection accuracy to include 
considerations of computational efficiency. Given 
that edge device such as picking robots, smartphones, 
and agricultural drones, commonly deployed in such 
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environments, have limited computational capabilities, 
it becomes imperative to develop lightweight detection 
methods suitable for resource constrained settings. In 
light of the aforementioned issues in existing studies, the 
overarching objective of our research is to create a com-
prehensive melon dataset of high quality and to propose 
an accurate and lightweight method for detecting melon 
ripeness. The contributions of this study are summarized 
as follows:

• We created a large, high-quality melon dataset col-
lected in a real field environment, categorized 
according to ripeness.

• We proposed a lightweight, improved object detec-
tion algorithm, MRD-YOLO, tailored for resource 
constrained environments. The method builds upon 
the latest YOLOv8 network, opting for MobileNetV3 
as the backbone network to reduce model size. Addi-
tionally, a slim-neck design paradigm was employed 
in the neck segment to further diminish the number 
of parameters and computational complexity while 
maintaining ample accuracy. We introduced coor-
dinate attention to improve the model’s capacity to 
handle feature maps, thereby boosting its perfor-
mance in detecting targets within complex scenes.

• A series of ablation experiments, comparison studies, 
and other analyses underscored the outstanding per-
formance of our proposed lightweight MRD-YOLO 
algorithm in melon ripeness detection tasks. Further-
more, we assessed the generalization capability of 
the MRD-YOLO model using two additional melon 
datasets sourced from Roboflow. The experimental 
results reaffirmed the effectiveness of our method, 
not only within the datasets we constructed our-
selves, but across diverse datasets as well.

Materials and methods
Field data collection
The melon dataset utilized in this study was procured 
from a greenhouse situated at the Shenzhen Experimen-
tal Base of the Chinese Academy of Agricultural Sci-
ences, located on Pengfei Road, Dapeng New District, 
Shenzhen, Guangdong Province, China. The images were 
captured during the months of October and November 
2023. The process of field data collection is illustrated 
in Fig.  1. This dataset comprises images captured from 
various angles to ensure the model’s efficacy in extract-
ing comprehensive melon features. The temporal diver-
sity of the images presents the model with the challenge 
of recognizing targets amidst shadows and bright light 

Complex field environments

Different angles

Different time

Field data collection

Side Front Side

Morning Noon Afternoon

MultiscaleOcclusion OverlapIncomplete edges

Fig. 1 Field data collection process in a greenhouse
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conditions. Despite the controlled environment within 
the greenhouse, conducive for optimal growth and suf-
ficient plant spacing, factors such as target overlap, leaf 
shading, and variations in melon sizes and scales across 
different growth stages posed significant challenges to 
our detection. Ultimately, a total of 3806 high-quality 
melon images with a resolution of 4032× 3024 were 
acquired to construct the dataset for this study.

Image annotation and preprocessing
In Fig.  2, it can be observed that the rind of the melon 
in its early growth stage exhibits a green hue, resembling 
that of the leaves, and the fruits are relatively small in 
size. As the melon progresses towards maturity, the color 
of the rind gradually transitions to yellow. Upon reach-
ing full ripeness, the rind assumes a golden yellow hue, 
appearing smooth or occasionally displaying unstable, 
thin reticulation patterns. We classified fully ripe mel-
ons as ’ripe’ and those not yet ripe as ’unripe’, utilizing 
the YOLO format within the LabeImg software. Sub-
sequently, the images, along with their corresponding 
labels, were randomly divided into training, validation, 
and test sets in an 8:1:1 ratio. The resulting training set 
comprised 3044 images, with 381 images allocated to 
both the validation and test sets, respectively. Addi-
tionally, we utilized the melon dataset obtained from 
Roboflow as an independent test set [17, 18], ensuring 
that none of the data from this set were involved in the 
training. The efficacy of our model’s generalization was 
assessed through tests conducted on this independent 
dataset.

The proposed MRD‑YOLO architecture for melon ripeness 
detection
In this study, we introduce the MRD-YOLO model 
designed for melon ripeness detection, with its overall 
architecture depicted in Fig.  3. Enhancing the baseline 
YOLOv8n [19], we implemented several key improve-
ments. Firstly, we opted for MobileNetV3 as a replace-
ment for the backbone network in YOLOv8, effectively 
reducing the model’s size [20]. Additionally, by adopting 
the Slim-neck design paradigm, we substituted the Conv 
and C2f structure in the baseline’s neck segment with 
GSConv and VoV-GSCSP, respectively [21]. Leading to a 

further reduction in both parameter count and compu-
tational complexity while maintaining sufficient accu-
racy. Lastly, we introduced Coordinate Attention after 
VoV-GSCSP within the neck segment [22], enhancing the 
model’s processing capabilities for feature maps and sub-
sequently improving detection performance, particularly 
in complex scenes. The subsequent section delineates the 
specifics of these model enhancements.

