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Abstract 

Background Wheat (Triticum aestivum L.) is an important grain crops in the world, and its growth and development 
in different stages is seriously affected by saline-alkali stress, especially in seedling stage. Therefore, nondestructive 
detection of wheat seedlings under saline-alkali stress can provide more comprehensive technical support for wheat 
breeding, cultivation and management.

Results This research focused on moisture signal prediction and classification of saline-alkali stress in wheat seed-
lings using fusion techniques. After collecting and analyzing transverse relaxation time and Multispectral imaging 
(MSI) information of wheat seedlings, four regression models were used to predict the moisture signal. K-Nearest 
Neighbor (KNN) and Gaussian-Naïve Bayes (GNB) models were combined with fivefold cross validation to clas-
sify the prediction of wheat seedling stress. The results showed that wheat seedlings would increase the bound 
water content through a certain mechanism to enhance their saline-alkali stress. Under the same Na concentration, 
the effect of alkali stress on moisture, growth and spectrum of wheat seedlings is stronger than salt stress. The Gradi-
ent Boosting Decision Regression Tree model performs the best in predicting wheat moisture signals, with a coef-
ficient of determination (R2P) of 0.98 and a root mean square error of 109.60. It also had a short training time (1.48 s) 
and an efficient prediction speed (1300 obs/s). The KNN and GNB demonstrated significantly enhanced predictive 
performance when classifying the fused dataset, compared to using single datasets individually. In particular, the GNB 
model performing best on the fused dataset, with Precision, Recall, Accuracy, and F1-score of 90.30, 88.89%, 88.90%, 
and 0.90, respectively.

Conclusions Under the same Na concentration, the effects of alkali stress on water content, spectrum, and growth 
of wheat were stronger than that of salt stress, which was more unfavorable to the growth of wheat. The fusion 
of low-field nuclear magnetic resonance and MSI technology can improve the classification of wheat stress, and pro-
vide an effective technical method for rapid and accurate monitoring of wheat seedlings under saline-alkali stress.
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Introduction
Saline-alkali stress caused by soil salinization, as a promi-
nent abiotic stressor, has a detrimental impact on crop 
growth, consequently affecting global agricultural econ-
omy [14, 25, 40]. Globally, over 1 billion hectares of land 
are affected by soil salinity, with more than 2 million hec-
tares added annually [32, 50]. Wherein, as an important 
food crop, wheat (Triticum aestivum L.) is also facing 
the negative effects of saline-alkali stress [19, 49]. Saline-
alkali stress leads to excessive accumulation of salt and 
alkaline substances in soil, which affects the growth and 
physiological metabolism of wheat seedlings, and then 
affects the yield and quality of crops. In China, most 
wheat regions are in the period of soil salinity return fol-
lowing the emergence of wheat seedlings, and the soil salt 
content reaches the maximum. The wheat seedling stage 
is the weakest stage of saline-alkali stress in wheat life, 
and the stress at this time has a significant impact on the 
growth of wheat seedlings [39]. Therefore, accurate and 
nondestructive detection of wheat seedling response to 
saline-alkali stress is of great significance for effectively 
evaluating crop growth status and formulating reason-
able saline alkali resistance strategies.

In the existing studies, traditional physiological and 
biochemical analysis methods are usually used to detect 
and evaluate the growth status of crops under saline alkali 
stress [22, 36]. For example, the growth status of crops is 
evaluated by measuring chlorophyll content, membrane 
permeability, soluble sugar content, proline content and 
other indicators [9, 33]. These methods with high accu-
racy and specificity can directly reflect the physiological 
and biochemical state of crops, and are of great value for 
understanding the mechanism of crop response to saline 
alkali stress and formulating corresponding management 
measures [36]. However, these methods have some limi-
tations in reflecting crop response, such as destructive, 
time-consuming and laborious, and unable to carry out 
continuous monitoring [13]. Therefore, it is very impor-
tant to seek an accurate, rapid and nondestructive tech-
nical method to monitor crops under saline-alkali stress.

In this context, this study combined low-field nuclear 
magnetic resonance (LF-NMR) and multispectral imag-
ing (MSI) technology to achieve the nondestructive 
detection of wheat seedling moisture signal and predic-
tion of saline-alkali stress. LF-NMR is a fast, accurate and 
nondestructive method, which uses the spin relaxation 
characteristics of hydrogen nuclei in the magnetic field 
to explain the distribution and migration of water in the 
sample [6, 26, 30]. Moreover, MSI is a newly developed 
technology that combines spectroscopy and traditional 
imaging to simultaneously gather spectral and spatial 
information [46]. They were developed to measure the 
morphological characteristics of the inspected objects 

initially and have been widely used for crop visualiza-
tion [31]. The fast, accurate, and nondestructive charac-
teristics of LF-NMR and MSI technologies have all crop 
stakeholders eagerly awaiting the introduction of these 
novel detection techniques to boost crop productivity 
overall. LF-NMR provides the moisture content and dis-
tribution state of crops from the microscopic perspective, 
while MSI technology provides a wider range of spectral 
information, which can reflect the overall growth state of 
crops. By combining the two technologies, we aim to fill 
the existing technical gap in the field of crop growth state 
assessment under saline-alkali stress, and provide a new 
and efficient monitoring method for crop growth status.

