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Abstract
Background  Chinese Cymbidium orchids, cherished for their deep-rooted cultural significance and significant 
economic value in China, have spawned a rich tapestry of cultivars. However, these orchid cultivars are facing 
challenges from insufficient cultivation practices and antiquated techniques, including cultivar misclassification, 
complex identification, and the proliferation of counterfeit products. Current commercial techniques and academic 
research primarily emphasize species identification of orchids, rather than delving into that of orchid cultivars within 
species.

Results  To bridge this gap, the authors dedicated over a year to collecting a cultivar image dataset for Chinese 
Cymbidium orchids named Orchid2024. This dataset contains over 150,000 images spanning 1,275 different 
categories, involving visits to 20 cities across 12 provincial administrative regions in China to gather pertinent data. 
Subsequently, we introduced various visual parameter-efficient fine-tuning (PEFT) methods to expedite model 
development, achieving the highest top-1 accuracy of 86.14% and top-5 accuracy of 95.44%.

Conclusion  Experimental results demonstrate the complexity of the dataset while highlighting the considerable 
promise of PEFT methods within flower image classification. We believe that our work not only provides a practical 
tool for orchid researchers, growers and market participants, but also provides a unique and valuable resource for 
further exploring fine-grained image classification tasks. The dataset and code are available at https://github.com/
pengyingshu/Orchid2024.

Keywords  Chinese Cymbidium orchids, Orchid image dataset, Fine-grained image classification, Visual parameter-
efficient fine-tuning
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Background
Chinese Cymbidium orchids are a collective term for 
several terrestrial orchid species native to China, which, 
according to plant taxonomy, belong to the genus Cym-
bidium within the family Orchidaceae [1]. Due to Con-
fucius’ deep fondness for orchids and his unparalleled 
influence, along with the numerous poems related to Chi-
nese Cymbidium orchids that have sprung up through-
out history, as well as the importance of these flowers in 
terms of their beautiful appearance, diverse applications 
and medicinal properties, these factors collectively con-
tribute to the Chinese “orchid culture” being a source of 
immense pride and cultural identity for many people in 
China [2]. In this historical context, Chinese Cymbidium 
orchids have been artificially cultivated for centuries 
due to their exceptional ornamental and cultural values, 
resulting in the development of numerous cultivars [3]. 
Concurrently, this cultivation has led to a flourishing 
orchid trade. The prices of different cultivars exhibit sub-
stantial variation, with commonplace cultivars generally 
priced below US 1,000 dollars, whereas rare cultivars or 
natural mutations cultivars can fetch tens or even hun-
dreds of thousands of dollars in the market [4].

However, the increasing popularity and commercializa-
tion of Chinese Cymbidium orchids has raised various 
issues that pose significant challenges to their long-term 
survival and conservation. On the one hand, long-term 
inadequate cultivation management and outdated tech-
nical methods, Chinese Cymbidium orchids are facing 
problems including mixed varieties and difficulties in 
cultivar identification [5]. These limitations restrict the 
development of orchid cultivation, improvement, scien-
tific research and other related work in China, and seri-
ously hinder the stable supply of orchids to the market. 
On the other hand, urbanization and changing market 
dynamics have fueled price speculation and rapid over-
collection of many Chinese Cymbidium orchids, result-
ing in population collapse and local extinctions of many 
cultivars [6]. Additionally, the immense commercial 
worth of Chinese Cymbidium orchids has also sparked a 
rise in counterfeiting and forgery of rare cultivars, lead-
ing to frequent losses for orchid enthusiasts.

As a professional team dedicated to the comprehen-
sive utilization of orchids, we fully recognize proactively 
addressing the above challenges faced by the Chinese 
Cymbidium orchids industry. Therefore, authors require 
an efficient, accurate and directly applicable cultivar 
identification system urgently to support the manage-
ment, cultivation, research, marketing, and protection 
of Chinese Cymbidium orchids. Firstly, Chinese Cym-
bidium orchid has more than 1000 known cultivars, each 
exhibiting subtle discrepancies in characteristics such as 
flower shape, color, and patterns. Manual identification 
by professionals can be time-consuming and prone to 

inaccuracies. Hence, an automated system can stream-
line the identification process, guaranteeing both accu-
racy and efficiency. Secondly, accurate identification and 
cataloging of endangered cultivars empower researchers 
to track population trends, monitor distribution patterns, 
and formulate effective conservation strategies. Addi-
tionally, this system can facilitate the discovery of new 
cultivars. Lastly, a comprehensive cultivar recognition 
system can assist retailers and wholesalers in labeling 
and categorizing orchids appropriately, thereby ensuring 
transparency and fostering trust within the market.

The advent of deep learning technology has brought 
significant improvements in the accuracy of image clas-
sification tasks, including fine-grained image classifica-
tion [7]. However, to the author’s knowledge, there are 
no cases involving the cultivar classification of Chinese 
Cymbidium orchids in either commercial applications 
or scientific research fields. The few studies on orchid 
identification focus solely on the image classification of 
orchid species, without delving into the specialized clas-
sification of cultivars [8].

To this end, the authors have meticulously developed a 
Chinese Cymbidium cultivars classification system from 
scratch by utilizing the recent advances in the field of 
deep learning. Specifically, the authors spent more than a 
year creating a new high-quality fine-grained image clas-
sification dataset, Orchid2024, with an emphasis on cul-
tivars classification of Chinese Cymbidium orchids. The 
Orchid2024 dataset contains 1,269 cultivars from 8 spe-
cies of Chinese Cymbidium orchids and 6 additional cat-
egories, comprising a total of 156,630 images, with each 
image featuring at least one flowering orchid. The dataset 
covers nearly all common Chinese Cymbidium cultivars 
currently found in China. Each cultivar contains at least 
10 images, up to a maximum of 1,387 images, essentially 
in proportion to their prevalence in China.

