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Abstract 

Purpose Wood comprises different cell types, such as fibers, tracheids and vessels, defining its properties. Studying 
cells’ shape, size, and arrangement in microscopy images is crucial for understanding wood characteristics. Typically, 
this involves macerating (soaking) samples in a solution to separate cells, then spreading them on slides for imaging 
with a microscope that covers a wide area, capturing thousands of cells. However, these cells often cluster and over-
lap in images, making the segmentation difficult and time-consuming using standard image-processing methods.

Results In this work, we developed an automatic deep learning segmentation approach that utilizes the one-stage 
YOLOv8 model for fast and accurate segmentation and characterization of macerated fiber and vessel form aspen 
trees in microscopy images. The model can analyze 32,640 x 25,920 pixels images and demonstrate effective cell 
detection and segmentation, achieving a mAP0.5−0.95 of 78 %. To assess the model’s robustness, we examined fibers 
from a genetically modified tree line known for longer fibers. The outcomes were comparable to previous manual 
measurements. Additionally, we created a user-friendly web application for image analysis and provided the code 
for use on Google Colab.

Conclusion By leveraging YOLOv8’s advances, this work provides a deep learning solution to enable efficient quanti-
fication and analysis of wood cells suitable for practical applications.

Keywords Instance segmentation, YOLO, Wood, Fibers, Optical microscopy

Introduction
Wood fibers, including tracheids and other fiber types, 
are essential components of wood, providing mechani-
cal strength to withstand external mechanical stresses 
such as wind. Moreover, they are crucial for supporting 
tree growth in height [16]. These fibers have a high eco-
nomic importance as they are the basic constituent of 
most wood-derived products. Wood fibers are extracted 
by pulping, which separates these cells into independent 
fiber cells. Once separated into individual fibers, they can 
be reassembled into paper and are increasingly utilized in 
applications such as bio-composites, smart papers, and 
new packaging materials [14]. The term “wood fiber” gen-
erally refers to the cell type called tracheids in softwood 
(Gymnosperm) and fibers in hardwood (angiosperm) 
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[47]. In hardwood, fibers coexist with vessels and ray 
cells, which collectively determine wood characteris-
tics. Notably, hardwood fiber cells elongate intrusively at 
their tips. Fiber cells are derived from the same stem cell 
progenitors as vessels, which do not elongate intrusively 
[39]. The ratio of fiber and vessel length can indicate the 
degree of intrusive growth (elongation), an essential fac-
tor in determining wood quality [14]. However, despite 
its importance, little is known about the development 
and elongation of these fibers or the genetic factors that 
regulate their length [29]. With this knowledge, fiber 
properties could be improved to produce better and 
stronger wood fiber-based products in more sustainable 
production systems [43]. As the demand for renewable 
fiber-based products continues to grow, there is a need 
to develop robust, high-throughput methods for studying 
fiber length and characteristics.

A classical method to study wood fiber length consists 
of macerating (soaking) wood samples in a solution that 
separates individual cells [39]. Cells suspended in liq-
uid solutions can be transferred onto microscopy slides 
for examination. Once prepared, these slides can be 
observed using a standard light microscope. The images 
captured can then be analyzed using image processing 
software like ImageJ, which allows for the manual meas-
urement of individual fiber lengths [38]. This task is, 
however, highly time-consuming and prone to user bias 
and errors during the manual measurement step. Overall, 
this highly limits the throughput of this type of analysis. 
Alternatively, it is possible to use so-called fiber analyz-
ers. These machines allow the high-throughput image 
acquisition of fibers floating in a constantly stirred solu-
tion, generating high-speed and unbiased measurements 
[11]. However, the resolution of data acquisition is often 
limited, and it can be difficult to differentiate individual 
fibers from clumps of fibers that have not been properly 
detached from each other. While this may not be a limi-
tation for industrial applications, it can become limiting 
when it comes to accurately studying the biology of fib-
ers and their individual length, width, and other mor-
phometric descriptors [27]. This type of equipment can 
also be very costly and is not widely available to many 
research labs contrary to light microscopes, even those 
equipped with a motorized stage.