The study involved the following three purposes: (1) 
To analyze the moisture phase state and multispectral 
information of wheat seedlings under saline-alkali stress 
by LF-NMR and MSI technology, and explore the appli-
cation potential of two nondestructive detection meth-
ods under saline-alkali stress in wheat. (2) To carry out 
the regression prediction of moisture signal quantity of 
wheat seedlings under saline-alkali stress based on MSI 
data, and compare the performance of different regres-
sion models in predicting moisture signal amplitude. (3) 
To classify wheat seedlings under different saline-alkali 
stress through different models, and evaluate the per-
formance of different models in the accuracy of sample 
classification by fusing LF-NMR and MSI datasets. This 
work provided a new insight into monitoring the wheat 
growth status under saline-alkali stress, and the combina-
tion LF-NMR and multispectral imaging opened up new 
possibilities for improving crop resistance to multiple 
environmental stresses.

Materials and methods
Plant material and experimental design
The experimental wheat material used in this research 
was Jimai 22, which is widely planted in China. The 
experimental samples were screened in terms of similar 
size, quality, with no surface damage. Before the experi-
ment, the wheat was disinfected with 75% alcohol for 
5  min and rinsed 3 times with distilled water. Wheat 
seeds were treated with different stress treatments 
from the germination stage. After 5  days of germina-
tion, the wheat was transplanted into a black hydropon-
ics box with different stress treatment solutions for 
culture. On the basis of previous studies, the concen-
tration with high stress and low mortality was selected, 
and the concentration suitable for saline-alkali stress 
identification in wheat seedling stage was 100  mmol/L 
[20]. Three experimental treatments were set as control 
(CK, distilled water), A [100 mmol/L neutral salt (NaCl: 
 Na2SO4 = 9:1, pH = 6.68)], and B [100  mmol/L alkaline 
salt  (NaHCO3:  Na2CO3 = 9:1, pH = 8.9)], and there were 
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four replications for each treatment. The wheat seed-
lings were incubated in an MGC Series Intelligent Light 
incubator (MGC-450BP-2L, Shanghai Yiheng Scientific 
Instruments Co., Ltd., Shanghai, China) at 25 ± 1 °C with 
80% relative humidity and 12 h/12 h alternating light and 
dark period. Relevant indicators of different treatment 
groups of wheat were collected every 2 days.

T2 acquisition and processing
The LF-NMR instrument (AniMR, Shanghai Newmark 
Electronic Technology Co., Ltd., Shanghai, China) was 
used to collect the transverse relaxation time (T2) of LF-
NMR. The basic parameters of the instrument were as fol-
lows: Magnetic field intensity: (0.25 ± 0.05) t; Resonance 
frequency: 8.5–12.8 MHz; Magnetic field uniformity: less 
than 10 ppm (φ60 mm × 100 mm); Magnet temperature: 
32℃; Probe coil diameter: 15 mm. The Carr–Purcell–Mei-
boom–Gill (CPMG) sequence pulse sequence in the NMR 
spectrum analysis software was used to determine the 
T2 of the sample. According to the previous test results 
[7, 15], the main sampling parameters were set as follows: 
90° hard pulse width (P1) = 8 μs; 180° hard pulse width 
(P2) = 12 μs; Sampling frequency(SW) = 200 kHz; Analog 
gain (RG1) = 43.5 db; Digital gain (DRG1) = 3; Number of 
signal sampling points (TD) = 907,218; Repeated sampling 

times (NS) = 16; Waiting time for repeated sampling 
(TW) = 5000 μs; Echo number (NECH) = 18,000.

The LF-NMR spectrum analysis is a quantitative 
analysis and detection method using the spectral signal 
obtained by the Fourier transform of NMR signal. The 
CPMG collected from the experiment was imported into 
NMR spectrum inversion software, and the Simultaneous 
Iterative Reconstruction Technique (SIRT) was used for 
inversion operation. T2 was obtained after inversion. The 
inversion parameters were set as follows: minimum relax-
ation time: 0.01 ms; Maximum relaxation time: 10,000; 
Number of participating inversion points: 200; Number 
of iterations: 10,000. In order to eliminate the influence 
of inconsistent initial quality of test samples on the test 
results, all signal amplitude data were normalized, and 
then the data were imported into SPSS 23 for one-way 
analysis of variance. The OriginPro 2022 was used for 
drawing in this paper. During the test, the collection of 
CPMG was repeated three times, and the average value 
was taken. CPMG of wheat seedlings were collected on 
the 5th, 7th, 9th, 11th and 15th day of seedling growth. 
The instrument would be calibrated before each collec-
tion, and the water on the sample surface would be wiped 
gently with absorbent paper to avoid moisture affecting 
the results (Fig. 1).

Fig. 1 T2 relaxation data acquisition and analysis process
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Multispectral image acquisition and processing
The multispectral images of all wheat seedling samples 
were taken by a VideometerLab 4 instrument (Videom-
eter A/S, DK-2700 Herlev, Hørsholm 12B, 3.sal, Den-
mark). The instrument consists of a sphere containing 19 
light emitting diodes in the wavelengths 375, 405, 435, 
450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 780, 850, 
870, 890, 940 and 970  nm. All images were acquired in 
one sequence, with a resolution of 4096 × 3000 pixels, 
and a pixel size of 0.03 mm per pixel. Surface reflectance 
was recorded by the involvement of a standard mono-
chrome charge coupled device chip [45]. Before acquir-
ing multispectral images, the system was fully calibrated 
radiometrically and geometrically by using three succes-
sive plates: a white one for reflectance correction, a dark 
one for background correction and a doted one for geo-
metric pixel position aligning calibration, followed by a 
light setup calibration [15, 23].