MobileNetV3: a lightweight network architecture
MobileNetV3 is a lightweight network architecture opti-
mized for embedded and mobile devices, with the dual 
objectives of achieving high accuracy while maintain-
ing low computational cost and memory footprint. The 
structure of the basic module bottleneck (bneck) within 
the MobileNetV3 network is illustrated in Fig.  4. Bneck 
denotes a layer structure comprising a sequence of 
operations, including depthwise convolution, pointwise 
convolution, as well as other operations such as activa-
tion functions and batch normalization. This module 
primarily integrates channel separable convolution, SE 
channel attention mechanism, and residual connection. 
By employing bneck, the network effectively reduces 
computational complexity while still capturing essential 
features. Therefore, we utilize it as the backbone of MRD-
YOLO, leveraging its capabilities for melon ripeness 
detection task.

Slim‑neck: a better design paradigm of neck architectures
Slim-neck is a structural design paradigm aimed at 
reducing the computational complexity and inference 
time of detectors in Convolutional Neural Networks 
while maintaining accuracy. It encompasses the incor-
poration of several lightweight techniques, such as 
GSConv, GS bottleneck, and VoV-GSCSP (cross stage 
partial network), with GSConv structure depicted in 
Fig.  5. GSConv, as the basic component of slim-neck, 
is designed to align the outputs of Depthwise Separa-
ble Convolution (DSC) as closely as possible to those of 
Standard Convolution (SC). It combines elements from 
both DSC and SC along with a shuffling operation. Slim-
neck achieves a harmonious equilibrium between model 
efficiency and accuracy through the strategic utiliza-
tion of these techniques. This design is grounded in the 

Fig. 2 Different levels of melon ripeness
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principles of existing methodologies like DenseNet [23], 
VoVNet [24], and CSPNet [25], which have been adapted 
to fashion a streamlined and efficient architecture suit-
able for real-time detection tasks, particularly in scenar-
ios where computational resources may be constrained. 
Moreover, it aligns seamlessly with our objective of pro-
posing a lightweight model.

Coordinate attention: an attention mechanism for efficient 
mobile network design
Coordinate Attention is an attention mechanism 
designed to enhance a model’s capability to focus on a 
particular spatial location within an image by incorporat-
ing positional information into channel attention. This 
enables the mobile network to gather information about 
a broader area without introducing significant overhead. 
Its structure is illustrated in the Fig. 6.

Coordinate Attention serves several crucial roles in our 
melon ripeness detection. Firstly, it enables the model 
to concentrate on specific spatial locations within an 
image, facilitating the gathering of contextual informa-
tion around these areas. This contextual understanding 
proves invaluable for accurately detecting melon tar-
gets amidst complex backgrounds or cluttered scenes. 
Moreover, by attending to coordinates at various scales, 
the model adeptly detects objects of different sizes, thus 
effectively handling scale variations of melons within 
the image, which may occur at different growth stages. 
Importantly, the integration of coordinate attention into 
our proposed MRD-YOLO framework does not intro-
duce additional computational overhead, further under-
scoring its significance.

Results
Experimental environment and parameter settings
In this study, all experiments were conducted on a 
server equipped with an Intel� Xeon� Gold 6230R 
CPU@2.10GHz, with 100GB of memory, and a Tesla 
V100S-PCIE graphics card. All detection models involved 
in this study were developed on the same Linux platform, 
utilizing Python 3.8.16, torch 1.10.1, and CUDA 11.1. 
Additionally, the parameter settings are presented in 
Table 1 and were consistently maintained throughout the 
experiments.

Evaluation metrics
To meticulously evaluate the performance of the pro-
posed MRD-YOLO model for melon ripeness detection, 
we adopt six evaluation metrics: P (Precision), R (Recall), 
FLOPs (Floating-point operations), FPS (Frames Per Sec-
ond), mAP (mean Average Precision), and the number 
of parameters. Precision, recall, and mAP indicators are 
evaluated using the following equations:
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Table 1 Initialization parameters settings

Parameter Setting

Input image size 640x640

Training epochs 100

Batch size 16

Optimizer AdamW

Momentum 0.937

Weight decay 0.0005

Warmup epochs 3

Warmup momentum 0.8

Initial learning rate 0.001667
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Precision measures the accuracy of positive predictions 
made by a model, while recall measures the ability of a 
model to identify all relevant instances. In Eqs. 3, C rep-
resents the set of object classes and AP stands for average 
precision.

These three metrics collectively offer insights into the 
trade-offs between the correctness and completeness of 
our proposed model’s predictions. A good model typi-
cally achieves a balance between precision and recall, 
leading to a high mAP score, indicating accurate and 
comprehensive performance.