A more widely accessible solution for fundamental 
research application is thus to make use of commonly 
available light microscopes equipped with motorized 
stages. Those are commonly available in biology research 
labs and most university core microscopy facilities. The 
motorized stage can be used to automatically acquire 
very large fields of view with high resolution, usually 
within 1–2  min per slide. Typically, wood macerates 
mounted between slides and cover slips allow the capture 

of hundreds to thousands of fibers and vessels per slide. 
This high-throughput image acquisition can also, in 
principle, be coupled with new image processing tech-
nologies to automate the time-consuming task of identi-
fying and measuring fiber cells in those high-resolution 
images. The use of automated microscopy slide scanning 
and automated image processing can thus largely allevi-
ate the drawback of the light microscopy-based approach 
compared to fiber analyzers while also delivering much 
higher quality images for detailed fiber characterization.

While most recent light microscopes are equipped 
with motorized stages and the capacity to automatically 
generate large stitched images, the remaining limiting 
step is the image processing for the detection (segmen-
tation) and shape analysis of the fibers. Several studies 
have developed image processing methods to analyze 
fibers from wood section images [5, 7, 22, 31]. However, 
most of these methods are only adapted for images from 
cross-sections of wood samples. These samples are typi-
cally prepared with cross-section in a transverse orienta-
tion. Although this method provides crucial information 
about certain aspects of cell arrangement and wood 
density, it does not directly yield information about the 
length of fiber cells. Automatic segmentation of such 
images is also less challenging for classical image seg-
mentation algorithms, as individual cells in the images 
do not overlap. As such, the image can be divided into 
regions (e.g., individual cells and background) where 
each pixel is only assigned to one cell or region. This is 
typically readily achievable with the classical watershed 
segmentation algorithm [23] and more recently with 
deep learning based segmentation tools such as Cellpose 
[42] for more challenging samples. However, 2D images 
obtained from wood macerates contain many fibers that 
frequently overlap but which are still fully visible thanks 
to the translucency of the fibers imaged with the light 
microscope (see Fig.  1). Thus, many pixels in the image 
can belong to more than one cell of interest. This situa-
tion is challenging for most existing segmentation algo-
rithms, including for deep learning techniques. Those are 
generally able to segment objects that are overlapping in 
nature, i.e., a human in front of a car, but can only out-
put segmented masks that delineate the visible contours 
of each object and, thus, in this case, a full mask of the 
human in front and, an incomplete mask of the partially 
hidden car. With translucent objects, as is the case for 
light microscopy images of fibers, it would be, in princi-
ple, possible to obtain full masks for each of the overlap-
ping objects since each object is fully visible in the image 
despite the overlaps. However, such an approach remains 
very little developed and applied [4, 8].

Deep learning, a specialized subset of machine learn-
ing, has achieved significant success in fields such as 
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computer vision and image processing, particularly in 
tasks like image segmentation [34, 45]. For image seg-
mentation, convolutional neural networks (CNNs), 
a type of deep neural network, are well-suited. CNNs 
process input images through multiple filters, thereby 
learning autonomously features from the images with-
out the need for humans to design feature extractors 
manually. CNNs are extensively used for image seg-
mentation applications [2, 28], including for segment-
ing cells in microscope images [13, 30, 36]. Given that 
cells in wood macerate images tend to overlap, it is 
essential that a neural network architecture supports 
the detection of individual objects, rather than merely 
dividing the image into regions. Instance segmenta-
tion, which identifies each cell individually and assigns 
pixels to the correct cell instance, is the most suitable 
approach in this regard. Popular existing instance seg-
mentation methods such as Faster R-CNN [35], Mask 
R-CNN [18], and RetinaNet [25] have been successfully 
applied to cellular image segmentation [19, 21, 44]. 
These methods use deep convolutional neural networks 
(CNNs) like VGG [40] and ResNet [17] to extract fea-
tures from the input images. However, these two-stage 
methods are slow for inference. One-stage methods 
such as Single Shot MultiBox Detector (SSD) [26] and 
You Only Look Once (YOLO) series streamline object 
detection by simultaneously predicting object loca-
tions and class probabilities in a single pass. One-pass 
approaches significantly improve inference speed over 
multi-stage methods. Among one-stage models, YOLO 
offers a good balance of speed and accuracy, achieving 
speeds suitable for real-time applications and that, for 
some cases, is more accurate than two-stage methods 
[9]. Most importantly, YOLOv8 can also be retrained 