The multispectral images obtained contained not only 
wheat seedlings but also some other interference, such 
as the background board and surrounding debris (Fig. 2). 
Therefore, it was necessary to remove these objects 
before extracting the spectral information of individual 
wheat seedlings. The images were processed using Vid-
eometerlab software version 3.22. Background removal 
in images of complete wheat seedlings was achieved 
through Normalized Canonical Discriminant Analysis 
(nCDA), and the seedlings were segmented using a sim-
ple threshold. Morphological traits and main spectral 
features were then extracted from the segmented wheat 

seedling images. The morphological traits were divided 
into shape features, color features, and binary features. 
The shape features included BetaShape_a, BetaShape_b, 
Compactness Circle, Compactness Ellipse, Vertical Ori-
entation, and Vertical Skewness; color features included 
CIELab_A, CIELab_B, and CIELab_L; binary features 
included Area, Length, and Width. The interpretation of 
morphological shapes was listed in the supplementary 
file: Supplementary material.

The extracted spectral features represented the average 
intensity of reflected light at each single wavelength, cal-
culated from all the wheat seedling pixels in the images.

Determination of germination index
The 450 wheat seeds were selected and evenly divided 
into 9 groups. Each kind of solution (CK, A, and B) was 
used to cultivate 3 groups of seeds individually. Before 
the experiment, the wheat was disinfected with 75% alco-
hol for 5 min and then rinsed three times with distilled 
water. The wheat seeds were placed on germination paper 
that had been moistened with an adequate amount of the 
corresponding solution, ensuring that both the paper and 
the seeds were sufficiently dampened. The germination 
paper was changed daily, and the cultivation environ-
ment was maintained as described in “Plant material and 
experimental design”. The number of germinated seeds in 
each group was recorded daily until the 7th day. The ger-
mination rate, germination potential, germination index, 
and average germination time of the wheat were calcu-
lated, with the respective formulas shown below [28].

Fig. 2 Multispectral data acquisition and analysis process
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Detection model and performance evaluation
Prediction model of moisture signal quantity
Four regression models including Gradient Boost-
ing Regression Tree (GBRT), Support Vector Machine 
(SVM), Kernel Partial Least Squares Regression 
(KPLSR) and Back Propagation Neural Network 
(BPNN) were established to predict the moisture sig-
nal of wheat seedlings under saline-alkali stress using 
MSI data. Before establishing the quantitative model 
analysis, the correlation analysis between MSI data and 
signal amplitude A was established by using Spearman 
and Kendall algorithm, and the multispectral data with 
high correlation was selected as the input variable of 
the model.

For the performance evaluation of the regression 
model, six evaluation criteria were selected: determi-
nation coefficient of training set  (R2c), corrected root 
mean square error (RMSEC), prediction determina-
tion coefficient (R2p), prediction root mean square 
error (RMSEP), training time (s), and predicting speed 
(obs/s). Wherein, R2 measures the proportion of varia-
tion explained by the model in the total variation, and 
the value range is from 0 to 1; The closer the  R2 value is 
to 1, the more variation in the data the model explains, 
indicating better model fitting. In addition, RMSE 
measures the prediction error of the model on the 
training set; The smaller the value of RMSE, the bet-
ter the performance of the model on the training set. 
The training time and speed reflect the efficiency of the 
model in practical application. The calculation formula 
of R2 and RMSE were as follows.

(1)
Germination percentage =

Number of seeds germinated

Total number seeds
× 100%.

(2)Germination potential =
Total number of germinating seeds on day 3

Total number of seed samples
× 100%.

(3)Germination index =

∑

Gt

Dt
.

(4)

Average germination time =

∑

Gt × Dt

Number of seeds germinated
.

(5)R2
= 1−

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2

,

where i is the data point, n is the number of data points, 
yi is the actual value, ŷi is the predicted value, and y the 
average value of the actual value.

Classification prediction model
In this study, we discussed the application effect of K-Near-
est Neighbor (KNN) and Gaussian-Naïve Bayes (GNB) 
combined with fivefold cross validation method in the 
classification and prediction model of salt and alkali stress 
in wheat seedlings. We used three different datasets: MSI 
datasets, LF-NMR datasets, and fusion datasets of MSI and 
LF-NMR. At present, KNN and GNB have shown satisfac-
tory results in the field of classification [10].

The prediction performance of the classification model 
was evaluated by four key indicators: Precision, Recall, 
Accuracy and F1-score. Precision is the ratio of true posi-
tive data to all predicted positive data, indicating the clas-
sifier’s ability to avoid labeling negative cases as positive. 
Recall is the ratio of true positive predictions to all actual 
positive data, indicating the classifier’s ability to identify 
all positive samples. Accuracy is the percentage of sam-
ples that are correctly classified by the model, reflecting 
the overall effectiveness of the classifier on the given data-
set. The F1-score is a metric that combines the trade-off 
between Precision and Recall, providing a single number 
that reflects the effectiveness of a classifier, particularly in 
the presence of rare categories. It is calculated as the har-
monic mean of Precision and Recall [7, 21]. The four equa-
tions of the evaluating indicators were:

(6)RMSE =

√

1

n

∑n

i=1
(yi − ŷi)2,

(7)Precision =
TP

TP + FP
,

(8)Recall =
TP

TP + FN
,

(9)Accuracy =
TP + TN

TP + TN + FP + FN
,

(10)F1 - score =
2× Precision× Recall

Precision+ Recall
,
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where TP, TN, FN, and FP are for true positive, true neg-
ative, false negative, and false positive, respectively.

Results
Phenotypic analysis of wheat seedlings under saline‑alkali 
stress
With the increase of culture time, the phenotypic char-
acteristics of wheat seedlings were significantly different 
between CK, A and B group. The germination rate of CK 
group reached 95.23% at the 7th day, and the germina-
tion potential, germination index and average germina-
tion days were significantly different from A and B group 
(Table  1). From the image, wheat leaves became thin 
and short due to saline alkali stress, and gradually curl 
(Fig.  3I). However, when wheat seedlings were cultured 
to the 9th day, the differences between the groups could 
not be identified by human eyes. Therefore, we needed 
to identify whether wheat seedlings were under stress 
in advance according to multispectral images. Figure 3II 
showed the multispectral images of wheat seedlings in 
the bands of 365, 405, 430, 515 and 630 at the 9th day of 
culture. We could judge the differences of wheat seed-
lings under different culture conditions according to the 
multispectral images.