Beyond these metrics, FPS, FLOPs, and the number 
of parameters are essential for assessing the computa-
tional efficiency and complexity of a model. FPS meas-
ures how many frames or images a model can process in 
one second. The following equation illustrates how FPS is 
calculated:

FLOPs represent the number of floating-point operations 
required by a model during inference. It is calculated 
based on the operations performed in each layer of the 
network. Parameters refers to the total count of weights 
and biases used by the model during training and infer-
ence, which can be calculated by summing up the indi-
vidual parameters in each layer, including weights and 
biases.

(1)R =
True Positive

True Positive + False Negative

(2)P =
True Positive

True Positive + False Positive

(3)mAP =
1

|C|

∑

c∈C

AP(c)

(4)FPS =
1

time per frame

By focusing on these three metrics, we can effectively 
assess whether a model is lightweight or not. Models 
with lower FLOPs, and fewer parameters are generally 
considered lightweight and are better suited for deploy-
ment on resource constrained environments or for appli-
cations requiring efficient processing.

In summary, these six detection metrics provide a 
comprehensive framework for evaluating the perfor-
mance and efficiency of our lightweight melon ripeness 
detection model, ensuring that it meets the stringent 
requirements of accuracy, speed, and resource efficiency 
demanded by complex agricultural environments.

Ablation experiments
Ablation experiments of the baseline and the proposed 
improvements
To assess the efficacy of MobileNetV3, Slim-neck, and 
Coordinate Attention in enhancing the effectiveness of 
MRD-YOLO, we integrated these proposed improve-
ments into the YOLOv8n model for individual ablation 
experiments. Precision, recall, FLOPs, FPS (GPU), mean 
Average Precision (mAP), and the number of parameters 
were the metrics employed in these ablation experi-
ments, conducted within a GPU environment with con-
sistent hardware settings and parameter configurations. 
Additionally, we evaluated the model’s inference speed 
within a CPU environment, with the experiment results 
detailed in Table 2.

MobileNetV3 aims to provide advanced computational 
efficiency while achieving high accuracy, as demonstrated 
by its excellent performance in our ablation experiments. 
Substituting the backbone network in the baseline model 
with MobileNetV3 resulted in a reduction in FLOPs 
from 8.2 G to 5.6 G, accompanied by a 25% decrease in 
the number of parameters. MobileNetV3 plays a crucial 
role in improving the efficiency of the YOLOv8, reducing 
both the number of parameters and computational cost. 
This is achieved while maintaining precision, recall, and 

Table 2 Performance comparison of the baseline and the proposed improvements

Methods P(%) R(%) mAP(%) Params(M) FLOPs(G) FPS

GPU CPU

YOLOv8n 91.9 94.5 96.8 3.01 8.2 84.47 23.13

Slim-Neck 94.4 93.8 97.1 2.80 7.4 70.91 23.26

CA 93.1 94.3 97.3 3.03 8.2 84.96 22.82

MobileNetV3 95.0 92.6 96.8 2.25 5.6 73.79 28.76

MobileNetV3+CA 95.3 92.3 96.9 2.27 5.6 72.56 27.89

MobileNetV3+Slim-neck 93.3 93.4 96.8 2.04 4.8 69.90 22.30

Slim-neck+CA 93.4 93.9 97.3 2.81 7.4 68.91 23.63

MRD-YOLO 95.0 94.1 97.4 2.06 4.8 61.74 22.65
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mAP across various configurations, such as Slim-neck 
and Coordinate Attention.

Slim-neck, a design paradigm targeting lightweight 
architectures, proves to be equally indispensable in 
our melon ripeness detection model. In our study, we 
implemented VoV-GSCSP, a one-shot aggregation mod-
ule, to replace the c2f structure of the neck segment 
in YOLOv8n. Additionally, we integrated GSConv, a 
novel lightweight convolution method, to substitute the 
standard convolution operation within the neck. These 
enhancements collectively yielded an improvement in 
both accuracy and computational efficiency. However, 
the adoption of slim-neck also resulted in a 16% decrease 
in FPS on the GPU compared to the baseline.

Coordinate Attention, a novel lightweight attention 
mechanism designed for mobile networks, was intro-
duced before various sizes of detection heads to enhance 
the representations of objects of interest. Integrating the 
CA attention mechanism into the baseline YOLOv8n 
yielded a 0.05% increase in mAP with minimal parameter 
growth and computational overhead.

By incorporating the three enhancements of Mobile-
NetV3, Slim-neck, and Coordinate Attention, our pro-
posed MRD-YOLO model achieves a mAP of 97.4%, 
requiring only 4.8 G FLOPs and 2.06 M parameters. 
This model comprehensively outperforms the base-
line YOLOv8n in terms of accuracy and computational 
efficiency.