with a setting that allows it to deal with overlapping 
translucent objects and thus generate a full mask of 
such overlapping objects. Considering our need for 
a versatile model that is accessible to a broad audi-
ence and capable of analyzing high-resolution stitched 
images of macerated fibers containing many overlap-
ping cells, the YOLO algorithm stands out as an ideal 
choice for addressing this challenge.

In this paper, we develop a model based on YOLOv8 
[20] for segmenting and classifying fibers and vessels in 
2D microscopy images, see Fig. 1. We compiled a data-
set of 3850 wood macerate images using 1300 micros-
copy images. We annotated 9 617 fibers and 519 vessels, 
which, after augmentation resulted in 28 358 fibers and 
1502 vessels used to train the model. We demonstrate 
that the enhanced model achieves fast inference speeds 
and high accuracy in detecting and classifying individ-
ual cells when processing large images (32,640 x 25,920 
pixels). We also developed a browser interface for easy 
model access and image analysis. This interface, acces-
sible after local installation, enables users to upload 
images via drag and drop. The system then provides 
measurements of the fibers and vessels, including their 
length, width, and area, as well as the full set of seg-
mented masks corresponding to each segmented fiber 
and vessel, which can be used for further detailed mor-
phometric analysis of fiber and vessel shapes. Addition-
ally, users can access the training and prediction code 
run on Google Colab [3] in the GitHub repository [32]. 
Lastly, to validate the effectiveness of our new methods, 
we applied them to a well-known poplar transgenic 
line, which is recognized for having distinctly longer 
wood fibers than its wild-type relative. This approach 
aimed to corroborate previous manual measurements 
of fiber length differences in these lines.

YOLOv8 
Deep Learning Model

Feature Extractor Feature Fusion Prediction 
Head Lo

ss

Input Image Prediction

Fig. 1 Schematic of the YOLOv8 architecture for fiber and vessel segmentation. The model contains a Feature Extractor for feature extraction, 
Feature Fusion for feature aggregation, Prediction Head for predicting the objects’ bounding boxes, classes, and masks. The loss component is used 
to optimize the model performance. An input image is passed through the network, which performs classification, detection, and segmentation 
jointly. This enables the delineation of individual cells even when overlapping, as shown in the prediction output
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Image capturing method
Sample preparation
To create training and test datasets, we collected stem 
samples from several 3-month-old hybrid aspens grown 
in a greenhouse, specifically from Populus tremula L. × 
tremuloides Michx.

To obtain data for comparative analysis of fiber length, 
3 transgenic trees overexpressing the GA20ox1 gene 
Arabidopsis gibberellin 20-oxidase (Ara GA20ox1 Line 
1A) [11] and 3 trees of the T89 clone (control) were 
sampled.

To perform the maceration, stem segments between 
internodes above 10  cm from the soil were used. The 
bark was removed from the stem and 2–3  mm of the 
exposed vascular cambium region was trimmed, expos-
ing the wood. From this surface, longitudinal match-like 
segments of 15  mm length and approximately 1.5 x 1.5 
mm cross section were prepared from the newly exposed 
wood surface. Maceration was performed on these 
match-like samples by immersing them in maceration 
solution (30% Hydrogen peroxide: glacial acetic acid, 2:1 
v/v) and heating at 90◦ C with periodic shaking for 5 h, as 
previously described in [39]. The macerated solution was 
then sedimented by low-speed centrifugation (1000 rpm) 
and washed a few times with water.