Considering the similarity of images across different 
orchid cultivars, we explored a different route in devel-
oping an efficient classification model, deviating from 
the methodologies employed in previous research on 
flower classification models. In relevant research, it was 
common practice to meticulously design a model specifi-
cally for a given dataset [9], or fine-tune existing models 
on the target dataset [10], or utilize neural architecture 
search (NAS) techniques to automatically design mod-
els for specific tasks [11]. While these methods have all 
been found to be effective, their practical application is 
often limited due to inherent limitations, particularly 
when employing particularly large model architectures 
[12]. Designing a suitable model for a dataset manually 
demands significant time and effort [13], and its appli-
cability may diminish as the dataset undergoes changes. 
Fine-tuning existing models on the target dataset, whose 
performance heavily relies on the quality and relevance 
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of the pre-trained model to the target dataset [14]. NAS 
techniques are computationally expensive and time-
consuming since they involve searching through a large 
space of possible architecture [15].

In contrast to these traditional approaches, the remark-
able success of Transformer architecture and PEFT 
technology in natural language processing (NLP) has 
spurred their adoption in computer vision. The Vision 
Transformer (ViT) model [16] and Swin Transformer 
(Swin) model [17] are two notable examples that have 
effectively utilized the Transformer architecture, surpass-
ing different convolution neural network (CNN) models 
[18] in various computer vision tasks. At the same time, 
researchers in computer vision have drawn inspiration 
from the remarkable success of PEFT technology in the 
field of NLP, resulting in a plethora of noteworthy accom-
plishments in incorporating PEFT into the realm of com-
puter vision [19].

Therefore, this paper introduces visual parameter-
efficient fine-tuning (PEFT) for the orchid cultivar accu-
rately classification. Inspired by recent advancements 
in language models, PEFT offers a powerful alternative 
to full-parameter fine-tuning for adapting pre-trained 
vision models, particularly in resource-constrained sce-
narios [19, 20]. By selectively training a narrow subset of 
model parameters while freezing the rest, PEFT reduces 
storage requirements, accelerates training, and mitigates 
overfitting on limited datasets, often achieving compa-
rable or even exceeding the performance of full-param-
eter fine-tuning [21, 22]. To thoroughly evaluate PEFT’s 
effectiveness, we performed comprehensive experiments 
on the Orchid2024 dataset. Our analysis involved com-
paring the performance of various PEFT methods against 
full-parameter fine-tuning and established baseline per-
formance for existing state-of-the-art classification mod-
els. The results reveal the challenge presented by the 
Orchid2024 dataset and unveil the potential of PEFT for 
further exploration in this domain.

In summary, constructing a comprehensive Chinese 
Cymbidium orchid image dataset and classification sys-
tem can serve as a valuable tool for the management of 
orchid germplasm resources. This will provide research-
ers in horticulture and botany with a valuable resource 
for studying orchid morphology, physiology, and ecology, 
while also aiding in the identification, cultivation, preser-
vation, and marketing of Chinese Cymbidium orchids.

Dataset and methods
We have built the Orchid2024 dataset through the fol-
lowing four stages: (1) develop general principles for 
constructing the dataset, (2) images collection, (3) 
preliminary pre-processing, and (4) professional data 
annotation.

The proposed Orchid2024 dataset
General principles for building the dataset
Naming conventions  Until the present day, the classifi-
cation of plants, fungi, and animals in scientific research 
and education across the globe has consistently adhered 
to the fundamental principles (Linnaean system) estab-
lished by Linnaeus [23]. The Linnean system obeys two 
fundamental rules, the binomial as basic format for spe-
cies names, including a genus-level name and a specific 
epithet, and rank-based higher classifications, with the 
main ranks encompassing kingdom, phylum, class, order, 
family, genus, species. Chinese Cymbidium orchids are 
a generic term for 8 terrestrial species that originated in 
China, which belong to the genus Cymbidium within the 
family Orchidaceae. These 8 species botanically include 
Cymbidium goeringii, C. faberi, C. ensifolium, C. sinense, 
C. kanran, and three variants of Cymbidium goeringii, 
namely, C. var. longibracteatum, C. var. tortisepalum, and 
C. var. serratum. In botanical terms, a variant refers to a 
distinct form or variety of a particular plant species that 
exhibits specific characteristics or traits to differentiate 
them from the standard form of the species [24].

Our dataset focuses on different cultivars within these 
8 species. Wherein, cultivars are varieties or cultivated 
forms of a particular plant species. They are a subset of 
the species that have been specifically bred or selected 
for desirable traits by humans, such as unique flower col-
ors, or strong disease resistance. In the present study, the 
authors followed the general principle of Linnean classi-
fication that cultivars are given names by their Chinese 
phonetic(pinyin), indicated by single quotes (‘’) following 
the genus and species names. For example, Cymbidium 
goeringii ‘Cai Yun’, where Cymbidium is a genus of family 
Orchidaceae, goeringii is a species of genus Cymbidium, ' 
Cai Yun ' is a cultivar of specie goeringii.

Classification criterions  Typically, botanists or orchid 
experts classify orchid species and cultivars by carefully 
observing various characteristics, including the shape, 
color, seeds, and roots of the plants [25]. However, when 
it comes to different cultivars under the same Chinese 
Cymbidium orchids, the organs such as leaves, stems, and 
roots appear strikingly similar. This similarity arises from 
the fact that the primary objective of cultivating these 
orchids is to appreciate their exquisite flowers. Hence, in 
our work, we categorize orchids based on the appearance 
of their blooming flowers, as these floral characteristics 
often serve as the most prominent differentiating factor 
among various orchid species and cultivars.