While MRD-YOLO model maintains real-time detec-
tion performance, it exhibits a certain degree of FPS 
loss on GPU. However, not all devices are equipped with 
powerful GPUs, making it equally important to assess 
our model’s inference speed on a CPU. With the integra-
tion of MobileNetV3, the FPS of the baseline YOLOv8n 
model increased by 24.3%, and the inference speed gap 
between MRD-YOLO and the baseline vanished in the 
CPU environment.

Overall, the lightweight and efficient design of MRD-
YOLO makes it the preferred choice for melon ripe-
ness detection, particularly for applications requiring 

deployment on mobile and embedded devices with lim-
ited computational resources.

Ablation experiments of the MRD‑YOLO and coordinate 
attention
We then conducted a more specific ablation experi-
ment to analyze the impact of Coordinate Attention 
on the effectiveness of the MRD-YOLO. We integrated 
the Coordinate Attention before the different sizes of 
detection heads to assess its influence on our proposed 
method, with the experiment results depicted in Table 3. 
The inclusion of Coordinate Attention has a negligible 
effect on the number of parameters and the computa-
tional load. This aligns perfectly with our requirement 
for a lightweight design for our models. Additionally, the 
highest mAP of 97.4% was achieved by adding the CA 
mechanism before all different sizes of detection heads. 
These findings underscore the efficacy of Coordinate 
Attention in emphasizing melon features.

Comparison experiments
To thoroughly validate the performance of the proposed 
MRD-YOLO for melon ripeness detection, we conducted 
comparisons between MRD-YOLO and various light-
weight backbone, attention mechanisms, as well as six 
state-of-the-art detection methods.

Comparison experiments of the lightweight backbones
In this section, we assess the efficacy of various light-
weight backbones in comparison to MobileNetV3 for 
detecting melon ripeness. These backbones include 
MobileNetV2 [26], ShuffleNetV2 [27], and VanillaNet 
with distinct layer configurations [28]. Subsequently, we 
integrate these backbone networks into YOLOv8 and 
present the comparative outcomes in Table 4.

ShuffleNetV2 is a convolutional neural network 
architecture designed for efficient inference on mobile 
and embedded devices. It demonstrates outstanding 
inference speed in GPU environments while maintain-
ing a low number of parameters and computational 

Table 3 Comparison of adding Coordinate Attention to different detection heads in MRD-YOLO

Small Medium Large mAP(%) Parameters(M) FLOPs(G) FPS(GPU)

� 96.8 2.05 4.8 63.98

� 97.0 2.05 4.8 65.02

� 96.9 2.05 4.8 63.81

� � 97.1 2.05 4.8 61.31

� � 96.6 2.06 4.8 61.44

� � 97.0 2.05 4.8 62.09

� � � 97.4 2.06 4.8 61.74
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load. However, its performance in terms of accuracy is 
not as strong.

VanillaNet, characterized by its avoidance of high 
depth, shortcuts, and intricate operations such as self-
attention, presents a refreshingly concise yet remark-
ably powerful approach. VanillaNet with different 
configurations demonstrates robust performance in 
terms of efficiency. For instance, VanillaNet-6 achieves 
an fps of over 100 in a GPU environment with only 5.9 
G FLOPs and 2.11 M parameters, albeit with a slightly 
lower accuracy of 96.6%. Conversely, VanillaNet-12 
attains a higher mAP value of 96.9%. However, it does 
not match the computational efficiency of VanillaNet-6, 
and its model complexity is higher. Furthermore, in 
a CPU environment, VanillaNet-12’s fps metrics are 
merely 65% of MobileNetV3.

MobileNetV3 emerges as the top performer among 
the MobileNet series networks. Compared to its pre-
decessors, MobileNetV3 excels in maintaining detec-
tion accuracy while enhancing inference speed. The 
integration of squeeze-and-excitation blocks and effi-
cient inverted residuals further enhances its efficiency 
and accuracy, rendering it particularly well-suited for 
resource constrained environments, also making it 
ideal for melon ripeness detection.

Comparison experiments of the attention mechanisms
Attention mechanisms serve as a powerful tool for 
enhancing the performance, interpretability, and effi-
ciency of deep learning models across various tasks 
and domains. In this section, we conducted compara-
tive experiments on six attention mechanisms to ascer-
tain their efficacy in enhancing the performance of 
our melon ripeness detection task. These mechanisms 
include SE attention (Squeeze-and-Excitation Networks) 
[29], CBAM attention (Convolutional Block Attention 
Module) [30], GAM attention (Global Attention Mecha-
nism) [31], Polarized Self-Attention [32], NAM attention 
(Normalization-based Attention Module) [33], Shuffle 
attention [34], SimAM attention (Simple, Parameter-Free 
Attention Module) [35] and CA attention (Coordinate 
Attention) [22].