T2 analysis of wheat seedlings under saline‑alkali stress
T2 relaxation analysis
The T2 signal amplitude was directly proportional to the 
water content of living tissues [44]. The T2 relaxation 
spectra of water in different phases within living crop 
organs exhibited significant differences, demonstrating 
the multicomponent nature of the T2 relaxation spectra 
[6, 47]. Figure  4 is a comparison diagram of T2 relaxa-
tion spectra of wheat in the control group (Fig. 4CK), salt 
stress group (Fig.  4A) and alkali stress group (Fig.  4B) 
from 5 to 15  days. In Fig.  4, the T2 spectrum of wheat 
seedlings had three obvious peaks. Considering that 
the peak positions in the T2 spectrum could reflect the 
binding energy intensity, the internal water of wheat 
seedlings was divided into three binding types [12]. The 
water phases were divided into bound water T21 (0.1 

ms < T21 < 1 ms) and signal amplitude A21 from left to 
right; semi-bound water T22 (1 ms < T22 < 10 ms), signal 
amplitude A22; free water T23 (10 ms < T23 < 1000 ms), 
signal amplitude A23. The total signal amplitude was rep-
resented by A, i.e., A = A21 + A22 + A23. The contents of 
A21, A22 and A23 increased as the seedlings matured 
(Fig.  4). Under stress conditions, the differentiation 
between A22 and A23 became blurred from the 9th day 
(Fig. 4A) or the 11th day (Fig. 4B). In addition, compared 
with the control group, the stress group showed a signifi-
cant increase in A21.

In this study, the T2 relaxation peak areas of wheat 
seedlings cultured under three conditions for 15  days 
were counted and analyzed (Table  2). Within 15  days, 
the water content of the three phases in all groups 
increased, but the growth rate was different. From the 
5th day to the 7th day, the total water signal volume of 
CK, A and B groups increased by 312.58%, 221.05% and 
149.50%, respectively. During the culture period from the 
5th day to the 15th day, the content of A21 in CK group 
continued to increase by 919.92%, group A increased 
by 621.64% and group B increased by 494.71%, the A22 
of CK A and B groups increased by 1274.35%, 982.94%, 
and 935.34% in group B, respectively, and the A23 of 
CK A and B groups increased by 519.91%, 387.49% and 
274.84%, respectively. The average growth rates for A21, 
A22, and A23 were as follows: for A21, B had the high-
est rate at 171.63%, followed by A at 170.02%, and CK 
at 168.83%; for A22, the order was CK at 182.27%, A at 
180.00%, and B at 164.17%; finally, for A23, CK was high-
est at 146.71%, followed by A at 131.72%, and then B at 
123.32%. Compared with CK group, the average growth 
rate of bound water in group B was the largest, followed 
by group A. While the average growth rate of A22 and 
A23 was the same, which was the largest in group CK, 
then group A, and finally group B.

Ratio analysis of bound water and free water
From 5th day, the ratio of free water to combined water 
of wheat seedlings under CK, A and B was carefully 
tracked (Table 3). The CK group maintained a relatively 

Table 1 Comparison of germination of wheat seed under saline-alkali stress

The data in the table represent the standard errors (± SE) of the four replicates, and different letters of the same column on the table represent significant difference 
among treatment (P < 0.05)

Group Germination rate (%) Germination potential (%) Germination index Mean 
germination 
time (d)

CK 95.23 ± 2.13a 90.21 ± 2.25a 35.51 ± 2.82a 3.15 ± 0.31c

A 70.83 ± 5.71b 62.82 ± 6.67b 18.45 ± 2.42b 4.51 ± 0.44b

B 57.67 ± 8.67c 47.67 ± 10.49c 16.80 ± 3.06b 5.40 ± 0.04a
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stable rate, slightly decreasing from 15.03% on the 5th 
day to 13.05% on the 15th day. Similarly, within the same 
period, the A group decreased from an initial 16.01% on 
the 5th day to 10.28% on the 15th day, while the B group 
experienced a more significant decrease, from 15.67% to 
8.70%. In addition, on the 7th day, the ratio of free water 
to bound water in the CK group decreased because the 
seedlings were moved from the Petri dish to the incu-
bator for culture, and the seedlings needed to adapt to 
changes in the environment. From 7th day to 15th day, 
the proportion of free water and bound water in the con-
trol group and salt stress group began to increase gradu-
ally. However, due to salt stress, the ratio of free water to 
bound water in group A was always lower than that in 
group CK. On the contrary, the proportion of free water 
and bound water in group B decreased continuously from 
the 7th day to the 11th day, and increased from the 13th 
day, which delayed the adaptation mechanism of wheat 
seedlings.

MSI analysis of wheat seedlings under saline‑alkali stress
Morphological characteristics analysis
Twelve morphological features were extracted from mul-
tispectral image. In terms of the average value of shape 
features, color features and binary features, wheat seed-
lings growing in different environments were different. 
For the shape characteristics, the length, width and area 
of wheat seedlings under saline-alkali stress were signif-
icantly different from those of the control group (Fig.  5 
I, II, III). The length of wheat seedlings under salt stress 
and alkali stress had significant difference (Fig.  5I), but 
the width and area had no significant difference (Fig. 5I, 
II).