For safranin staining, a few drops from the obtained 
macerated solution were stained with the Safranin solu-
tion (1%) that stains lignified tissues in xylem cells. Simi-
larly, for toluidine blue staining, a few drops from the 
macerated solution were stained with the (0.5% W/V) 
Toluidine blue stain.

Imaging
The samples were mounted between a slide and cover-
slip and imaged using a Leica DMi8 inverted microscope 
in brightfield mode with transmitted white light (Leica 
Microsystems, Germany). The microscope is equipped 
with a 10X objective lens and DFC7000T color camera 
mounted on a 0.70X C-mount adapter. Single images 
were acquired in RGB color mode with a resolution of 
1920 x 1440 pixels and a pixel size of 0.65 x 0.65 µ m. Tile 
images made of 19 x 19 (361) individual images were 
acquired with the Navigator function of the microscope 
using a 10 % overlap. Tile images were merged with the 
LAS X software (Leica Microsystems, Germany).

For training of the model, single tile images (1920 x 
1440 pixel) of macerated fibers and vessels stained with 
safranin were obtained from the trimmed stem sam-
ples of wild-type (T89) trees. For quantification of the 
wildtype and the over-expression line, four 361-tile 
stitched images (containing fibers and vessels stained 
with safranin) were obtained from the trimmed stem 

samples of each of these three biological replicates for 
both the control and over-expression lines.

To test the robustness of the model to different stain-
ing or imaging modes we also acquired several images of 
fibers and vessels either stained with Toluidine blue, non 
stained and non stained samples acquired in grayscale 
mode. We provide all the raw image data at Zenodo [33].

Statistics
We used a t-test statistical method to validate whether 
the trained model outputs consistent results across differ-
ent image groups. Specifically, we tested for scale invari-
ance by running the model on different-sized crops from 
the same large images. We also compared model predic-
tions on an overexpression line GA20ox 1A and wildtype 
T89 as control. The t-statistic is calculated as t = ( ¯X1−

¯X2)
SED

 , 
where ¯X1 and ¯X2 are the sample means and SED is the 
standard error of the difference between the means. We 
employed Scipy’s ttest_ind() to automatically com-
pare two independent data samples, assessing significant 
mean differences based on t-test assumptions.

Computational method
Images annotation and dataset preparation
To identify fibers and vessels in microscope images, we 
created a dataset of over 1300 individual images showing 
these structures in different shapes and sizes. The images 
are 1920 x 1440 pixels in size. We carefully outlined the 
fibers and vessels in each image using the VGG Image 
Annotator [10]. This created a ground truth or guide to 
the actual fibers and vessels in the images. The outlines 
were saved as JSON files, which store the coordinates of 
the polygons drawn around each object, which can be 
seen in Fig. S1. We resized the large images into smaller 
1024 x 1024 pixel images to avoid running out of memory 
on our graphics card. We also used data augmentation 
techniques to increase the number of training images. 
For example, by applying transformations like rotating, 
scaling, and flipping the original images, we created more 
variety in the dataset. This also helps the machine learn-
ing model learn robust features that apply to new images. 
From 1300 original images, we generated 3850 aug-
mented images with around 29 861 annotated objects.

To train the YOLO model, we randomly split the data-
set into training (85%) and validation (15%) sets. The 
training data is used to update the model’s parameters. 
The validation data is used to evaluate the model during 
training but not to update parameters. This split helps 
prevent overfitting and ensures the model generalizes 
well.
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Deep learning approach
We used the YOLOv8-seg deep learning method, which 
is a variant of YOLOv8 architecture designed explic-
itly for instance segmentation tasks [20]. During the 
model training process, we utilized the YOLOv8 model 
pre-trained on the COCO val2017 dataset and set 
overlap_mask = False in training parameters to deal with 
overlapping masks as a starting point. The architecture 
of the YOLOv8 algorithm consists of four main compo-
nents: feature extractor, feature fusion, prediction head, 
and loss function. The components are shown in Fig.  1 
and with more details in Fig. S2. Here, we look into the 
design concepts of each architecture module.

