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Abstract

Background Wheat (Triticum aestivum L.) is an important grain crops in the world, and its growth and development
in different stages is seriously affected by saline-alkali stress, especially in seedling stage. Therefore, nondestructive
detection of wheat seedlings under saline-alkali stress can provide more comprehensive technical support for wheat
breeding, cultivation and management.

Results This research focused on moisture signal prediction and classification of saline-alkali stress in wheat seed-
lings using fusion techniques. After collecting and analyzing transverse relaxation time and Multispectral imaging
(MSI) information of wheat seedlings, four regression models were used to predict the moisture signal. K-Nearest
Neighbor (KNN) and Gaussian-Naive Bayes (GNB) models were combined with fivefold cross validation to clas-

sify the prediction of wheat seedling stress. The results showed that wheat seedlings would increase the bound
water content through a certain mechanism to enhance their saline-alkali stress. Under the same Na concentration,
the effect of alkali stress on moisture, growth and spectrum of wheat seedlings is stronger than salt stress. The Gradi-
ent Boosting Decision Regression Tree model performs the best in predicting wheat moisture signals, with a coef-
ficient of determination (R2P) of 0.98 and a root mean square error of 109.60. It also had a short training time (1.48 s)
and an efficient prediction speed (1300 obs/s). The KNN and GNB demonstrated significantly enhanced predictive
performance when classifying the fused dataset, compared to using single datasets individually. In particular, the GNB
model performing best on the fused dataset, with Precision, Recall, Accuracy, and F1-score of 90.30, 88.89%, 88.90%,
and 0.90, respectively.

Conclusions Under the same Na concentration, the effects of alkali stress on water content, spectrum, and growth
of wheat were stronger than that of salt stress, which was more unfavorable to the growth of wheat. The fusion

of low-field nuclear magnetic resonance and MSI technology can improve the classification of wheat stress, and pro-
vide an effective technical method for rapid and accurate monitoring of wheat seedlings under saline-alkali stress.
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Introduction

Saline-alkali stress caused by soil salinization, as a promi-
nent abiotic stressor, has a detrimental impact on crop
growth, consequently affecting global agricultural econ-
omy [14, 25, 40]. Globally, over 1 billion hectares of land
are affected by soil salinity, with more than 2 million hec-
tares added annually [32, 50]. Wherein, as an important
food crop, wheat (Triticum aestivum L.) is also facing
the negative effects of saline-alkali stress [19, 49]. Saline-
alkali stress leads to excessive accumulation of salt and
alkaline substances in soil, which affects the growth and
physiological metabolism of wheat seedlings, and then
affects the yield and quality of crops. In China, most
wheat regions are in the period of soil salinity return fol-
lowing the emergence of wheat seedlings, and the soil salt
content reaches the maximum. The wheat seedling stage
is the weakest stage of saline-alkali stress in wheat life,
and the stress at this time has a significant impact on the
growth of wheat seedlings [39]. Therefore, accurate and
nondestructive detection of wheat seedling response to
saline-alkali stress is of great significance for effectively
evaluating crop growth status and formulating reason-
able saline alkali resistance strategies.

In the existing studies, traditional physiological and
biochemical analysis methods are usually used to detect
and evaluate the growth status of crops under saline alkali
stress [22, 36]. For example, the growth status of crops is
evaluated by measuring chlorophyll content, membrane
permeability, soluble sugar content, proline content and
other indicators [9, 33]. These methods with high accu-
racy and specificity can directly reflect the physiological
and biochemical state of crops, and are of great value for
understanding the mechanism of crop response to saline
alkali stress and formulating corresponding management
measures [36]. However, these methods have some limi-
tations in reflecting crop response, such as destructive,
time-consuming and laborious, and unable to carry out
continuous monitoring [13]. Therefore, it is very impor-
tant to seek an accurate, rapid and nondestructive tech-
nical method to monitor crops under saline-alkali stress.

In this context, this study combined low-field nuclear
magnetic resonance (LF-NMR) and multispectral imag-
ing (MSI) technology to achieve the nondestructive
detection of wheat seedling moisture signal and predic-
tion of saline-alkali stress. LF-NMR is a fast, accurate and
nondestructive method, which uses the spin relaxation
characteristics of hydrogen nuclei in the magnetic field
to explain the distribution and migration of water in the
sample [6, 26, 30]. Moreover, MSI is a newly developed
technology that combines spectroscopy and traditional
imaging to simultaneously gather spectral and spatial
information [46]. They were developed to measure the
morphological characteristics of the inspected objects
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initially and have been widely used for crop visualiza-
tion [31]. The fast, accurate, and nondestructive charac-
teristics of LEF-NMR and MSI technologies have all crop
stakeholders eagerly awaiting the introduction of these
novel detection techniques to boost crop productivity
overall. LF-NMR provides the moisture content and dis-
tribution state of crops from the microscopic perspective,
while MSI technology provides a wider range of spectral
information, which can reflect the overall growth state of
crops. By combining the two technologies, we aim to fill
the existing technical gap in the field of crop growth state
assessment under saline-alkali stress, and provide a new
and efficient monitoring method for crop growth status.