In terms of color characteristics, the CIELab_A color 
characteristics of wheat seedlings were significantly dif-
ferent between group CK and group B (Fig.  6I). There 
was no significant difference in the color characteristics 
of CIELab_B and CIELab_L among the three groups of 
wheat seedlings (Fig. 6 I, II, III).

Fig. 3 Effect of saline-alkali stress on phenotypes of wheat seedlings. I Phenotypes of wheat seedlings cultured in different environments. II 
Multispectral images of wheat seedlings in various bands at the 9th day of cultivation. CK: control group, A: salt stress, B: alkali stress

Fig. 4 T2 inversion spectrum of wheat seedings in three experimental groups
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In terms of binary characteristics, there was no sig-
nificant difference in Vertical Orientation and Vertical 
Skewness among the three groups (Fig. 7I, II). There were 
significant differences in the characteristics of Compact-
ness Circle between B and the other groups (Fig.  7III). 
However, in terms of Compactness Ellipse, Beta Shape_a 
and Beta Shape_b, there were significant differences 
between CK and the other groups, but no significant dif-
ferences between A and B (Fig. 7IV, V, VI).

Multispectral analysis
The average spectral intensity of wheat seedlings was 
compared to that of a white board to calculate the rela-
tive reflection spectrum. Observations of the wheat seed-
lings began on the 5th day and were conducted every two 
days, concluding on the 15th day. In general, the average 

reflectance spectra of CK, A and B groups of wheat seed-
lings showed a similar trend (Fig. 8). However, with the 
increase of culture time, the difference between the aver-
age reflectance spectra of seedlings in groups A and B 
and CK gradually increased. When the wavelength was 
365 nm (UVA region), the average reflectance spectra of 
the three groups of wheat seedlings were the minimum 
in the whole band, and decreased with the growth of 
seedlings. In the visible region (365–645  nm), the aver-
age spectrum showed an “S” type growth. The average 
spectral value was steep and almost linear in the range 
from red light to early near infrared (700–780 nm). In the 
near-infrared region (780–970 nm), the average spectral 
value tended to be flat. From the 11th day, the average 
reflectance spectrum of group B was significantly higher 
than that of the other two groups in 700–780 nm.

Table 2 Statistics table of unit mass T2 peak area

All statistical data are unit mass peak area, and to be expressed as mean ± standard deviation (x ± s); different letters stands for significance between gradient groups 
(P < 0.05)

Group Cultivation time 
(d)

Bound water A21 Semi‑bound water A22 Free water A23 Total moisture content A

CK 5 698.75 ± 98.11a 2813.10 ± 377.77a 10,502.20 ± 469.54a 12,163.62 ± 662.46a

7 2779.19 ± 430.84a 7754.66 ± 310.24a 26,371.52 ± 486.72a 38,020.88 ± 488.30a

9 2955.75 ± 439.26a 10,071.85 ± 673.86a 27,992.63 ± 502.92a 40,380.14 ± 611.06a

11 3555.39 ± 448.87a 28,053.00 ± 526.44a 35,766.86 ± 477.92a 67,045.94 ± 569.00a

13 3995.38 ± 405.42a 28,627.49 ± 579.28a 49,205.80 ± 924.32a 81,538.40 ± 579.06a

15 4291.32 ± 466.49a 35,848.86 ± 654.27a 54,602.19 ± 802.51a 98,608.56 ± 706.14a

A 5 658.47 ± 69.09a 2770.38 ± 168.79a 10,858.96 ± 268.77a 12,290.50 ± 273.15a

7 2653.78 ± 419.50b 7536.20 ± 449.12a 16,945.62 ± 617.37b 27,168.14 ± 270.88b

9 2832.63 ± 387.51a 9054.55 ± 782.51a 22,359.99 ± 678.95b 37,567.73 ± 744.61b

11 3490.34 ± 377.10b 9459.47 ± 617.54b 27,877.75 ± 268.95b 40,861.84 ± 100.63b

13 3527.46 ± 391.69b 26,389.32 ± 883.99b 32,848.83 ± 594.62b 62,782.03 ± 148.24b

15 4093.34 ± 418.68b 27,231.07 ± 330.03b 42,077.69 ± 676.71b 73,456.64 ± 832.83b

B 5 701.25 ± 77.51a 2850.95 ± 130.63a 10,985.26 ± 965.09a 13,741.60 ± 273.15a

7 1919.50 ± 208.89b 4580.33 ± 563.19 14,181.38 ± 121.40c 20,543.35 ± 209.08c

9 2309.76 ± 397.82b 7289.99 ± 594.83a 16,576.20 ± 141.21c 26,935.96 ± 438.02c

11 2646.87 ± 339.30c 9358.69 ± 641.68b 18,402.12 ± 357.55c 31,520.49 ± 415.28c

13 2738.27 ± 353.39c 24,819.55 ± 306.64c 20,017.64 ± 806.29c 47,443.77 ± 278.30c

15 3469.12 ± 125.59c 26,666.15 ± 369.25c 30,192.27 ± 853.87c 62,631.92 ± 457.72c

Table 3 The ratio of free water to bound water

Group Cultivation time (d)

5 (%) 7 (%) 9 (%) 11 (%) 13 (%) 15 (%)

CK 15.03 9.49 9.80 10.06 12.32 13.05

A 16.01 7.87 8.18 8.47 9.06 10.28

B 15.67 7.39 7.18 6.95 7.31 8.70
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Fig. 5 Shape features of wheat seedings in three experimental groups. All statistical data are represented by mean ± standard deviation (SD), 
with different letters representing the significance between gradient groups (P < 0.05, Student’s t-test), and the following graph is the same

Fig. 6 Color features of wheat seedings in three experimental groups

Fig. 7 Binary features of wheat seedings in three experimental groups
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Estimating moisture signal with MSI
Feature parameter selection
Spearman and Kendall correlation analyses were con-
ducted to assess the relationship between the signal 
quantity of T2 relaxation peak A and the spectral reflec-
tion intensity of each band, as detailed in Table  4. At a 
significance level of P < 0.05, the 14 characteristic wave-
lengths were selected by both methods. At a more 
stringent significance level of P < 0.01, the 5 character-
istic wavelengths (780  nm, 850  nm, 880  nm, 940  nm, 
and 970 nm) were identified (Fig. 9). The 5 wavelengths 

associated with signal amplitude A and its correlation at 
a significance level of P < 0.01, were selected for use in the 
modeling process.