As depicted in Table  5, with the exception of GAM 
attention and Polarized Self-Attention, the remaining 
attention mechanisms lead to negligible increases in the 
model’s parameter count and computational require-
ments. When considering the trade-off between model 
speed and detection accuracy, neither SE attention nor 
NAM attention demonstrates satisfactory performance. 
SE attention suffers from a low mAP score and an imbal-
ance between precision and recall. Similarly, NAM 
attention also fails to achieve higher detection precision 

Table 4 Comparison of integrating lightweight backbones networks into YOLOv8

Methods P(%) R(%) mAP(%) Params(M) FLOPs(G) FPS

GPU CPU

ShuffleNetV2 94.3 91.0 96.4 1.83 5.1 87.88 25.99

VanillaNet-6 94.0 92.8 96.6 2.11 5.9 100.42 25.85

VanillaNet-8 93.7 93.6 96.7 2.15 6.1 97.59 23.26

VanillaNet-10 95.0 91.9 96.8 2.22 6.4 91.99 24.04

VanillaNet-12 93.0 93.8 96.9 2.23 6.6 84.22 20.35

MobileNetV2 93.3 93.3 96.7 1.79 5.4 58.40 24.86

MobileNetV3 95.0 92.6 96.8 2.25 5.6 73.79 28.76

Table 5 Comparison of adding different attention mechanisms in YOLOv8

Methods P(%) R(%) mAP(%) Parameters(M) FLOPs(G) FPS(GPU)

GAM 94.5 93.4 97.1 3.70 9.6 81.76

PolarizedSelf 92.2 95.0 97.2 3.22 8.6 82.30

NAM 93.6 93.3 96.7 3.01 8.2 86.85

SE 96.1 91.6 96.9 3.01 8.2 83.45

Shuffle 93.1 93.7 97.1 3.01 8.2 82.44

SimAM 95.3 90.9 97.0 3.01 8.2 89.13

CBAM 94.3 93.4 97.2 3.11 8.3 81.97

CA 93.1 94.3 97.3 3.03 8.2 84.96
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despite its fast fps rate. Notably, Shuffle attention, SimAM 
attention, CBAM attention and CA attention demon-
strate comparable performance improvements, yet CA 
attention exhibits a slight advantage across all metrics.

Coordinate Attention, which operates by attending to 
different regions of the input based on their spatial coor-
dinates, explicitly encodes positional information into the 
attention mechanism. This enables the model to focus on 
specific regions of interest based on their coordinates in 
the input space. CA attention achieves the highest mAP 
value of 97.3% and effectively balances inference speed 
with detection accuracy. The findings of the aforemen-
tioned comparison experiments underscore the sig-
nificance of CA attention, establishing it as an integral 
component of melon ripeness detection task.

Comparison of performance with state‑of‑the‑art detection 
methods
To further analyze the effectiveness of MRD-YOLO in 
implementing the melon ripeness detection task, we 
conducted a comprehensive performance analysis. This 
analysis involved comparing our proposed MRD-YOLO 
model with six state-of-the-art object detection meth-
ods: YOLOv3-tiny [36], YOLOv5n [37], YOLOR [38], 
YOLOv7-tiny [39], YOLOv8n [16], and YOLOv9 [40]. 
The comparison results are presented in the Table 6.

YOLOv3-tiny demonstrates commendable perfor-
mance in terms of FPS, particularly on GPU. However, 
it exhibits higher parameter counts and lower accuracy 
compared to MRD-YOLO. Similarly, while YOLOv5n 
boasts minimal floating-point operations, its insuffi-
cient accuracy fails to meet our requirement for precise 
detection.

YOLOv7-tiny demonstrates a relatively balanced per-
formance across all metrics. However, when compared 
to the baseline YOLOv8n, it significantly lags behind 
in all metrics, except for a slight lead in the mAP value. 

YOLOv8n exhibits comprehensive and overall strong 
performance in our melon ripeness detection task, 
achieving a mAP of 96.8% with a relatively low number 
of parameters and computational complexity. Moreover, 
it demonstrates fast inference capability in both GPU and 
CPU environments. These factors are why we selected it 
as our baseline model.

Although YOLOv9, RT-DETR and YOLOR achieve 
high mAP, they come with substantially higher com-
putational requirements, and their inference speeds do 
not meet the real-time detection needs of our task. The 
latest model in the YOLO series, YOLOv10, demon-
strates commendable performance, comparable to that of 
YOLOv8.

Our proposed lightweight model, MRD-YOLO, 
achieves a mAP of 97.4%, which is only slightly lower 
than that of YOLOv9, while the latter requiring high 
computational resources. The incorporation of Slim-neck 
and MobileNetV3 contributes to the model’s param-
eter count being the lowest among all the compared 
models, standing at 2.06 M. Additionally, MRD-YOLO 
maintains real-time detection capability in a GPU envi-
ronment. Furthermore, in comparison to its inference 
speed in a GPU environment, MRD-YOLO demonstrates 
significantly improved performance in a CPU environ-
ment with lower computational power. These reaffirm 
the suitability of our proposed model for the melon ripe-
ness detection task, as it successfully balances detection 
speed and accuracy while also performing admirably in 
resource constrained environments.