The study involved the following three purposes: (1)
To analyze the moisture phase state and multispectral
information of wheat seedlings under saline-alkali stress
by LE-NMR and MSI technology, and explore the appli-
cation potential of two nondestructive detection meth-
ods under saline-alkali stress in wheat. (2) To carry out
the regression prediction of moisture signal quantity of
wheat seedlings under saline-alkali stress based on MSI
data, and compare the performance of different regres-
sion models in predicting moisture signal amplitude. (3)
To classify wheat seedlings under different saline-alkali
stress through different models, and evaluate the per-
formance of different models in the accuracy of sample
classification by fusing LF-NMR and MSI datasets. This
work provided a new insight into monitoring the wheat
growth status under saline-alkali stress, and the combina-
tion LF-NMR and multispectral imaging opened up new
possibilities for improving crop resistance to multiple
environmental stresses.

Materials and methods

Plant material and experimental design

The experimental wheat material used in this research
was Jimai 22, which is widely planted in China. The
experimental samples were screened in terms of similar
size, quality, with no surface damage. Before the experi-
ment, the wheat was disinfected with 75% alcohol for
5 min and rinsed 3 times with distilled water. Wheat
seeds were treated with different stress treatments
from the germination stage. After 5 days of germina-
tion, the wheat was transplanted into a black hydropon-
ics box with different stress treatment solutions for
culture. On the basis of previous studies, the concen-
tration with high stress and low mortality was selected,
and the concentration suitable for saline-alkali stress
identification in wheat seedling stage was 100 mmol/L
[20]. Three experimental treatments were set as control
(CK, distilled water), A [100 mmol/L neutral salt (NaCl:
Na,SO,=9:1, pH=6.68)], and B [100 mmol/L alkaline
salt (NaHCO;: Na,CO;=9:1, pH=8.9)], and there were
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four replications for each treatment. The wheat seed-
lings were incubated in an MGC Series Intelligent Light
incubator (MGC-450BP-2L, Shanghai Yiheng Scientific
Instruments Co., Ltd., Shanghai, China) at 25+ 1 °C with
80% relative humidity and 12 h/12 h alternating light and
dark period. Relevant indicators of different treatment
groups of wheat were collected every 2 days.

T2 acquisition and processing

The LF-NMR instrument (AniMR, Shanghai Newmark
Electronic Technology Co., Ltd., Shanghai, China) was
used to collect the transverse relaxation time (T2) of LF-
NMR. The basic parameters of the instrument were as fol-
lows: Magnetic field intensity: (0.25+0.05) t; Resonance
frequency: 8.5-12.8 MHz; Magnetic field uniformity: less
than 10 ppm (¢$60 mm X 100 mm); Magnet temperature:
32°C; Probe coil diameter: 15 mm. The Carr—Purcell-Mei-
boom-Gill (CPMG) sequence pulse sequence in the NMR
spectrum analysis software was used to determine the
T2 of the sample. According to the previous test results
[7, 15], the main sampling parameters were set as follows:
90° hard pulse width (P1)=8 ps; 180° hard pulse width
(P2)=12 ps; Sampling frequency(SW)=200 kHz; Analog
gain (RG1)=43.5 db; Digital gain (DRG1)=3; Number of
signal sampling points (TD)=907,218; Repeated sampling
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times (NS)=16; Waiting time for repeated sampling
(T'W)=5000 ps; Echo number (NECH) =18,000.

The LE-NMR spectrum analysis is a quantitative
analysis and detection method using the spectral signal
obtained by the Fourier transform of NMR signal. The
CPMG collected from the experiment was imported into
NMR spectrum inversion software, and the Simultaneous
Iterative Reconstruction Technique (SIRT) was used for
inversion operation. T2 was obtained after inversion. The
inversion parameters were set as follows: minimum relax-
ation time: 0.01 ms; Maximum relaxation time: 10,000;
Number of participating inversion points: 200; Number
of iterations: 10,000. In order to eliminate the influence
of inconsistent initial quality of test samples on the test
results, all signal amplitude data were normalized, and
then the data were imported into SPSS 23 for one-way
analysis of variance. The OriginPro 2022 was used for
drawing in this paper. During the test, the collection of
CPMG was repeated three times, and the average value
was taken. CPMG of wheat seedlings were collected on
the 5th, 7th, 9th, 11th and 15th day of seedling growth.
The instrument would be calibrated before each collec-
tion, and the water on the sample surface would be wiped
gently with absorbent paper to avoid moisture affecting
the results (Fig. 1).

1000 10000

Rcld\ulml\'lm\c um’»
Comparative analysis of
T2 relaxation spectra

001
Relaxation time (ms)

Unreversed T2 relaxation attenuation

Fig. 1 T2 relaxation data acquisition and analysis process
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T2 relaxation spectrum after Fourier transform
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Multispectral image acquisition and processing

The multispectral images of all wheat seedling samples
were taken by a VideometerLab 4 instrument (Videom-
eter A/S, DK-2700 Herlev, Horsholm 12B, 3.sal, Den-
mark). The instrument consists of a sphere containing 19
light emitting diodes in the wavelengths 375, 405, 435,
450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 780, 850,
870, 890, 940 and 970 nm. All images were acquired in
one sequence, with a resolution of 4096x 3000 pixels,
and a pixel size of 0.03 mm per pixel. Surface reflectance
was recorded by the involvement of a standard mono-
chrome charge coupled device chip [45]. Before acquir-
ing multispectral images, the system was fully calibrated
radiometrically and geometrically by using three succes-
sive plates: a white one for reflectance correction, a dark
one for background correction and a doted one for geo-
metric pixel position aligning calibration, followed by a
light setup calibration [15, 23].