The characteristic changes in the electromagnetic radi-
ation absorbed by crops in the near-infrared region (780–
2526 nm) were primarily attributed to the stretching and 
bending vibrations of O–H bonds in water molecules and 
other molecules. Consequently, alterations in leaf water 
status could induce corresponding spectral changes in 
these regions [11, 24, 38, 46].

Fig. 8 The average reflectance spectra of wheat seedlings under different treatments were obtained using multispectral imaging system. I–VI 
represent wheat seedlings cultured for 5, 7, 9, 11, 13, 15 days, respectively. (CK) control group, (A) salt stress, and (B) alkali stress. Error bar indicate 
means ± standard deviation (SD)

Table 4 Table of correlation between A parameters and reflectance spectra of wheat seedings

*Significance was identified by Spearman correlation and Kendall correlation analysis (P < 0.05)

**Significance was identified by Spearman correlation and Kendall correlation analysis (P < 0.01)

Wavelength Spearman correlation Kendall correlation Wavelength Spearman correlation Kendall correlation

365 − 0.53* − 0.38 630 − 0.57* − 0.37

405 − 0.33 − 0.27 645 − 0.57* − 0.37

430 − 0.41 − 0.29 660 − 0.61* − 0.40

450 − 0.49 − 0.33 690 − 0.57* − 0.35

470 − 0.53* − 0.34 780 − 0.79** − 0.78**

490 − 0.53* − 0.35 850 − 0.74** − 0.73**

515 − 0.42 − 0.28 880 − 0.74** − 0.73**

540 − 0.42 − 0.28 940 − 0.78** − 0.77**

570 − 0.50* − 0.32 970 − 0.79** − 0.80**

590 − 0.55* − 0.36 – – –
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Prediction model analysis
Four regression models (BPNN, SVM, KPLSR, and 
GBRT) were established to predict the moisture signal 
A of wheat seedlings under saline-alkali stress using MSI 
data. The predicted  R2

P values for all models were above 
0.75, as detailed in Table 5. Among these models, GBRT 
demonstrated the best predictive performance, with the 
 R2

P of 0.98 and the RMSEP of 109.60. Additionally, GBRT 
had the shortest training time of 1.48  s and the fastest 
prediction speed of 1300 obs/s. The Fig.  10 illustrated 
the prediction dataset, highlighting the efficiency of the 

four models. These results suggested that the combina-
tion of MSI and chemometrics could be an excellent non-
destructive method for investigating the moisture signal 
amplitude in wheat seedlings.

Stress prediction using MSI and LF‑NMR datasets
Feature parameter selection
The Principal Component Analysis (PCA) was used to 
reduce the dimension of 9 T2 relaxation parameters, and 
the Random Forest (RF) was used to reduce the dimen-
sion of multispectral image features. The characteristic 

Fig. 9 Selecting characteristic wavelengths related to signal quantity A through correlation analysis

Table 5 Performance of the moisture signal amplitude A prediction model using MSI

Model R2
C RMSEC R2

P RMSEP Training time (s) Predicting 
speed (obs/s)

BPNN 0.71 321.60 0.76 309.80 2.09 1900

SVM 0.96 383.90 0.86 261.30 3.34 1800

KPLSR 0.80 332.60 0.88 202.00 6.04 1700

GBRT 0.93 292.2 0.98 109.60 1.48 1300
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parameters were selected as the input variables of the 
model according to the importance ranking (Fig.  11). It 
could be seen from Fig. 11 that PCA selected relaxation 
parameters (TP1, TP3, A21, A23) with scores greater 
than 0.6 (Fig. 11I); RF selected characteristic parameters 
(Width, CIELab_L, Vertical Skewness and Compactness 
Ellipse) with scores greater than 0.6 (Fig. 11II).

Classification model analysis
In this study, we discussed the application effect of KNN 
and GNB machine learning models in the classification 
and prediction of saline-alkali stress in wheat seedlings. 
We used three different datasets: MSI datasets, LF-NMR 
datasets, and fusion datasets of MSI and NMR. It could 

be seen from the confusion matrix that both models 
could classify wheat seedlings under saline-alkali stress, 
and the classification accuracy of the fusion dataset of 
CK group was 100% (Fig. 12). The predicted Recall, Pre-
cision, Accuracy and F1-score of the two models for the 
three test datasets were all above 75.00% (Table  6). In 
all datasets, GNB model was superior to KNN model in 
all evaluation indexes, which might be attributed to the 
advantages of GNB model in processing data with high-
dimensional feature space. In addition, the fusion dataset 
showed better prediction performance on both models, 
emphasizing the importance of using multi-source data 
in crop stress prediction.