Additional categories setting  In order to enhance 
the model’s classification accuracy, broaden its applica-
tion range, and meet the practical demand of recogniz-
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ing unfamiliar species or flowers that are not related to 
Chinese Cymbidium orchids, we have introduced six 
additional categories into our dataset. These categories 
include images of orchids outside the genus Cymbidium, 
which belong to the family Orchidaceae, as well as flower 
images from outside the Orchidaceae family. Additionally, 
the categories contain images of four other species within 
the Cymbidium genus, namely Cymbidium lancifolium, C. 
hybrid, C. floribundum, and C. szechuanicum.

As far as our current understanding extends, there 
exists no mature and large-scale cultivar system for these 
four species within the Cymbidium genus. For a long 
time, horticulturists and some botanists have categorized 
these species as Chinese Cymbidium orchids. However, 
mainstream botanists consider them to belong to a dis-
tinct species separate from Chinese Cymbidium orchids 
[26]. In this study, we have adopted the viewpoint of 
mainstream botanists.

Images collection and pre-processing
Between October 2022 and January 2024, we systemati-
cally collected images of Chinese Cymbidium orchids in 
accordance with the blooming periods of different spe-
cies. Considering the complexity and diversity of these 
orchids, the authors collected relevant images through 
various methods, as summarized below (Fig. 1).

1.	 A large number of images were collected from 
the Hunan Academy of Agricultural Sciences in 
Changsha, China. This organization boasts numerous 
professional Cymbidium orchid cultivation bases 
and greenhouses featuring standardized planting 
patterns, as well as the Chinese National Cymbidium 
faberi Germplasm Cymbidium Resource Center 
managed by the author’s team.

2.	 By conducting scientific surveys of orchids and 
regularly attending orchid exhibitions and academic 
conferences, we are able to capture close-up photos 
of different orchid species, especially those that are 
rare or endangered. During the collection of orchid 
pictures, the authors traveled to 20 cities in 12 
provincial administrative regions in China, including 
Hunan, Jiangsu, Zhejiang, Guangdong, Fujian, 
Yunnan, Sichuan, Shaanxi, Shandong, Guizhou, 
Hubei and Shanghai.

3.	 The author’s institution, which houses a national 
entrepreneurship training base for technical envoys, 
provides technical support and cultivar identification 
to many companies and flower growers through its 
platform. This platform allows researchers to collect 
image data directly from planting sites.

4.	 This work extensively searches online platforms, 
botanical websites, and horticultural forums to 
amass a substantial collection of images, including 
critically endangered or extinct cultivars.

Fig. 1  The source of image acquisition, photographed in 2023
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Through the above steps, we initially collected more than 
500,000 images, which required a substantial amount 
of manual image annotation work. For the purpose of 
improving annotation efficiency, we utilized computer 
programs to preprocess these images. The preprocess-
ing process includes the following steps in chronological 
order: (1) Employing a no-reference image quality assess-
ment model proposed by [27] to filter out low-quality 
images, including the removal of severely blurred or 
distorted images. (2) Removing duplicate images from 
all images by the perceptual hashing algorithm [28]. (3) 
We utilized the existing data within our team to build a 
binary classification model, which is capable of accurately 
distinguishing whether an image belongs to Chinese 
Cymbidium orchids. Through preliminary classification, 
we were able to significantly enhance data purity and 
reduce the workload of annotation. The binary classi-
fication model was trained by fine-tuning the ViT/B-16 
model on our proprietary dataset consisting of 30,000 
Chinese Cymbidium orchid images and 30,000 images 
of other flowers. After data processing, we end up with a 
preliminary image dataset with a hierarchical structure.

Professional data annotation
Chinese Cymbidium orchids involve 8 different species. 
For image annotations of cultivars under each species, 
we hired a corresponding senior grower with extensive 
experience in the cultivation of that species. Therefore, 
in total, we invited 8 senior growers to annotate the 
images filtered in the previous procedure. During the 
annotation process, for each common orchid cultivar, 
the authors provided a corresponding example image for 
these growers. Then the grower compared other orchid 
images from the same cultivar to determine if they share 
similar characteristics with the reference picture. These 
characteristics include petals, sepals, and color pat-
terns. These images could only be identified as belong-
ing to the same cultivars if the grower confirms that 
they have similar characteristics to the example image. 
Any images dissimilar to the example image are deleted 
directly. For the uncommon cultivars, we provided text 
description information related to taking or obtaining 
images of the current cultivar to help the growers check 
the cultivar annotation. This information includes flower 
labels at exhibitions or descriptive text accompanying the 
pictures.

After completing the image annotation work, the 
author team conducted three rounds of quality evalu-
ation on all images. In the first round, the author team 
selected five orchid experts with more than three years 
of research experience to quickly browse through all 
images to screen out clearly unqualified ones. In the sec-
ond round, five experts in the previous round used their 
professional knowledge and experience to scrutinize 

each image in the dataset to confirm whether it meets 
the annotation requirements, and correct possible errors 
or omissions. The final round of review involves the 
authors carefully examining each image to ensure that 
the annotation quality of the images meets the expected 
standards.

Dataset structure
The Orchid2024 dataset follows a hierarchical structure 
based on the botanical classification system. Figure  2 
shows its detailed taxonomy structure. After data clean-
ing and annotation, the Orchid2024 dataset contains 
156,630 images and 1,275 classes. The dataset employs 
a fine-grained hierarchical structure with two distinct 
levels. The coarse-grained level corresponds to Chinese 
Cymbidium orchid species, containing 8 species and an 
additional class. The fine-grained level, corresponds to 
Chinese Cymbidium orchid cultivars, containing 1,269 
cultivars and 6 additional subclasses.

The 6 additional sub-classes are part of the additional 
class, including orchid images from genera other than 
Cymbidium in the family Orchidaceae, flower images 
from families outside the family Orchidaceae, and images 
of 4 other species within the genus Cymbidium.