The multispectral images obtained contained not only
wheat seedlings but also some other interference, such
as the background board and surrounding debris (Fig. 2).
Therefore, it was necessary to remove these objects
before extracting the spectral information of individual
wheat seedlings. The images were processed using Vid-
eometerlab software version 3.22. Background removal
in images of complete wheat seedlings was achieved
through Normalized Canonical Discriminant Analysis
(nCDA), and the seedlings were segmented using a sim-
ple threshold. Morphological traits and main spectral
features were then extracted from the segmented wheat

-
VideometerLab

Image at RGB
Multispectral image

Fig. 2 Multispectral data acquisition and analysis process
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seedling images. The morphological traits were divided
into shape features, color features, and binary features.
The shape features included BetaShape_a, BetaShape_b,
Compactness Circle, Compactness Ellipse, Vertical Ori-
entation, and Vertical Skewness; color features included
CIELab_A, CIELab_B, and CIELab_L; binary features
included Area, Length, and Width. The interpretation of
morphological shapes was listed in the supplementary
file: Supplementary material.

The extracted spectral features represented the average
intensity of reflected light at each single wavelength, cal-
culated from all the wheat seedling pixels in the images.

Determination of germination index

The 450 wheat seeds were selected and evenly divided
into 9 groups. Each kind of solution (CK, A, and B) was
used to cultivate 3 groups of seeds individually. Before
the experiment, the wheat was disinfected with 75% alco-
hol for 5 min and then rinsed three times with distilled
water. The wheat seeds were placed on germination paper
that had been moistened with an adequate amount of the
corresponding solution, ensuring that both the paper and
the seeds were sufficiently dampened. The germination
paper was changed daily, and the cultivation environ-
ment was maintained as described in “Plant material and
experimental design” The number of germinated seeds in
each group was recorded daily until the 7th day. The ger-
mination rate, germination potential, germination index,
and average germination time of the wheat were calcu-
lated, with the respective formulas shown below [28].

Spectral images in
different bands

\

Spectral and spectral
N image feature extraction

Decayed ROI
segment by nCDA
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Number of seeds germinated
x 100%.

(1)

Germination percentage =
p 8 Total number seeds

Total number of germinating seeds on day 3

Germination potential =

Total number of seed samples
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Average germination time =

Detection model and performance evaluation

Prediction model of moisture signal quantity

Four regression models including Gradient Boost-
ing Regression Tree (GBRT), Support Vector Machine
(SVM), Kernel Partial Least Squares Regression
(KPLSR) and Back Propagation Neural Network
(BPNN) were established to predict the moisture sig-
nal of wheat seedlings under saline-alkali stress using
MSI data. Before establishing the quantitative model
analysis, the correlation analysis between MSI data and
signal amplitude A was established by using Spearman
and Kendall algorithm, and the multispectral data with
high correlation was selected as the input variable of
the model.

For the performance evaluation of the regression
model, six evaluation criteria were selected: determi-
nation coefficient of training set (R2_), corrected root
mean square error (RMSEC), prediction determina-
tion coefficient (R2p), prediction root mean square
error (RMSEP), training time (s), and predicting speed
(obs/s). Wherein, R2 measures the proportion of varia-
tion explained by the model in the total variation, and
the value range is from 0 to 1; The closer the R? value is
to 1, the more variation in the data the model explains,
indicating better model fitting. In addition, RMSE
measures the prediction error of the model on the
training set; The smaller the value of RMSE, the bet-
ter the performance of the model on the training set.
The training time and speed reflect the efficiency of the
model in practical application. The calculation formula
of R2 and RMSE were as follows.

Sor i — 3)?

RP=1- AZy
Z?:l (i —y)2

(5)

where i is the data point, # is the number of data points,
y; is the actual value, y; is the predicted value, and ¥ the
average value of the actual value.

Classification prediction model

In this study, we discussed the application effect of K-Near-
est Neighbor (KNN) and Gaussian-Naive Bayes (GNB)
combined with fivefold cross validation method in the
classification and prediction model of salt and alkali stress
in wheat seedlings. We used three different datasets: MSI
datasets, LFE-NMR datasets, and fusion datasets of MSI and
LE-NMR. At present, KNN and GNB have shown satisfac-
tory results in the field of classification [10].

The prediction performance of the classification model
was evaluated by four key indicators: Precision, Recall,
Accuracy and F1-score. Precision is the ratio of true posi-
tive data to all predicted positive data, indicating the clas-
sifier’s ability to avoid labeling negative cases as positive.
Recall is the ratio of true positive predictions to all actual
positive data, indicating the classifier’s ability to identify
all positive samples. Accuracy is the percentage of sam-
ples that are correctly classified by the model, reflecting
the overall effectiveness of the classifier on the given data-
set. The Fl-score is a metric that combines the trade-off
between Precision and Recall, providing a single number
that reflects the effectiveness of a classifier, particularly in
the presence of rare categories. It is calculated as the har-
monic mean of Precision and Recall [7, 21]. The four equa-
tions of the evaluating indicators were:

recision — P ,

recision = TP + EP’ (7)

Recall = i 8

ecall = TP+ EN’ (8)

A TP + TN 9
uracy = )

U = Tp L IN + EP + EN ©)
2 X Precision x Recall

F; - score = (10)

Precision + Recall



Gu et al. Plant Methods (2024) 20:136

where TP, TN, FN, and FP are for true positive, true neg-
ative, false negative, and false positive, respectively.