Fig. 10 Use MSI to predict the moisture signal amplitude A. I BPNN, II SVM, III KPLSR, IV GBRT
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Fig. 11 Selection of relaxation parameters of Principal Component Analysis (PCA) (I) and Random Forest (RF) (II). Ts1, Ts2, Ts3 is the peak start time; 
Tp1, Tp2, Tp3, is the peak point to peak time; Te1, Te2, Te3 is the peak end time; A21, A22 and A23 are signal amplitudes

Fig. 12 Confusion matrix of two models on different datasets. I–III The K-Nearest Neighbor (KNN) model predicts confusion matrices for MSI 
dataset, LF-NMR dataset, and fusion dataset, respectively; IV–VI The Gaussian-Naïve Bayes (GNB) model predicts confusion matrices for MSI dataset, 
LF-NMR dataset, and fusion dataset, respectively
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Discussion
Soil salinization, a prevalent issue in agricultural produc-
tion, poses a significant challenge to crop cultivation; The 
saline-alkali stress resulting from soil salinization not 
only hampers wheat growth but also adversely affects its 
yield [8]. Traditional research methods, which can dam-
age crops and are time-consuming, often fail to provide 
continuous monitoring of crops [4, 19]. In this study, we 
applied salt stress and alkali stress to wheat seedlings and 
utilized LF-NMR and MSI technology to analyze their 
responses to saline-alkali stress. This approach demon-
strated the potential for accurate and nondestructive 
detection of crop water status. Furthermore, by employ-
ing various regression and classification models, our 
study not only predicted the quantitative moisture sig-
nal amplitude but also achieved qualitative prediction of 
wheat seedlings under saline-alkali stress.

The germination of wheat seeds was primarily affected 
by osmotic stress and ion effects caused by salt [27]. Our 
results showed that, compared to the control group, 
saline-alkali stress significantly reduced the germina-
tion rate, germination potential, and germination index 
of wheat seeds (Table 1). Analysis of T2 relaxation times 
revealed that the content of bound water was the lowest 
among the different types of moisture present. Bound 
water resided inside wheat cells, combining with proteins 
through hydrogen bonds. These hydrogen bonds were 
strong, preventing the free flow of bound water and its 
participation in metabolic processes. Due to the large 
hydrogen bonding force, bound water could not move 
freely within cells and did not engage in metabolism.

Semi-bound water could be adsorbed on other tissues 
through hydrogen bonding or Coulomb force. Free water 
which existed in the internal space of wheat by capillary 
action, had strong fluidity [15, 16]. As a good solvent, free 
water could dissolve many substances and compounds. 
The higher the ratio of free water to bound water, the 
stronger the metabolic activity of seedlings. Under dif-
ferent stress conditions, the ratio of free water to bound 
water fluctuated, highlighting the complex interaction 

between environmental stress sources and physiologi-
cal responses of wheat seedlings. Therefore, during the 
whole culture period, compared with the control group, 
the ratio of free water to bound water of seedlings under 
alkali-stress was the lowest, followed by salt stress group. 
Both salt stress and alkali stress hindered the increase of 
water content signal amplitude, and alkali stress played 
a more significant role. This indicated that alkali stress 
had a significant effect on the water holding capacity of 
seedlings (Fig. 4). The results indicated that wheat seed-
lings could increase the content of bound water through 
specific mechanisms, thereby enhancing their toler-
ance to saline-alkali stress in an adverse environment 
(Table  2). Although all seedlings showed adaptive abil-
ity, the efficiency and time of these responses varied with 
stress types. Compared with alkali stressed seedlings, salt 
stressed seedlings showed faster recovery in water man-
agement (Table 3). Liu et al. [22] draw a conclusion that 
alkali stress inhibited the growth of wheat more than salt 
stress at the same Na concentration, which was consist-
ent with the results of this study.

Changes in the water and ion content of wheat exposed 
to saline-alkali stress could significantly affect its spec-
tral reflectance [5, 5]. This study found that when the 
wavelength was 365  nm, the average reflectance spec-
trum was the smallest and decreased with the growth 
of wheat seedlings. This phenomenon might be related 
to the increase of phenolic compounds in wheat seed-
lings. With the growth of seedlings, phenolic compounds 
would increase [17]. These phenolic compounds (such as 
flavonoids) had strong absorption capacity in the ultra-
violet region [35]. The spectrum at 365–645 nm showed 
an “S” type growth, this region was mainly related to the 
absorption peak of crop chlorophyll, which reflected the 
absorption capacity of crops to photosynthetic effec-
tive radiation. In the spectral range of 700–780  nm, 
the average spectral value was steep and almost linear, 
which was a typical feature of seedlings [34]. The linear 
growth meant that with the growth of crops, the leaf 
structure became more mature and thicker, and the light 

Table 6 The predictive performance of KNN and GNB models

Model Dataset Training set Testing set

Precision Recall Accuracy F1‑score Precision Recall Accuracy F1‑score

KNN MSI dataset 72.00 72.00 74.00 0.72 81.87 77.76 77.77 0.80

LF-NMR dataset 76.92 64.52 76.40 0.70 80.47 83.33 80.57 0.81

Fusion dataset 76.92 72.92 73.63 0.77 86.33 86.11 86.10 0.86

GNB MSI dataset 72.00 72.00 74.10 0.72 83.97 78.38 80.57 0.82

LF-NMR dataset 76.92 76.92 76.87 0.77 83.33 80.56 83.33 0.83

Fusion dataset 73.08 73.08 73.63 0.73 90.30 88.89 88.90 0.90
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scattering ability was enhanced. In the spectral range of 
780–970  nm, the changes of spectral reflectance were 
mainly related to the internal structure and water con-
tent of leaves. The gentle trend showed that the struc-
ture and water state of crop leaves had reached a balance 
state to a certain extent. In addition, from the 11th day 
(Fig. 8IV), the average reflectance spectrum in this region 
of group B was significantly higher than that of the other 
two groups. This could be due to the alkali stress altering 
the internal structure and water regulation mechanisms 
of crop leaves, which in turn affected the reflectance 
spectrum. Alkali stress might promote the activation of 
some protective mechanisms, such as the accumulation 
of osmotic adjustment substances, which helped to main-
tain the water state of cells, and then affected the spec-
tral reflectance. The photosynthetic characteristics of 
seedlings under abiotic stress could be used as the best 
index to determine the ability of crops to deal with saline 
alkali stress [2]. This study found that under the same Na 
concentration, the impact of alkali stress on the wheat’s 
spectral characteristics was more pronounced than that 
of salt stress. As Zhang et  al. [48] proposed, multispec-
tral technology could effectively improve the accuracy of 
stress monitoring.