To construct a reliable and accurate model, we divided 
the dataset into training, validation, and testing sets 
using a 6:2:2 split at the sub-class level. More specifically, 
we allocated 94,036 images for training, 31,297 images 
for validation, and 31,297 images for testing in the clas-
sification task. Table  1 shows the number of training/
validation/test (denoted as training/validation/test) set 
images, number of classes and imbalance ratio (IR) of 
the Orchid2024 dataset at different class levels. In clas-
sification tasks, IR quantifies the skew between classes 
in a dataset [29]. It’s calculated by dividing the number 
of instances in the majority class by the number in the 
minority class. A higher IR indicates a more imbalanced 
dataset, where the majority class significantly outnum-
bers the minority class. The Orchid2024 dataset employs 
cultivar-level labels as the foundation for image classifi-
cation tasks.

Dataset characteristics
High diversity  Our dataset is characterized by the 
inclusion of image data from different species and cul-
tivars with varying magnitudes of difference between 
these species, as well as varying magnitudes of difference 
between images of different cultivars under the same 
species (Fig.  3). For instance, the interspecific distinc-
tions between the specie C. goeringii and C. ensifolium 
are quite pronounced, whereas the disparities between C. 
goeringii and the specie C. var. longibracteatum or C. var. 
tortisepalum are comparatively subtle. This is because C. 
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var. longibracteatum and C. var. tortisepalum are variants 
of species C. goeringii.

Here, working with such a dataset also poses challenges 
for building a classification model. The varying degrees of 
differences between species and cultivars add complexity 
to the task of training deep learning models. Models need 
to effectively handle the variations in appearance, size, 
shape, and other visual attributes across different species 
and cultivars.

Imbalanced distribution  As illustrated in Fig.  4 and 
detailed in Table  1, our proposed dataset demonstrates 
a noticeable imbalance in distribution at both the spe-
cie and cultivar levels. This disparity is predominantly 
attributed to factors such as market demand, breeding 
complexities, culminating in a long-tail distribution. The 
quantity of images per category spans from a minimum of 
10 to a maximum of 1,387. Despite our efforts to balance 
the image count across various cultivars, certain cultivars 
face endangerment or are exceedingly rare, posing chal-
lenges in acquiring a sufficient number of images for these 

Fig. 2  Taxonomy of the Orchid2024 dataset
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specific cultivars. Consequently, the skewed nature of the 
data may lead the classification model to exhibit biases 
toward classes with a relatively higher quantity of training 
samples.

Comparison with other datasets  In Table  2, we com-
pare the Orchid2024 dataset with several popular fine-
grained image datasets. It can be observed that currently 
known famous fine-grained datasets mainly focus on 
common object classification within the general domain, 
such as food, animals and daily necessities. In contrast, 
our dataset offers a deep dive into a specific domain, pro-
viding fine-grained detail for orchid cultivars classifica-
tion. Give that orchids exhibit unique characteristics and 
complex morphology, their distinction and recognition 
require more meticulous observation and understanding. 
Therefore, our dataset has a greater level of granularity. 
Furthermore, Orchid2024 dataset is comparable to the 
widely used fine-grained datasets currently available in 
terms of both the size and diversity of the images.

Methods
Exploring PEFT strategies with Orchid2024 data
This study explores how to efficiently build a classifica-
tion model based on the Orchid2024 dataset. In order 
to make the model more accurate, versatile, and less 
expensive to train, we adopt the research paradigm of 
pre-training and fine-tuning. Specifically, the commonly 
used Vision Transformer model was selected as the pre-
trained model, and then PEFT methods were employed 
to train the pre-trained model in order to build an image 
classification model for Chinese Cymbidium orchids. The 
core of PEFT technology lies in introducing a minimal 
number of new trainable parameters during fine-tun-
ing. This is achieved by keeping the pre-trained model’s 
parameters frozen. Alternatively, a small portion of the 
original parameters can be fine-tuned while minimiz-
ing the introduction of new ones. Inherent redundancy 
within the model parameters allows this technique to 
effectively utilize limited data resources and reduce com-
putational demands.

In this study, we employed the ViT/B-16 model as the 
pre-trained model to find an equilibrium between model 
complexity and experimental conditions. Based on this 
foundation, our research assesses the effectiveness of 
different PEFT methods on the Orchid2024 dataset. As 
illustrated in Fig. 5, some representative PEFT methods 
include Adapter [38], LoRA (Low-Rank Adaptation) [39], 
and VPT (Visual Prompt Tuning) [20]. These methods 
utilize a range of techniques to minimize the number of 
fine-tuning parameters needed, achieved by adjusting 
the input, backbone, or classification head of ViT, while 
keeping the other parameters of the pretrained model 
fixed (the parameters are not adjusted during the train-
ing process). A detailed examination of all PEFT methods 
employed in this paper is outlined below:

A.	Full-parameter fine-tuning:
(1)	Full-parameter fine-tuning: update all model 

parameters of the pre-trained model, including the 
backbone and classification heads.

B.	 Methods that leverage the pre-trained model for 
feature extraction and concentrate on tailoring the 
classification head for the specific task:

(2)	Linear probe: use a single linear layer as the 
classification head. Throughout training, only 
update the parameters of this layer to learn the class 
differentiations.

(3)	Partial-k [40]: update the parameters of the last k 
backbone layers and the linear classification header, 
while fixing the weights of all other layers. We set k 
to 1 in our experiments.

C.	Methods that allow for targeted updates to a subset 
of backbone parameters or the incorporation of 
additional trainable parameters within the backbone 
architecture:

(4)	Adapter [38]: enhance the ViT architecture by 
integrating additional lightweight adapter modules 
within each Transformer module. An adapter 
module linearly down-projects the data to reduce its 
dimensionality, then applies a nonlinear activation 
function to learn more complex relationships in the 
data, and finally linearly up-projects the data back 
to its original size, with a residual connection added 
to the output. In our work, we used an adapter 
compression factor (reduction factor) of 128. This 
factor means that the output feature dimensions of 
the linear projection layer within the adapter module 
are compressed by a factor of 128.