Results

Phenotypic analysis of wheat seedlings under saline-alkali

stress

With the increase of culture time, the phenotypic char-
acteristics of wheat seedlings were significantly different
between CK, A and B group. The germination rate of CK
group reached 95.23% at the 7th day, and the germina-
tion potential, germination index and average germina-
tion days were significantly different from A and B group
(Table 1). From the image, wheat leaves became thin
and short due to saline alkali stress, and gradually curl
(Fig. 3I). However, when wheat seedlings were cultured
to the 9th day, the differences between the groups could
not be identified by human eyes. Therefore, we needed
to identify whether wheat seedlings were under stress
in advance according to multispectral images. Figure 3II
showed the multispectral images of wheat seedlings in
the bands of 365, 405, 430, 515 and 630 at the 9th day of
culture. We could judge the differences of wheat seed-
lings under different culture conditions according to the
multispectral images.

T2 analysis of wheat seedlings under saline-alkali stress

T2 relaxation analysis

The T2 signal amplitude was directly proportional to the
water content of living tissues [44]. The T2 relaxation
spectra of water in different phases within living crop
organs exhibited significant differences, demonstrating
the multicomponent nature of the T2 relaxation spectra
[6, 47]. Figure 4 is a comparison diagram of T2 relaxa-
tion spectra of wheat in the control group (Fig. 4CK), salt
stress group (Fig. 4A) and alkali stress group (Fig. 4B)
from 5 to 15 days. In Fig. 4, the T2 spectrum of wheat
seedlings had three obvious peaks. Considering that
the peak positions in the T2 spectrum could reflect the
binding energy intensity, the internal water of wheat
seedlings was divided into three binding types [12]. The
water phases were divided into bound water T21 (0.1
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ms<T21<1 ms) and signal amplitude A21 from left to
right; semi-bound water T22 (1 ms<T22< 10 ms), signal
amplitude A22; free water T23 (10 ms<T23<1000 ms),
signal amplitude A23. The total signal amplitude was rep-
resented by A, i.e., A=A21+A22+ A23. The contents of
A21, A22 and A23 increased as the seedlings matured
(Fig. 4). Under stress conditions, the differentiation
between A22 and A23 became blurred from the 9th day
(Fig. 4A) or the 11th day (Fig. 4B). In addition, compared
with the control group, the stress group showed a signifi-
cant increase in A21.

In this study, the T2 relaxation peak areas of wheat
seedlings cultured under three conditions for 15 days
were counted and analyzed (Table 2). Within 15 days,
the water content of the three phases in all groups
increased, but the growth rate was different. From the
5th day to the 7th day, the total water signal volume of
CK, A and B groups increased by 312.58%, 221.05% and
149.50%, respectively. During the culture period from the
5th day to the 15th day, the content of A21 in CK group
continued to increase by 919.92%, group A increased
by 621.64% and group B increased by 494.71%, the A22
of CK A and B groups increased by 1274.35%, 982.94%,
and 935.34% in group B, respectively, and the A23 of
CK A and B groups increased by 519.91%, 387.49% and
274.84%, respectively. The average growth rates for A21,
A22, and A23 were as follows: for A21, B had the high-
est rate at 171.63%, followed by A at 170.02%, and CK
at 168.83%; for A22, the order was CK at 182.27%, A at
180.00%, and B at 164.17%; finally, for A23, CK was high-
est at 146.71%, followed by A at 131.72%, and then B at
123.32%. Compared with CK group, the average growth
rate of bound water in group B was the largest, followed
by group A. While the average growth rate of A22 and
A23 was the same, which was the largest in group CK,
then group A, and finally group B.

Ratio analysis of bound water and free water

From 5th day, the ratio of free water to combined water
of wheat seedlings under CK, A and B was carefully
tracked (Table 3). The CK group maintained a relatively

Table 1 Comparison of germination of wheat seed under saline-alkali stress

Group Germination rate (%) Germination potential (%)  Germination index Mean
germination
time (d)

CK 95.23+2.13a 90.21+2.25a 3551+£2.82a 3.15+0.31c

A 7083+5.71b 62.82+6.67b 1845+242b 4.51+£044b

B 57.67+£8.67c 47.67+1049¢c 16.80+3.06b 540+0.04a

The data in the table represent the standard errors (+ SE) of the four replicates, and different letters of the same column on the table represent significant difference

among treatment (P <0.05)
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(I) Cultivation time/ d
9 11 13

Fig. 3 Effect of saline-alkali stress on phenotypes of wheat seedlings. I Phenotypes of wheat seedlings cultured in different environments. Il
Multispectral images of wheat seedlings in various bands at the 9th day of cultivation. CK: control group, A: salt stress, B: alkali stress

stable rate, slightly decreasing from 15.03% on the 5th
day to 13.05% on the 15th day. Similarly, within the same
period, the A group decreased from an initial 16.01% on
the 5th day to 10.28% on the 15th day, while the B group
experienced a more significant decrease, from 15.67% to
8.70%. In addition, on the 7th day, the ratio of free water
to bound water in the CK group decreased because the
seedlings were moved from the Petri dish to the incu-
bator for culture, and the seedlings needed to adapt to
changes in the environment. From 7th day to 15th day,
the proportion of free water and bound water in the con-
trol group and salt stress group began to increase gradu-
ally. However, due to salt stress, the ratio of free water to
bound water in group A was always lower than that in
group CK. On the contrary, the proportion of free water
and bound water in group B decreased continuously from
the 7th day to the 11th day, and increased from the 13th
day, which delayed the adaptation mechanism of wheat
seedlings.