Long-term continuous monitoring of water status of 
wheat plants can not only enrich the water transport 
theory of Soil Plant Atmosphere Continuum (SPAC), but 
also have important significance in clarifying the adap-
tation mechanism of crops to the environment, efficient 
water use and water-saving regulation [42]. However, the 
traditional moisture detection has the disadvantages of 
complex operation, harmful chemical reagents to human 
body, destructive to samples and so on, which is diffi-
cult to be widely used [3]. With the rapid development 
of nondestructive testing technology, researchers began 
to explore the nondestructive detection of crop moisture. 
Yang et  al. [41] found that there was a consistent linear 
relationship between nuclear magnetic signal amplitude 
and moisture content on wet basis during rice seed ger-
mination  (R2 = 0.98). Similarly, Yao et al. [43] found that 
there was a linear relationship between the pure water 
content of each organ of wheat and the total signal ampli-
tude A of T2 relaxation spectrum  (R2 = 0.99). Therefore, 
this study predicted the water signal of wheat based on 
multispectral data. This study selected the multispec-
tral band with high correlation with water to predict the 
wheat water signal amplitude A. The results showed that 
GBRT model performed best in quantitative prediction 
of water signal, with high accuracy and rapid response 
ability (Fig.  5), which was of great significance for real-
time monitoring of crop water status.

Compared with single data source, data fusion signifi-
cantly improves the performance of prediction model 

[1]. For example, the collaborative retrieval model of 
hyperspectral and multispectral images based on double 
branch convolution network can effectively use the char-
acteristics of data [37]. Compared with the yield estima-
tion model based on single sensor data, multi-source data 
fusion can effectively improve the estimation accuracy of 
winter wheat yield [29]. The prediction accuracy of the 
winter wheat yield estimation model based on multispec-
tral and thermal infrared data fusion was 8% higher than 
that based on multispectral data alone [18]. Therefore, 
in terms of qualitative prediction, we compared the per-
formance of a single LF-NMR or MSI data source with 
the model fused with LF-NMR and MSI data source, and 
found that the Precision, Recall, Accuracy and F1-score 
of the model after data fusion were excellent (Fig.  12, 
Table  6). It confirmed the effectiveness of information 
fusion in improving the application of precision agri-
culture, which meant that data fusion could be used to 
improve the classification and prediction ability of wheat 
seedlings under different saline alkali stress levels.

The fusion of LF-NMR and MSI technology, this study 
provided a new perspective for the nondestructive detec-
tion and evaluation of wheat seedlings under saline-
alkali stress, and also pointed out the direction of future 
research. Although this study had achieved positive 
results, there were still limitations. The selected saline 
alkali stress level might not fully cover the actual field 
situation, which might limit the universality of the model 
in a wide range of applications. More saline-alkali stress 
levels and adding more variety samples could be explored 
in future research to increase the robustness and gener-
alization ability of the model. In addition, there might be 
differences between the predicted moisture amplitude 
signal of NMR and the prediction effect of actual mois-
ture. In this paper, only the NMR signal was used for 
measurement, and the drying method was not used for 
actual calibration. After that, a variety of methods would 
be used to calibrate the predicted data. The relationship 
between other biological parameters (such as ion absorp-
tion, chlorophyll content, etc.) and water status could 
also be further explored to comprehensively evaluate 
the response of crops to stress. Finally, the combination 
of machine learning model and traditional crop growth 
model might provide a deeper understanding for predict-
ing crop performance in changing environments.

Conclusion
In this study, we combined LF-NMR and MSI technol-
ogy to achieve nondestructive detection of wheat seed-
lings under saline-alkali stress. Under stress, wheat 
seedlings would increase bound water content through 
specific mechanisms to enhance their saline-alkali stress 
tolerance. However, the efficiency and timing of these 
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responses vary with stress types. Compared to alkali 
stress, salt stress endowed seedlings with a stronger 
recovery ability in water management. Stress can induce 
changes in the internal structure and water regulation 
mechanisms of wheat leaves. The impact of alkali stress 
on wheat spectral characteristics was more pronounced 
than that of salt stress. At the same Na concentration, 
alkaline stress inhibited wheat growth more than salt 
stress. Model comparison revealed that the GBRT model 
excelled in predicting wheat moisture signals, with the 
 R2

P of 0.98 and the RMSEP of 109.60. It also featured a 
short training time of 1.48 s and a high prediction speed 
of 1300 obs/s. For qualitative prediction, the KNN and 
GNB models demonstrated significantly better classifi-
cation abilities on the fused datasets compared to using 
only MSI or LF-NMR datasets alone. Notably, the GNB 
model showed the most outstanding classification pre-
diction effect on the fused dataset, with Precision, Recall, 
Accuracy, and F1-score of its test set reaching 90.30%, 
88.89%, 88.90%, and 0.90, respectively. These findings not 
only demonstrated the application potential of LF-NMR 
and MSI information fusion technology in agriculture 
but also provided an effective method for predicting the 
moisture signal quantity in wheat seedlings and accu-
rately classifying saline-alkali stress effects.
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