(5)	LoRA [39]: streamlines model fine-tuning by 
leveraging low-rank matrix decomposition. It focuses 
on the attention layer, specifically the query (Q), key 
(K), value (V) and output projection (O) layer within 
a ViT model. During training, LoRA efficiently 
adapts the model by optimizing a smaller set of 

Table 1  Detailed structure of the Orchid2024 dataset
Super-Class Class Train Val Test IR
C. goeringii 626 39,023 12,991 12,991 109.4
C. faberi 74 7,403 2,463 2,463 63.1
C. ensifolium 254 26,570 8,850 8,850 138.7
C. sinense 49 2,692 896 896 36.8
C. kanran 96 2,904 962 962 50.2
C. var. longibracteatum 72 5,359 1,782 1,782 75.1
C. var. tortisepalum 86 6,897 2,293 2,293 55.2
C. var. serratum 12 570 187 187 33.2
Additional class 6 2,618 873 873 2.6
Orchid2024 1,275 94,036 31,297 31,297 138.7
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low-rank matrix parameters instead of modifying all 
the weight parameters directly. we focus on tuning 
the Q and V parameters within each attention block, 
as inspired in [41].

(6)	Bias tuning [42]: update only the bias terms within 
the pre-trained backbone and the parameters of the 
linear classification head.

(7)	Side tuning [43]: train a “side” network (such as 
AlexNet [44]) and linear interpolate between pre-
trained features and side-tuned features before being 
fed into the classification head.

D.	Methods that incorporate a limited number of 
trainable parameters into the input space of the ViT.

(8)	VPT-deep: transform an input image into a series 
of patches and consider them as tokens, add a 
collection of trainable parameters called prompts, 
which are then placed before the input space of the 
ViT. In VPT-deep, prompts are added to the input 
space of each Transformer layer. In addition, the 
output of the prompt from the previous Transformer 
layer is eliminated, and a fresh prompt is inserted 

Fig. 3  Examples of different species and cultivars. Due to differences in plant breeding methods and goals, each species exhibits highly similar charac-
teristics among the cultivars denoted by the blue border, whereas the cultivar outlined in red demonstrates notable differences from those marked with 
the blue border
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into the current Transformer layer. The VPT method 
uses 10 token prompts by default in our work.

Experiment and evaluation
Within the Orchid2024 dataset, we conduct a system-
atic evaluation of various PEFT methods to identify the 
configuration that achieves optimal classification perfor-
mance. Subsequently, we delve into a rigorous analysis 
to understand how design choices within PEFT methods 
influence their overall effectiveness.

Experiment setup
For our experiments, the ViT/B-16 model trained on the 
ImageNet- 21k dataset [45] is used as the pre-trained 
model. Each PEFT method underwent training for a total 
of 100 epochs with a batch size of 32. During training, we 
employed an initial learning rate of 0.001 with 10 epoch 

warmup to mitigate potential learning rate instability. To 
further prevent overfitting, weight decay of 0.00001 was 
applied. The model received a 224 × 224 image cropped 
from the center of a pre-scaled 256 × 256 image. For all 
PEFT methods, LoRA was used with settings from [41], 
while other methods employed settings from [20]. The 
experiment was conducted on 8 NVIDIA Titan X GPUs, 
each equipped with 12GB of onboard memory.

The Orchid2024 dataset demonstrates a significant 
imbalance in class distribution. To address this chal-
lenge, we adopted a range of comprehensive metrics 
for the classification task, including top-1 accuracy and 
top-5 accuracy. Top-1 accuracy reflects the percent-
age of samples where the predicted class label matches 
the true class label. In contrast, top-5 accuracy provides 
some flexibility in predictions by considering the 5 most 
probable classes, deeming a prediction correct if the true 
label falls within these 5 classes. Of these metrics, the 
authors place the highest priority on top-5 accuracy to 
roughly determine the range of cultivars. This decision is 
rooted in the exceptionally challenging nature of classify-
ing orchid cultivars, a task that even the most proficient 
experts in this field struggle with, as they may not be able 
to accurately classify all categories.

Results
Performance comparison of PEFT methods
Figure  6 compares the performance of various PEFT 
methods using default configuration on the Orchid2024 
dataset. It presents the top-1 and top-5 accuracy achieved 
by each method, along with the number of parameters 

Table 2  Comparison with other datasets
Dataset Year Meta-Class Images Categories
Oxford Flowers102 
[30]

2008 Flowers 8,189 102

CUB200-2011 [31] 2011 Birds 11,788 200
Stanford Dogs [32] 2011 Dogs 20,580 120
Food101 [33] 2014 Food dishes 101,000 101
DeepFashion [34] 2016 Clothes 800,000 1,050
Veg200 [35] 2017 Vegetable 91,117 200
Products-10 K [36] 2020 Retail products 150,000 10,000
iNat2021 [37] 2021 Plants & 

Animals
3,286,843 10,000

Orchid2024 2024 Orchid cultivars 156,630 1,275

Fig. 4  Sample number distribution of the Orchid2024 dataset. Sort according to the number of samples, and then display the data in such a way that 
every fifth value is sampled
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Fig. 5  Common visual parameter-efficient fine-tuning methods. During model training, pre-trained modules depicted with white or gray backgrounds 
have their parameters frozen. In contrast, the parameters associated with colored sections, representing other methods and the classification head, are 
updated to adapt to the specific task
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updated during training. Trainable parameters are those 
parts of the model updated during fine-tuning, while fro-
zen parameters are those parts that remain unchanged. 
The ensuing observations gleaned from the results are as 
follows:

1.	 LoRA and Bias tuning methods surpass full-
parameter fine-tuning in top-1 and top-5 test 
accuracy, while Adapter exhibits comparable 
performance. It is worth noting that these three 
PEFT methods achieve this level of accuracy using 
trainable parameters that do not exceed 1.5% of the 
model total parameters. This highlights the potential 
of PEFT technology in image classification tasks, as 

it can achieve accuracy levels that rival and surpass 
those achieved through full-parameter fine-tuning, 
while also substantially reducing the number of 
parameters needed and enhancing training speed.