CK A

Signal amplitude (AU)
g

0

Page 8 of 18

D

Wavelength/ nm
365 405 430 515 630

P (0]

dnoin
dnoin

MSI analysis of wheat seedlings under saline-alkali stress
Morphological characteristics analysis

Twelve morphological features were extracted from mul-
tispectral image. In terms of the average value of shape
features, color features and binary features, wheat seed-
lings growing in different environments were different.
For the shape characteristics, the length, width and area
of wheat seedlings under saline-alkali stress were signif-
icantly different from those of the control group (Fig. 5
L, 11, III). The length of wheat seedlings under salt stress
and alkali stress had significant difference (Fig. 5I), but
the width and area had no significant difference (Fig. 5I,
D).

In terms of color characteristics, the CIELab_A color
characteristics of wheat seedlings were significantly dif-
ferent between group CK and group B (Fig. 6I). There
was no significant difference in the color characteristics
of CIELab_B and CIELab_L among the three groups of
wheat seedlings (Fig. 6 I, II, III).

s
g
8

800

Signal amplitude (AU)

B oE 2
g8 & 8
g8 8 8

0.01 01 1 10 100 1000 10000 0.01 [ 1 10
Relaxation time (ms)

100 1000 10000 0.01 01 1 10 100 1000 10000
Relaxation time (ms)

°

Relaxation time (ms)

Fig. 4 T, inversion spectrum of wheat seedings in three experimental groups
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Group Cultivation time Bound water A21 Semi-bound water A22 Free water A23 Total moisture content A
(d)

CK 5 698.75+98.11a 2813.10+377.77a 10,502.20+469.54a 12,163.62+£662.46a
7 2779.19+430.84a 7754.66+310.24a 26,371.52+486.72a 38,020.88 £488.30a
9 2955.75+439.26a 10,071.85+673.86a 27,992.63+502.92a 40,380.14+611.06a
1 355539+448.87a 28,053.00+526.44a 35,766.86 £477.92a 67,045.94 +569.00a
13 3995.38+405.42a 28,62749+579.28a 49,205.80+924.32a 81,53840+579.06a
15 4291.32+£466.49 35,848.86+654.27a 54,602.19+£802.57a 98,608.56+706.14a

A 5 65847 +69.09a 2770.38+168.79a 10,858.96 +268.77a 12,290.50+273.15a
7 2653.78+419.50b 7536.20+449.12a 16,945.62+617.37b 27,168.14+270.88b
9 2832.63+387.51a 9054.55+782.51a 22,359.99+678.95b 37,567.73+£74461b
11 3490.34+377.10b 945947 +617.54b 27,877.75+268.95b 40,861.84+100.63b
13 3527.46+391.69b 26,389.32+883.99b 32,848.83+594.62b 62,782.03+148.24b
15 4093.34+£418.68b 27,231.07 £330.03b 42,077.69+676.71b 73,456.64 £832.83b

B 5 701.25+77.51a 2850.95+130.63a 10,985.26 £965.09a 13,741.60+£273.15a
7 1919.50+208.89b 4580.33£563.19 14,181.38+121.40c 20,543.35+209.08¢c
9 2309.76 +397.82b 7289.99+594.83a 16,576.20£141.21¢ 26,935.96 £438.02¢
I 2646.87 +339.30c 9358.69+641.68b 18,402.12+357.55¢ 31,520.49+415.28¢
13 273827 +353.39¢c 24,819.55 +306.64c 20,017.64+806.29c 47,443.77 +278.30c
15 3469.12+125.59¢ 26,666.15+369.25¢C 30,192.27 £853.87¢ 62,631.92+457.72¢

All statistical data are unit mass peak area, and to be expressed as mean + standard deviation (x+s); different letters stands for significance between gradient groups

(P<0.05)

Table 3 The ratio of free water to bound water

Group Cultivation time (d)

5 (%) 7 (%) 9 (%) 11 (%) 13 (%) 15 (%)
K 15.03 9.49 9.80 10.06 1232 13.05
A 16.01 7.87 8.18 847 9.06 10.28
B 15.67 739 7.18 6.95 7.31 8.70

In terms of binary characteristics, there was no sig-
nificant difference in Vertical Orientation and Vertical
Skewness among the three groups (Fig. 71, II). There were
significant differences in the characteristics of Compact-
ness Circle between B and the other groups (Fig. 7III).
However, in terms of Compactness Ellipse, Beta Shape_a
and Beta Shape_b, there were significant differences
between CK and the other groups, but no significant dif-
ferences between A and B (Fig. 71V, V, VI).