The feature extractor is the first part of the model and is 
responsible for extracting features at different stages from 
the input image. The output features from the different 
stages have different spatial resolutions. The earlier stages 
of the feature extractor network extract low-level features 
such as edges and corners. The later stages extract high-
level features such as object shapes and parts. The fea-
ture extractor down-samples the input image because it 
extracts features at later stages.

The feature fusion module combines the output fea-
tures from different stages of the feature extractor net-
work to form a unified representation of the image. Deep 
neural networks capture increasingly detailed features 
as the network becomes deeper, which improves object 
prediction. However, as the network depth increases, the 
object localization accuracy for detecting small objects 
decreases owing to excessive convolution operations, 
resulting in the loss of important information. To address 
this tradeoff, the feature fusion module incorporates a 
multi-scale fusion of features using architectures such as 
a Feature Pyramid Network (FPN) and Path Aggregation 
Network (PAN). The feature fusion module performs dif-
ferent operations to extract higher-level features from the 
input features and consolidate the outputs from various 
stages of the feature extractor into a single representa-
tion. This unified representation enhances the object 
detection and segmentation performance.

The prediction-head module transforms the encoded 
image features into usable predictions for object detec-
tion and segmentation. This makes the final predic-
tions based on the consolidated representation from the 
feature-fusion module. The head module combines fea-
tures from earlier modules and leverages them to pre-
dict bounding boxes, classes, and masks for the objects 
in the image. By dividing the prediction into specialized 
branches, it efficiently performed classification, localiza-
tion, and masking in a coordinated manner. The predic-
tion head is the final component that outputs the actual 
detections and segmentations after processing using the 
complete YOLOv8 architecture.

The loss function in YOLOv8 measures how accurately 
the model detects and segments objects. It compares the 
model predictions with the ground-truth labels. The loss 
function is used to train the model to improve its perfor-
mance. YOLOv8 has separate branches for classification, 
bounding-box regression, and masking. For classification 
and masking, the cross-entropy loss was used to mini-
mize errors. Bounding box detection uses two losses: dis-
tributed focal loss (DFL) and CIoU Loss. These consider 
the aspect ratio between the predicted and ground-truth 
boxes. The overall loss is the sum of the losses from dif-
ferent branches. A lower loss indicates that the model 
is more accurate at detecting, classifying, and segment-
ing objects. Loss guides model training to improve these 
areas.

Measuring the morphology of objects
To identify and localize objects of interest within images, 
we use the YOLOv8 model to predict bounding boxes 
and contours around each instance. To enable more pre-
cise morphological measurement, we integrate functions 
from the OpenCV computer vision library to further 
analyze the object contours [6].

We use the contours to generate the mask of each pre-
dicted object by the model. We then calculate the length 
of the skeleton path of the binary mask. For this, we apply 
a thinning operation that is used to reduce the thickness 
of objects in an image to a single-pixel-wide skeleton. The 
goal of thinning is to preserve the essential structural and 
topological characteristics of the original objects while 
significantly reducing the amount of data. To apply the 
thinning process, we use the OpenCV library function 
cv2.ximgproc.thinning(). We then analyze the skeletons 
in the thinned image, extract the long path skeleton, and 
calculate its length using np.sum(mask) from the NumPy 
library. This centerline approach allows us to find the 
actual length of the object.

To calculate the width of the fiber, the code first com-
putes the distance transform of the binary mask draw-
ing. The distance transform assigns each pixel a value 
that corresponds to the distance from that pixel to the 
nearest background pixel. This is done using the cv2.
distanceTransform() function. The maximum value in 
the distance transform represents the thickness of the 
thickest part of the fiber. This value is obtained using the 
np.max() function from the NumPy library. Since the dis-
tance transform gives the distance from the center of the 
fiber to the edge, the actual thickness of the fiber is twice 
this value.