2.	 Our findings on the Orchid2024 dataset largely 
corroborate those reported in [20] and [41], 
with the exception of VPT and Bias tuning. VPT 
demonstrates significantly lower performance 
compared to other methods, while Bias tuning stands 
out as an effective approach. Possible reasons for 
this phenomenon include the close resemblance 
of flowers within the Orchid2024 dataset in terms 
of their appearance. Additionally, the Orchid2024 
dataset contains fewer data points for individual 

Fig. 6  Performance comparison of the PEFT methods using default configuration on the Orchid2024 dataset. (A) the test accuracy of different PEFT 
methods on the Orchid2024 dataset, and (B) shows the proportion of trainable parameters of these PEFT methods
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categories and exhibits a more uneven distribution 
of categories. These factors pose challenges for 
the VPT in learning generalizable visual prompts. 
Consequently, VPT may struggle to capture the 
nuanced features of orchids. Bias tuning only adjusts 
the bias of the pre-trained model without adjusting 
other parameters, so it can effectively avoid learning 
general features that are irrelevant to the fine-grained 
features of flowers.

3.	 While the effectiveness of PETF methods undeniably 
hinges on the chosen benchmark task and dataset, 
their relative performance can also shift based on the 
specific task and data distribution. However, LoRA, 
a leading PETF method especially successful in 
NLP, achieves superior accuracy on the Orchid2024 
dataset compared to other approaches. This result 
shows LoRA’s powerful generalization ability, 
suggesting its effectiveness can be broadly applied 
across diverse tasks.

Ablation results
Ablation on different PEFT methods parameter configuration
This study investigates the performance of various con-
figurations for PEFT methods (Table 3), including Linear 
probe, LoRA, Partial-1, and VPT-Deep. Specifically, we 
compared the performance of Linear probe with MLP-
3. MLP-3 employs a multilayer perceptron (MLP) con-
sisting of three linear layers as the classification head, 
in contrast to Linear probe which employs a single lin-
ear layer. Additionally, we examined the impact of LoRA 
on different modules of the attention layer. Partial-1 and 
Partial-2 entail updating the parameters of the last 1 and 

2 backbone layers and the linear classification header, 
respectively. VPT-Deep utilizes varying prompt token 
lengths, whereas VPT-shallow insert prompts solely into 
the first Transformer layer of the ViT model, thereby 
adding them only at the initial input to the model.

The results indicate that augmenting the necessary 
trainable parameters in Linear probe, LoRA, Partial-1, 
and VPT-Deep leads to an enhancement in accuracy. 
Methods employing a higher number of parameters tend 
to yield superior results, primarily due to their increased 
capacity to comprehend the intricate correlations 
between input data and output labels. While Partial-2 
outperforms Partial-1 and even surpasses full-param-
eter fine-tuning in terms of performance, it comes at a 
cost. Partial-2 necessitates a significantly higher num-
ber of trainable parameters (17.47%) compared to other 
PETF methods. Although increasing the prompt length 
in VPT offers some improvement, it falls short of the 
performance achieved through full-parameter fine-tun-
ing. Therefore, for fine-grained flower data sets such as 
Orchid2024, training the model itself is necessary.

In contrast, different parameter configurations of LoRA 
have achieved better performance than other methods by 
fine-tuning the query (Q), key (K), value (V), and output 
(O) modules of the ViT self-attention layer. Among these 
configurations, the LoRA-QVKO method achieves the 
best performance on both metrics, with a top-1 accuracy 
of 86.14% and a top-5 accuracy of 95.44% (Table 3).

Ablation on different pre-trained models
We enhanced the capabilities of PETF methods by lever-
aging a broader toolkit of pre-trained models. In addition 
to the pre-trained backbone trained on the large Ima-
geNet-21k dataset, we explored the potential of masked 
autoencoders (MAE) [46] trained with self-supervised 
learning on the ImageNet-1  K dataset. All of these pre-
trained models are built upon ViT/B-16 architecture. The 
corresponding results are presented in Table 4.

Supervised pre-training often leads to superior per-
formance in PEFT methods. Models leveraging this 
approach consistently outperform those using MAE 
for pre-training. This is likely because MAE primar-
ily focuses on reconstructing input images, prioritizing 
coarse-grained features essential for general object rec-
ognition. In contrast, fine-grained orchid datasets neces-
sitate a deeper grasp of subtle morphological variations 
and intricate patterns, which MAE might not capture 
adequately. In many instances, the model pre-trained 
on the ImageNet-21k dataset tends to outperform that 
pre-trained on the ImageNet-1k dataset. This is largely 
attributed to the richer training data available in the 
ImageNet-21k dataset, enabling the construction of more 
robust pre-trained models.