Multispectral analysis

The average spectral intensity of wheat seedlings was
compared to that of a white board to calculate the rela-
tive reflection spectrum. Observations of the wheat seed-
lings began on the 5th day and were conducted every two
days, concluding on the 15th day. In general, the average

reflectance spectra of CK, A and B groups of wheat seed-
lings showed a similar trend (Fig. 8). However, with the
increase of culture time, the difference between the aver-
age reflectance spectra of seedlings in groups A and B
and CK gradually increased. When the wavelength was
365 nm (UVA region), the average reflectance spectra of
the three groups of wheat seedlings were the minimum
in the whole band, and decreased with the growth of
seedlings. In the visible region (365-645 nm), the aver-
age spectrum showed an “S” type growth. The average
spectral value was steep and almost linear in the range
from red light to early near infrared (700-780 nm). In the
near-infrared region (780-970 nm), the average spectral
value tended to be flat. From the 11th day, the average
reflectance spectrum of group B was significantly higher
than that of the other two groups in 700-780 nm.
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Estimating moisture signal with MSI

Feature parameter selection

Spearman and Kendall correlation analyses were con-
ducted to assess the relationship between the signal
quantity of T2 relaxation peak A and the spectral reflec-
tion intensity of each band, as detailed in Table 4. At a
significance level of P<0.05, the 14 characteristic wave-
lengths were selected by both methods. At a more
stringent significance level of P<0.01, the 5 character-
istic wavelengths (780 nm, 850 nm, 880 nm, 940 nm,
and 970 nm) were identified (Fig. 9). The 5 wavelengths

associated with signal amplitude A and its correlation at
a significance level of P<0.01, were selected for use in the
modeling process.

The characteristic changes in the electromagnetic radi-
ation absorbed by crops in the near-infrared region (780-
2526 nm) were primarily attributed to the stretching and
bending vibrations of O—H bonds in water molecules and
other molecules. Consequently, alterations in leaf water
status could induce corresponding spectral changes in
these regions [11, 24, 38, 46].

Table 4 Table of correlation between A parameters and reflectance spectra of wheat seedings

Wavelength Spearman correlation Kendall correlation Wavelength Spearman correlation Kendall correlation
365 —0.53% -0.38 630 —0.57* -037
405 -033 -027 645 —-0.57* -037
430 - 041 -029 660 -061% —-040
450 -049 -033 690 —0.57* -0.35
470 —0.53% -034 780 —0.79%* —0.78**
490 —0.53% -0.35 850 —0.74** —0.73%
515 -042 -028 830 —0.74%* —0.73**
540 -042 -028 940 —0.78** —0.77**
570 —0.50* -032 970 —0.79%* —0.80**
590 —0.55% -036 - - -

*Significance was identified by Spearman correlation and Kendall correlation analysis (P < 0.05)

**Significance was identified by Spearman correlation and Kendall correlation analysis (P<0.01)
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Prediction model analysis

Four regression models (BPNN, SVM, KPLSR, and
GBRT) were established to predict the moisture signal
A of wheat seedlings under saline-alkali stress using MSI
data. The predicted R?, values for all models were above
0.75, as detailed in Table 5. Among these models, GBRT
demonstrated the best predictive performance, with the
R?;, of 0.98 and the RMSEP of 109.60. Additionally, GBRT
had the shortest training time of 1.48 s and the fastest
prediction speed of 1300 obs/s. The Fig. 10 illustrated
the prediction dataset, highlighting the efficiency of the

four models. These results suggested that the combina-
tion of MSI and chemometrics could be an excellent non-
destructive method for investigating the moisture signal
amplitude in wheat seedlings.

Stress prediction using MSI and LF-NMR datasets

Feature parameter selection

The Principal Component Analysis (PCA) was used to
reduce the dimension of 9 T2 relaxation parameters, and
the Random Forest (RF) was used to reduce the dimen-
sion of multispectral image features. The characteristic

Table 5 Performance of the moisture signal amplitude A prediction model using MSI

Model R% RMSEC R% RMSEP Training time (s) Predicting
speed (obs/s)

BPNN 071 321.60 0.76 309.80 2.09 1900

SVM 0.96 383.90 0.86 261.30 334 1800

KPLSR 0.80 33260 0.88 202.00 6.04 1700

GBRT 0.93 29222 0.98 109.60 148 1300
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Fig. 10 Use MSI to predict the moisture signal amplitude A. 1 BPNN, Il SVM, Il KPLSR, IV GBRT

parameters were selected as the input variables of the
model according to the importance ranking (Fig. 11). It
could be seen from Fig. 11 that PCA selected relaxation
parameters (TP1, TP3, A21, A23) with scores greater
than 0.6 (Fig. 11I); RF selected characteristic parameters
(Width, CIELab_L, Vertical Skewness and Compactness
Ellipse) with scores greater than 0.6 (Fig. 111I).