Comparison of detection results with state‑of‑the‑art 
detection methods
To further demonstrate the effectiveness of the proposed 
MRD-YOLO, we conducted experiments to compare 
the actual detection results of seven object detection 
methods for melon ripeness detection. The input images 

Table 6 Performance comparison of MRD-YOLO with state-of-the-art detection methods

Methods P(%) R(%) mAP(%) Params(M) FLOPs(G) FPS

GPU CPU

YOLOv3-tiny 93.8 92.5 96.2 12.13 19.0 131.13 25.16

YOLOv5n 93.0 91.6 95.7 3.10 4.3 72.99 23.7

YOLOvR 95.7 91.7 97.3 52.50 119.7 37.59 3.92

YOLOv7-tiny 93.8 92.2 96.9 6.02 13.2 64.94 12.32

YOLOv8n 91.9 94.5 96.8 3.01 8.2 84.47 23.13

YOLOv9 94.0 94.3 97.7 60.80 266.1 27.47 3.51

YOLOv10 94.5 92.7 97.1 2.71 8.4 80.42 21.34

RT-DETR 92.6 93.9 96.1 32.8 108.3 76.20 11.56

MRD-YOLO 95.0 94.1 97.4 2.06 4.8 61.74 22.65
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encompassed varying numbers of melons, distinct ripe-
ness levels, varying degrees of occlusion, and diverse 
shooting angles and light intensities, aiming to compre-
hensively assess the detection capabilities of the seven 
methods.

As illustrated in Fig.  7, a portion of the melon situ-
ated in the upper right corner of Fig. 7A and the lower 
left corner of Fig.  7 is occluded by leaves, a common 
scenario in real agricultural environments. This occlu-
sion creates a truncated effect, wherein a complete 

Input image

Ground truth

YOLOv3-tiny

YOLOv5n

YOLOR

YOLOv7-tiny

YOLOv8n

YOLOv9

MRD-YOLO

A B C D E

Fig. 7 Comparison of the detection results. The green arrow indicates instances of incorrect detection, and the green box denotes the missing 
object
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melon appears to be fragmented into multiple parts. 
Moreover, some melons depicted in Fig. 7B and Fig. 7E 
exhibit a color resemblance to the leaves and are dimin-
utive in size due to their early growth stage, posing 
challenges for the model’s detection capabilities. Addi-
tionally, the two melons on the left in Fig.  7C exhibit 
significant overlap. Through an analysis of the detec-
tion results produced by the seven detection methods 
for these intricate images, a comprehensive assessment 
of each method’s detection capabilities can be made.

In Fig.  7A, only the YOLOv3-tiny and MRD-YOLO 
detections were accurate. The other models either 
interpreted melons truncated by leaves as two or more 
separate melons or were affected by occlusion, resulting 
in prediction boxes containing only some of the melons. 
In Fig.  7B, only MRD-YOLO accurately predicted the 
location and category of four unripe melons, includ-
ing two targets that were particularly challenging to 
detect. In Fig. 7C, where the overlap problem occurred, 
YOLOv3-tiny, YOLOv5n, YOLOR, and YOLOv7-
tiny all produced inaccurate detection results. On the 
other hand, in Fig.  7D, only MRD-YOLO, YOLOv5n 
and YOLOv7-tiny made correct predictions. A tar-
get in Fig. 7E evaded detection by all models due to its 
extreme color similarity to the leaf and being obscured 
by shadows.

These findings suggest that the proposed lightweight 
MRD-YOLO demonstrates high accuracy and robust-
ness, effectively addressing the challenges of melon 
ripeness detection tasks under complex natural envi-
ronmental conditions.

Summary of ablation and comparison experiments
In this section, we provide a comprehensive compari-
son of 19 different models in the ablation and compari-
son experiments. In Fig.  8, models favoring the upper 
right corner indicate superior detection performance. 
Smaller circle sizes correspond to fewer parameters or 
computations.

It is evident that all our improvements to the baseline 
YOLOv8 have yielded promising results, as evidenced by 
our improved models occupying the top of overall per-
formance, denoted by the distinctive blue circles. Our 
improved models exhibit a more pronounced advantage 
in CPU environments. While in GPU environments, 
MRD-YOLO does not demonstrate an inference speed 
advantage over other models, it nonetheless maintains 
real-time inference speed and achieves high accuracy 
with minimal computational load. In comparison to GPU 
environments, MRD-YOLO exhibits the best detection 
performance in CPU settings. Models closer to MRD-
YOLO significantly lag behind in terms of parameter 
count and computational complexity.