Table 3  Effect of different PEFT methods parameter 
configuration on model performance. “Params” refers to the total 
number of parameters in the model. “Trainable params” indicates 
the proportion of parameters that can be adjusted during 
training. The comparison item of each method is the default 
configuration of the method
Methods Top-1 

(%)
Top-5 
(%)

Params 
(M)

Trainable 
Params

Linear probe 37.26 59.52 86.78 1.13%
MLP-3 75.76 91.30 87.96 2.46%
LoRA-QV 85.12 95.21 86.93 1.30%
LoRA-QVK 85.71 95.34 87.00 1.38%
LoRA-QVKO 86.14 95.44 87.07 1.46%
Partial-1 81.71 92.69 86.78 9.30%
Partial-2 84.76 94.06 86.78 17.47%
VPT-Deep-tokens1 58.53 79.57 86.79 1.14%
VPT-Deep-tokens5 61.93 82.72 86.83 1.18%
VPT-Deep-tokens10 62.71 83.62 86.87 1.23%
VPT-Deep-tokens100 65.15 85.10 87.70 2.17%
VPT-Shallow-tokens10 45.11 68.11 86.79 1.14%
Full-parameter 84.23 93.82 86.78 100.00%
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Additionally, the effectiveness of PEFT methods hinges 
heavily on the underlying pre-trained model’s perfor-
mance. This is demonstrably true by the significant accu-
racy variations observed across PEFT methods when 
applied to different pre-trained models. Notably, LoRA 
achieves superior results when the pre-trained model is 

trained on a massive dataset like ImageNet-21k. How-
ever, this advantage lessens when using a smaller dataset 
like ImageNet-1k. Nevertheless, for building an effective 
model on the Orchid2024 dataset, the combination of 
LoRA and a pre-trained model on ImageNet-21k remains 
an advantageous approach.

Ablation on initial learning rate and weight decay
We explored the impact of different initial learning rates 
and weight decay on model accuracy. Overall, the results 
of this study suggest that there is no one-size-fits-all 
training method for training models with PEFT methods.

On the whole, using lower learning rates and weight 
decay tends to result in better performance for PEFT 
methods. The experimental outcomes outlined in Table 5 
indicate that, given PEFT methods involve fine-tun-
ing only specific parameters of the model, they exhibit 

Table 4  Effect of pre-trained models in different PEFT methods 
on model performance. “Pre-trained Model” column delineates 
the training techniques and dataset employed in training the 
respective pre-trained model. “Params” refers to the total number 
of parameters in the model. “Trainable params” indicates the 
proportion of parameters that can be adjusted during training. 
All PEFT methods use the pre-trained model trained on the 
imagenet-21k dataset by default
Methods Pre-trained Model Top-

1
(%)

Top-
5
(%)

Params 
(M)

Train-
able 
Params

Adapter Supervised/
ImageNet-21k

81.98 94.07 86.90 1.27%

Supervised/
ImageNet-1k

80.88 93.15 86.90 1.27%

MAE/ImageNet-1k 77.31 91.61 86.90 1.27%
Full-pa-
rameter

Supervised/
ImageNet-21k

84.23 93.82 86.78 100.00%

Supervised/
ImageNet-1k

84.25 93.81 86.78 100.00%

MAE/ImageNet-1k 79.56 90.86 86.78 100.00%
Linear 
probe

Supervised/
ImageNet-21k

37.26 59.52 86.78 1.13%

Supervised/
ImageNet-1k

67.07 86.48 86.78 1.13%

MAE/ImageNet-1k 12.28 26.98 86.78 1.13%
LoRA-QV Supervised/

ImageNet-21k
85.12 95.21 86.93 1.30%

Supervised/
ImageNet-1k

80.61 93.34 86.93 1.30%

MAE/ImageNet-1k 74.29 89.71 86.93 1.30%
Partial-1 Supervised/

ImageNet-21k
81.71 92.69 86.78 9.30%

Supervised/
ImageNet-1k

79.04 91.36 86.78 9.30%

MAE/ImageNet-1k 77.72 89.73 86.78 9.30%
VPT-Deep Supervised/

ImageNet-21k
62.71 83.62 86.87 1.23%

Supervised/
ImageNet-1k

81.06 94.33 86.87 1.23%

MAE/ImageNet-1k 77.22 92.58 86.87 1.23%
Side 
tuning

Supervised/
ImageNet-21k

71.19 88.05 96.33 10.93%

MAE/ImageNet-1k 71.14 88.20 96.33 10.93%
Supervised/
ImageNet-1k

69.34 87.43 96.33 10.93%

Bias tuning Supervised/
ImageNet-21k

84.63 94.90 86.78 1.25%

Supervised/
ImageNet-1k

83.11 94.09 86.78 1.25%

MAE/ImageNet-1k 81.05 93.31 86.78 1.25%

Table 5  Effect of learning rate and weight decay in different 
PEFT methods on model performance. The learning rate of 0.001 
and weight attenuation of 0.00001 are the default values of all 
training methods in our work
Methods Learning Rate Weight Decay Top-1(%) Top-5(%)
Adapter 0.01 0.00001 82.50 94.09

0.005 0.00001 82.30 93.96
0.001 0.00001 81.98 94.07
0.001 0.0001 81.98 94.07

Full-parameter 0.01 0.00001 40.90 70.03
0.005 0.00001 83.93 93.59
0.001 0.00001 84.23 93.82
0.001 0.0001 84.18 93.99

Linear probe 0.01 0.00001 58.10 79.71
0.005 0.00001 57.03 78.67
0.001 0.00001 37.26 59.52
0.001 0.0001 36.34 58.53

LoRA-QV 0.01 0.00001 77.01 93.22
0.005 0.00001 85.30 95.12
0.001 0.00001 85.12 95.21
0.001 0.0001 85.12 95.21

Partial-1 0.01 0.00001 80.71 93.27
0.005 0.00001 81.63 93.37
0.001 0.00001 81.71 92.69
0.001 0.0001 81.71 92.69

VPT-Deep 0.01 0.00001 79.41 94.28
0.005 0.00001 77.95 93.14
0.001 0.00001 62.71 83.62
0.001 0.0001 62.29 83.15

Side tuning 0.01 0.00001 72.48 88.40
0.005 0.00001 72.52 89.01
0.001 0.00001 71.19 88.05
0.001 0.0001 71.57 88.39

Bias tuning 0.01 0.00001 84.07 94.72
0.005 0.00001 84.00 94.73
0.001 0.00001 84.63 94.90
0.001 0.0001 84.63 94.90
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heightened sensitivity to learning rates, necessitating 
meticulous adjustments to attain optimal results. A high 
initial learning rate may precipitate excessive parameter 
updates, potentially compromising the established fea-
ture representation within the pre-trained model. Conse-
quently, it is advisable to employ a smaller initial learning 
rate for PEFT methods compared to full-parameter fine-
tuning. Moreover, the influence of learning rates on 
model performance surpasses that of weight decay.