Classification model analysis

In this study, we discussed the application effect of KNN
and GNB machine learning models in the classification
and prediction of saline-alkali stress in wheat seedlings.
We used three different datasets: MSI datasets, LF-NMR
datasets, and fusion datasets of MSI and NMR. It could

be seen from the confusion matrix that both models
could classify wheat seedlings under saline-alkali stress,
and the classification accuracy of the fusion dataset of
CK group was 100% (Fig. 12). The predicted Recall, Pre-
cision, Accuracy and F1-score of the two models for the
three test datasets were all above 75.00% (Table 6). In
all datasets, GNB model was superior to KNN model in
all evaluation indexes, which might be attributed to the
advantages of GNB model in processing data with high-
dimensional feature space. In addition, the fusion dataset
showed better prediction performance on both models,
emphasizing the importance of using multi-source data
in crop stress prediction.
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Table 6 The predictive performance of KNN and GNB models

Page 150f 18

Model Dataset Training set Testing set
Precision Recall Accuracy F,-score Precision Recall Accuracy F,-score
KNN MSI dataset 72.00 72.00 74.00 0.72 81.87 77.76 77.77 0.80
LF-NMR dataset 76.92 64.52 76.40 0.70 80.47 83.33 80.57 0.81
Fusion dataset 76.92 72.92 73.63 077 86.33 86.11 86.10 0.86
GNB MSI dataset 72.00 72.00 74.10 0.72 83.97 78.38 80.57 0.82
LF-NMR dataset 76.92 76.92 76.87 077 83.33 80.56 8333 0.83
Fusion dataset 73.08 73.08 7363 0.73 90.30 88.89 88.90 0.90
Discussion between environmental stress sources and physiologi-

Soil salinization, a prevalent issue in agricultural produc-
tion, poses a significant challenge to crop cultivation; The
saline-alkali stress resulting from soil salinization not
only hampers wheat growth but also adversely affects its
yield [8]. Traditional research methods, which can dam-
age crops and are time-consuming, often fail to provide
continuous monitoring of crops [4, 19]. In this study, we
applied salt stress and alkali stress to wheat seedlings and
utilized LF-NMR and MSI technology to analyze their
responses to saline-alkali stress. This approach demon-
strated the potential for accurate and nondestructive
detection of crop water status. Furthermore, by employ-
ing various regression and classification models, our
study not only predicted the quantitative moisture sig-
nal amplitude but also achieved qualitative prediction of
wheat seedlings under saline-alkali stress.

The germination of wheat seeds was primarily affected
by osmotic stress and ion effects caused by salt [27]. Our
results showed that, compared to the control group,
saline-alkali stress significantly reduced the germina-
tion rate, germination potential, and germination index
of wheat seeds (Table 1). Analysis of T2 relaxation times
revealed that the content of bound water was the lowest
among the different types of moisture present. Bound
water resided inside wheat cells, combining with proteins
through hydrogen bonds. These hydrogen bonds were
strong, preventing the free flow of bound water and its
participation in metabolic processes. Due to the large
hydrogen bonding force, bound water could not move
freely within cells and did not engage in metabolism.

Semi-bound water could be adsorbed on other tissues
through hydrogen bonding or Coulomb force. Free water
which existed in the internal space of wheat by capillary
action, had strong fluidity [15, 16]. As a good solvent, free
water could dissolve many substances and compounds.
The higher the ratio of free water to bound water, the
stronger the metabolic activity of seedlings. Under dif-
ferent stress conditions, the ratio of free water to bound
water fluctuated, highlighting the complex interaction

cal responses of wheat seedlings. Therefore, during the
whole culture period, compared with the control group,
the ratio of free water to bound water of seedlings under
alkali-stress was the lowest, followed by salt stress group.
Both salt stress and alkali stress hindered the increase of
water content signal amplitude, and alkali stress played
a more significant role. This indicated that alkali stress
had a significant effect on the water holding capacity of
seedlings (Fig. 4). The results indicated that wheat seed-
lings could increase the content of bound water through
specific mechanisms, thereby enhancing their toler-
ance to saline-alkali stress in an adverse environment
(Table 2). Although all seedlings showed adaptive abil-
ity, the efficiency and time of these responses varied with
stress types. Compared with alkali stressed seedlings, salt
stressed seedlings showed faster recovery in water man-
agement (Table 3). Liu et al. [22] draw a conclusion that
alkali stress inhibited the growth of wheat more than salt
stress at the same Na concentration, which was consist-
ent with the results of this study.

Changes in the water and ion content of wheat exposed
to saline-alkali stress could significantly affect its spec-
tral reflectance [5, 5]. This study found that when the
wavelength was 365 nm, the average reflectance spec-
trum was the smallest and decreased with the growth
of wheat seedlings. This phenomenon might be related
to the increase of phenolic compounds in wheat seed-
lings. With the growth of seedlings, phenolic compounds
would increase [17]. These phenolic compounds (such as
flavonoids) had strong absorption capacity in the ultra-
violet region [35]. The spectrum at 365—645 nm showed
an “S” type growth, this region was mainly related to the
absorption peak of crop chlorophyll, which reflected the
absorption capacity of crops to photosynthetic effec-
tive radiation. In the spectral range of 700-780 nm,
the average spectral value was steep and almost linear,
which was a typical feature of seedlings [34]. The linear
growth meant that with the growth of crops, the leaf
structure became more mature and thicker, and the light
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scattering ability was enhanced. In the spectral range of
780-970 nm, the changes of spectral reflectance were
mainly related to the internal structure and water con-
tent of leaves. The gentle trend showed that the struc-
ture and water state of crop leaves had reached a balance
state to a certain extent. In addition, from the 11th day
(Fig. 8IV), the average reflectance spectrum in this region
of group B was significantly higher than that of the other
two groups. This could be due to the alkali stress altering
the internal structure and water regulation mechanisms
of crop leaves, which in turn affected the reflectance
spectrum. Alkali stress might promote the activation of
some protective mechanisms, such as the accumulation
of osmotic adjustment substances, which helped to main-
tain the water state of cells, and then affected the spec-
tral reflectance. The photosynthetic characteristics of
seedlings under abiotic stress could be used as the best
index to determine the ability of crops to deal with saline
alkali stress [2]. This study found that under the same Na
concentration, the impact of alkali stress on the wheat’s
spectral characteristics was more pronounced than that
of salt stress. As Zhang et al. [48] proposed, multispec-
tral technology could effectively improve the accuracy of
stress monitoring.