In conclusion, our proposed lightweight model demon-
strates excellent performance in the task of melon ripe-
ness detection, achieving exceptionally high detection 
accuracy while preserving real-time inference speed and 
minimizing both parameter count and computational 
demands. The advantages of our improved MRD-YOLO 
model are particularly evident in computationally con-
strained environments. These findings suggest promising 
application prospects for our model in resource con-
strained mobile and edge devices, such as picking robots 
or smartphones.

Fig. 8 Comparison of mAP and inference speed with batch size 1. GPU: Tesla V100S-PCIE. CPU: Intel� Xeon� Gold 6230R. The size of the circle 
is related to the parameters of each method in (a) and the FLOPs of each method in (b), respectively
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Generalization experiment
Generalization in deep learning refers to the ability of 
a trained model to perform well on unseen data or data 
on which it hasn’t been explicitly trained. It is a crucial 
aspect because a model that merely memorizes the train-
ing data without learning underlying patterns will not 
perform well on new, unseen data.

To assess the generalization ability of the MRD-YOLO 
model, we utilized images from two melon datasets with 
a total of 132 images obtained from Roboflow as our test 
set [17, 18]. Since the acquired datasets consist of only 
one category, melon class, we labeled them accordingly. 
None of the data in this dataset were involved in the 
model training process, and the varieties of the melons 
in these datasets are entirely different from those in our 
dataset. Despite the relatively poor resolution and qual-
ity of the images in the dataset, it presents an excellent 
opportunity to evaluate the generalization ability of our 
MRD-YOLO model.

Due to the dataset’s imbalanced categories and the 
limited number of ripe melons, we present the experi-
mental results for both ripe and unripe categories. The 
results are illustrated in Table  7. MRD-YOLO achieves 
a precision of 89.5% in recognizing unripe melons, with 
a mAP of 88.6%. Additionally, for ripe melons, the mAP 
reaches 83.1%. These results underscore the MRD-YOLO 
model’s robust generalization ability and its proficiency 

in handling unfamiliar datasets. The detection outcomes 
of the generalization experiments are depicted in Fig. 9. 
The model exhibits strong detection capabilities for 
melons with occlusions, overlaps, and scale differences. 
Furthermore, it accurately distinguishes ripe and unripe 
melons, even when their colors are similar. This robust-
ness is attributed to the inclusion of numerous images 
with complex backgrounds in our original training set, 
enabling the MRD-YOLO to effectively adapt to diverse 
real-world scenarios.

In conclusion, the results of the generalization experi-
ments reaffirm the effectiveness of MRD-YOLO in 
detecting melon ripeness in authentic agricultural 
environments.

Discussion
Difference in inference speed between GPU and CPU 
environments
MRD-YOLO exhibits a significant improvement in both 
parameter count and floating-point operations when 
compared to the baseline model. In theory, a smaller 
model would typically imply faster inference. However, 
the experimental findings contradict this expectation. 
Instead, the enhanced MRD-YOLO exhibited a reduc-
tion in inference speed within the GPU environment, 
yet maintained remarkable performance within the CPU 
environment.

The main reason for this phenomenon lies in the net-
work architecture of MobileNetV3, originally designed 
for mobile CPUs. MobileNetV3 employs depth-separa-
ble convolutions, which decompose a standard convo-
lution into two stages (depthwise convolution followed 
by pointwise convolution), thereby reducing the num-
ber of parameters and total computation required. 
Consequently, the resulting model exhibits fewer 
parameters and reduced computational demands, 

Table 7 Performance of MRD-YOLO in generalization 
experiment

Class Instances P(%) R(%) mAP(%)

Unripe 373 89.5 81.8 88.6

Ripe 63 81.2 82.4 83.1

All 436 85.3 82.1 85.9

Fig. 9 Detection results of MRD-YOLO in generalization experiment
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albeit with an increased number of layers [20]. GPUs 
excel in the parallel processing of large datasets, mak-
ing them well-suited for intensive deep learning tasks. 
However, despite their parallel computing prowess, 
GPUs incur overhead in initiating and coordinat-
ing parallel tasks. If the computational workload of 
MobileNetV3 does not fully leverage GPU parallelism, 
this overhead may offset the benefits of GPU accel-
eration. Conversely, CPUs efficiently handle smaller 
workloads without significant parallelism overhead. 
MobileNetV3’s architectural optimizations align more 
closely with the characteristics of CPU environments, 
leading to superior performance. The disparity in 
inference speed between MobileNetv3 isn’t limited to 
GPU versus CPU scenarios; compared to GPUs, which 
offer substantial arithmetic power, MobileNetV3 may 
perform well on hardware with limited arithmetic pre-
cision. These attributes make MobileNetV3 an ideal 
candidate for lightweight models tailored for mobile 
and edge devices.