In most cases, LoRA-QV achieves higher top-1 and 
top-5 accuracies than other PETF methods across various 
combinations of initial learning rates and weight decay. 
This suggests that LoRA-QV exhibits greater robustness 
to learning rate and weight decay hyperparameter tuning 
compared to other PETF methods.

Discussion
Currently, there is no research or dataset available on the 
image classification of Chinese Cymbidium orchids and 
cultivars. For other species which belong to family Orchi-
daceae with Chinese Cymbidium orchids, some related 
public datasets are released. For example, [47]collected a 
dataset consisting of only 1,500 samples across 15 classes 
to classify orchid species in genus Paphiopedilum from 
Thailand. Subsequently, [8] proposed a hybrid model 
architecture for better image classification of orchid spe-
cies based on an orchid species dataset containing 3,559 
samples and 52 categories. [48] also proposed a dataset 
containing 7,156 orchid images, including 156 different 
orchid species, most of which were obtained through 
network search. It is evident that the current orchid spe-
cies datasets solely emphasize the identification of orchid 
species without providing any additional categorization 
for distinguishing cultivars within these species. Further-
more, it is worth noting that these datasets are relatively 
limited in scale, as each one comprises less than 10,000 
samples.

Several renowned flower image datasets have also 
encountered similar issues. For instance, the Oxford 102 
Flower Dataset [30] and HFD100 dataset [10]present 
limited scale and only oriented to general domains. The 
Oxford 102 flower dataset is an image classification data-
set consisting of 8,189 images, encompassing 102 distinct 
flower categories from the United Kingdom. The HFD100 
dataset contains more than 10,700 hyperspectral flower 
images which belong to 100 categories.

In comparison, our proposed dataset covers 1,275 
classes and consists of 156,630 images. It is specifically 
created for professional fields and provides cultivar-level 
labeling beneath each species, characterized by fine gran-
ularity and a long-tail distribution. To the author’s knowl-
edge, current commercial identification software focuses 
solely on classifying Chinese Cymbidium orchid species 
and does not include the classification of their cultivars.

In this study, we build the Orchid2024 dataset and eval-
uate the performance of various PEFT methods on this 
dataset for classifying Chinese Cymbidium orchids. Our 
findings reveal that LoRA emerges as the most effective 
overall PEFT method for a building classification model 
on the Orchid2024 dataset. Bias tuning, Partial-2, and 
Adapter also demonstrate strong performance, achieving 
comparable or even surpassing results obtained with full-
parameter fine-tuning. Conversely, Linear probe, VPT-
Deep, and Side tuning exhibited lower effectiveness.

Outperforming other LoRA configurations, LoRA-
QKVO obtains state-of-the-art results on the Orchid2024 
dataset. By integrating the LoRA module into the query 
(Q), key (K), value (V), and output (O) components of 
the ViT self-attention layer, it delivers exceptional top-1 
accuracy of 86.14% and top-5 accuracy of 95.44%, all 
while using only 1.46% of the model parameters. This 
remarkably efficient approach meets our requirements 
for model classification accuracy on Orchid2024.

However, this study just provides a foundational under-
standing, and exploring more advanced PEFT techniques 
could significantly boost accuracy on the Orchid2024 
dataset. The current choice of a ViT/B-16 pre-trained 
model is a starting point. There are superior pre-trained 
models available, with better performance and larger 
parameter sizes. Utilizing these models with the PEFT 
methods is expected to improve Orchid2024 accuracy 
within a reasonable range, but it will also demand greater 
computational resources. Furthermore, a more exten-
sive exploration of PEFT parameter configurations and 
a diversification of PEFT methodologies warrant further 
investigation.

Despite careful collection and annotation efforts to 
create the Orchid2024 dataset, some known limitations 
exist. First, inherent similarities among many Chinese 
Cymbidium orchid cultivars can lead to mislabeling, even 
by experts. Secondly, the dataset might not include many 
rare orchid species due to their inherent scarcity and 
the difficulty of collection, especially for wild orchids. 
Additionally, other countries like South Korea and Japan 
have a rich history of cultivating Chinese Cymbidium 
orchids, and including cultivars from these regions would 
be beneficial. Finally, while various orchid cultivars can 
theoretically flower annually, limitations in cultivation 
technology and climate can cause some to bloom only 
every few years in specific regions. This cyclical bloom-
ing pattern might unintentionally introduce bias towards 
more frequently flowering cultivars within the dataset. 
The author team will attempt to address these limita-
tions in the future and expand the Orchid 2024 dataset 
to include more diverse orchid cultivars and geographical 
origins.
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Conclusion
In this work, we collect a large-scale fine-grained data-
set, named Orchid2024, for Chinese Cymbidum orchid 
cultivars classification. It comprises a total of 156,630 
images, encompassing 1,275 distinct cultivars across 8 
species. Compared to previous datasets, the Orchid2024 
dataset exemplifies an elevated degree of granularity and 
specialization within fine-grained classification, char-
acterized by its uniqueness and practicality. Meanwhile, 
we also compared the performance of various PEFT 
methods against full-parameter fine-tuning methods on 
the proposed dataset. The results demonstrate that the 
LoRA-QVKO method achieves the best performance 
with a top-1 accuracy of 86.14% and a top-5 accuracy of 
95.44%. Our work provides strong support for the devel-
opment and research in the field of Chinese Cymbidium 
orchid cultivation, while also offering a new data source 
for existing fine-grained image classification studies. The 
outcomes from this work are intended for direct appli-
cation in germplasm resource centers, laboratories, and 
planting bases managed by the authors.
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