Long-term continuous monitoring of water status of
wheat plants can not only enrich the water transport
theory of Soil Plant Atmosphere Continuum (SPAC), but
also have important significance in clarifying the adap-
tation mechanism of crops to the environment, efficient
water use and water-saving regulation [42]. However, the
traditional moisture detection has the disadvantages of
complex operation, harmful chemical reagents to human
body, destructive to samples and so on, which is diffi-
cult to be widely used [3]. With the rapid development
of nondestructive testing technology, researchers began
to explore the nondestructive detection of crop moisture.
Yang et al. [41] found that there was a consistent linear
relationship between nuclear magnetic signal amplitude
and moisture content on wet basis during rice seed ger-
mination (R?>=0.98). Similarly, Yao et al. [43] found that
there was a linear relationship between the pure water
content of each organ of wheat and the total signal ampli-
tude A of T2 relaxation spectrum (R?>=0.99). Therefore,
this study predicted the water signal of wheat based on
multispectral data. This study selected the multispec-
tral band with high correlation with water to predict the
wheat water signal amplitude A. The results showed that
GBRT model performed best in quantitative prediction
of water signal, with high accuracy and rapid response
ability (Fig. 5), which was of great significance for real-
time monitoring of crop water status.

Compared with single data source, data fusion signifi-
cantly improves the performance of prediction model
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[1]. For example, the collaborative retrieval model of
hyperspectral and multispectral images based on double
branch convolution network can effectively use the char-
acteristics of data [37]. Compared with the yield estima-
tion model based on single sensor data, multi-source data
fusion can effectively improve the estimation accuracy of
winter wheat yield [29]. The prediction accuracy of the
winter wheat yield estimation model based on multispec-
tral and thermal infrared data fusion was 8% higher than
that based on multispectral data alone [18]. Therefore,
in terms of qualitative prediction, we compared the per-
formance of a single LF-NMR or MSI data source with
the model fused with LF-NMR and MSI data source, and
found that the Precision, Recall, Accuracy and F1-score
of the model after data fusion were excellent (Fig. 12,
Table 6). It confirmed the effectiveness of information
fusion in improving the application of precision agri-
culture, which meant that data fusion could be used to
improve the classification and prediction ability of wheat
seedlings under different saline alkali stress levels.

The fusion of LF-NMR and MSI technology, this study
provided a new perspective for the nondestructive detec-
tion and evaluation of wheat seedlings under saline-
alkali stress, and also pointed out the direction of future
research. Although this study had achieved positive
results, there were still limitations. The selected saline
alkali stress level might not fully cover the actual field
situation, which might limit the universality of the model
in a wide range of applications. More saline-alkali stress
levels and adding more variety samples could be explored
in future research to increase the robustness and gener-
alization ability of the model. In addition, there might be
differences between the predicted moisture amplitude
signal of NMR and the prediction effect of actual mois-
ture. In this paper, only the NMR signal was used for
measurement, and the drying method was not used for
actual calibration. After that, a variety of methods would
be used to calibrate the predicted data. The relationship
between other biological parameters (such as ion absorp-
tion, chlorophyll content, etc.) and water status could
also be further explored to comprehensively evaluate
the response of crops to stress. Finally, the combination
of machine learning model and traditional crop growth
model might provide a deeper understanding for predict-
ing crop performance in changing environments.

Conclusion

In this study, we combined LF-NMR and MSI technol-
ogy to achieve nondestructive detection of wheat seed-
lings under saline-alkali stress. Under stress, wheat
seedlings would increase bound water content through
specific mechanisms to enhance their saline-alkali stress
tolerance. However, the efficiency and timing of these
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responses vary with stress types. Compared to alkali
stress, salt stress endowed seedlings with a stronger
recovery ability in water management. Stress can induce
changes in the internal structure and water regulation
mechanisms of wheat leaves. The impact of alkali stress
on wheat spectral characteristics was more pronounced
than that of salt stress. At the same Na concentration,
alkaline stress inhibited wheat growth more than salt
stress. Model comparison revealed that the GBRT model
excelled in predicting wheat moisture signals, with the
R?, of 0.98 and the RMSEP of 109.60. It also featured a
short training time of 1.48 s and a high prediction speed
of 1300 obs/s. For qualitative prediction, the KNN and
GNB models demonstrated significantly better classifi-
cation abilities on the fused datasets compared to using
only MSI or LE-NMR datasets alone. Notably, the GNB
model showed the most outstanding classification pre-
diction effect on the fused dataset, with Precision, Recall,
Accuracy, and Fl-score of its test set reaching 90.30%,
88.89%, 88.90%, and 0.90, respectively. These findings not
only demonstrated the application potential of LF-NMR
and MSI information fusion technology in agriculture
but also provided an effective method for predicting the
moisture signal quantity in wheat seedlings and accu-
rately classifying saline-alkali stress effects.
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