The advantages of MobileNetV3 are particularly pro-
nounced in real-world settings where not all devices 
possess powerful GPUs. Therefore, we incorporated 
MobileNetV3 into our baseline model. The enhanced 
lightweight MRD-YOLO exhibits promising prospects 
for applications in resource constrained environments 
and achieves exceptional performance in the task of 
melon ripeness detection.

Visualization of MRD‑YOLO and YOLOv8
To more intuitively showcase the improvement effect of 
our proposed method over the baseline, we visualized 
the detection results of YOLOv8n and MRD-YOLO 
using the Grad-CAM tool [41]. Grad-CAM is a deep 
learning technique employed for visualizing the regions 
of an image crucial for predicting a particular class. It 
offers valuable insights into the decision-making pro-
cess of Convolutional Neural Networks, aiding in the 
understanding of which parts of an image influence the 
network’s predictions. The Grad-CAM visualization 
results are depicted in Fig. 10.

The baseline YOLOv8n exhibits a more dispersed 
area of interest and is more susceptible to interference 
from non-melon areas, such as leaves. In contrast, the 
enhanced MRD-YOLO model demonstrates superior 
capability in focusing on melon features and accurately 
localizing each target, even in scenarios with multi-
ple targets within a single image. The integration of 
the Coordinate Attention mechanism in the improved 
model enables it to concentrate on key melon features. 
This further validates the effectiveness of our proposed 
MRD-YOLO model for melon ripeness detection tasks.

Prospects and limitation
In this study, we have created a large scale, meticulously 
labeled, and classified melon dataset based on ripeness. 
This dataset was collected from a real greenhouse envi-
ronment, encompassing prevalent challenges encoun-
tered in the field, including occlusion, overlapping, and 
variations in light intensity. Such complexities in the 
dataset provide authentic and comprehensive data for 
training object detection algorithms. Our dataset exhib-
its a broad spectrum of applications, particularly in phe-
notype detection.

For future endeavors, we propose a more nuanced 
categorization of ripeness to offer detailed insights into 
the harvesting process. Moreover, unlike existing melon 
datasets, the melon instances in our dataset exhibit sharp 
focus, facilitating instance segmentation. This feature 
enables us to conduct more profound investigations into 
the phenotypes of individual melons. Beyond phenotype 
detection, predicting attributes such as fruit ripeness or 
color using methods like time series analysis and genera-
tive networks emerges as a pivotal research avenue. Our 
dataset encompasses individual melons across various 
growth stages, exhibiting substantial disparities in size, 
color, and ripeness. The extensive dataset size provides 
ample support for diverse future studies.

The images we gathered exhibit minimal blurring, this 
circumstance raises concerns regarding the potential 
limitations of MRD-YOLO in detecting targets that are 
both small and blurred. Originally tailored for discern-
ing the ripeness of melons, our model relies on clear 
images to accumulate sufficient data for distinguishing 
between targets at various ripeness stages. Consequently, 
the majority of images in our initial training dataset are 
meticulously focused, resulting in a dearth of small, low-
resolution targets. This deficiency contributes to the 
model’s inability to detect small and blurred objects in 
low-quality images, thereby reducing the recall rate in 
generalization experiments.

Conclusion
Detecting melon ripeness using object detection algo-
rithms poses a significant challenge owing to the scar-
city of high-quality training datasets and the inherent 
complexity of the field environment. This study aims to 
bridge the gap in high-quality datasets for melon ripe-
ness detection by establishing a comprehensive dataset 
and proposes a lightweight ripeness detection method, 
MRD-YOLO, suitable for resource constrained environ-
ments. The method utilizes MobileNetV3 as the back-
bone network, reducing the model size and improving 
its inference efficiency in computationally constrained 
environments. The integration of a Slim-neck design 
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paradigm further optimizes the model, ensuring detec-
tion accuracy while minimizing parameters and compu-
tations. Additionally, we introduce Coordinate Attention 
to enhance the model’s ability to detect targets of dif-
ferent ripeness levels in complex scenarios. Experimen-
tal validations in real field environments demonstrate 

the superior performance of MRD-YOLO compared to 
existing state-of-the-art methods. Its lightweight design 
makes it promising for deployment in various resource 
constrained field devices. Furthermore, MRD-YOLO 
exhibits efficient generalization capabilities, as evidenced 
by testing on two datasets sourced from Roboflow. In 

A B C D

E F G H

Input image

Ground truth

YOLOv8n

Input image

Ground truth

YOLOv8n

MRD-YOLO

MRD-YOLO

Fig. 10 Visualization results of MRD-YOLO and YOLOv8 using Grad-CAM
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conclusion, this study presents an efficient method for 
melon ripeness detection, offering valuable data, techni-
cal insights, and references for ripeness detection across 
not only different melon varieties but other fruits as well.
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