In addition to length and width, we used OpenCV’s 
cv2.contourArea() method to accurately measure the 
area enclosed within the detected contours. A schematic 
diagram showing the concept is shown in Fig.  2, where 
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the input image is passed to the model and the model 
gives the output. From the output, we generate masks for 
each instance and then use OpenCV functions to meas-
ure the length and width of each instance. The output 
from the model provides pixel values from the analysis, 
which need to be converted into micrometers.

By utilizing the polygon points in the contours, we per-
form post-processing to exclude segmented objects that 
touch the boundary edge of the image. This post-process-
ing approach ensures that only fully segmented objects 
within the image are included.

Model retraining and parameter adjustment
YOLOv8 model retraining and hyperparameter tuning 
with wood macerate dataset
During the training process of all models, we utilized the 
pre-trained YOLOv8 models on the COCO val2017 data-
set as a starting point. To train the YOLO model, we use 
3350 images for training and 500 images for validation. 
The training data is used to update the model’s param-
eters whereas the validation data is used to evaluate the 
model during training but not to update parameters. We 
used YOLOv8-m, l, and x in our experiment. YOLOv8-m 
uses a medium-sized feature extractor and more feature 
fusion levels, YOLOv8-l utilizes a larger feature extractor 
and more feature fusion levels compared to YOLOv8-m, 
and YOLOv8-x uses an even larger feature extractor and 
more feature fusion compared to YOLOv8-l. We find the 
convergence level and best optimizer for these models 

during training. Based on experimental data from Ultra-
lytics, we observed that YOLOv5 training required 300 
epochs, while YOLOv8 training increased the number of 
epochs to 600. Initially, we set the number of epochs to 
600 and incorporated a patience value of 50. This means 
that if no noticeable improvement occurred after waiting 
for 50 epochs, the training would terminate early. How-
ever, during the training of YOLOv8m, we found that the 
model reached its best performance at epoch 355 and 
training stopped early at epoch 405.

We chose hyperparameters for model training as sug-
gested in reference [15]. The selection of an appropri-
ate optimization algorithm is crucial when training 
YOLOv8-seg. The optimizer determines how the model 
parameters are updated during training to minimize 
the loss function. For small custom datasets, the Adam 
(Adaptive Moment Estimation) optimizer is recom-
mended, while the SGD (Stochastic Gradient Descent) 
optimizer tends to perform better on larger datasets. 
Consequently, we trained YOLOv8-seg models separately 
using the Adam and SGD optimizers. The results of com-
paring the effects of these two optimizers on model train-
ing are presented in Table 1.

We opted for the Adam optimizer with a weight decay 
of 5x10−4 and an initial learning rate of 1x10−3 . Further-
more, we set the input image size to 1024 and trained the 
different models using a TITAN V100 16GB with a batch 
size of 8. The models were trained on Python 3.8 and 
PyTorch 1.10.0.

Fig. 2 Example of a segmented object and the corresponding image analysis that automatically measures the object’s morphological traits using 
our YOLOv8 model. a displays the original microscopy input image used for object detection, which is sent to the YOLOv8 model b that outputs 
detected objects. c shows the individual mask generated for each individual cell in the image and also demonstrates that full masks are obtained 
from translucent overlapping objects. d illustrates the measurements of length and width for each detected object, providing quantitative data 
extracted from the image



Page 7 of 13Qamar et al. Plant Methods          (2024) 20:126  

Evaluation metrics for the models
To evaluate the performance of the models, we used four 
metrics: precision, recall, F1-score, and mean average 
precision (mAP). These metrics are commonly used for 
object detection and segmentation tasks, and they are 
calculated based on the number of true positive (TP), 
true negative (TN), false positive (FP), and false negative 
(FN) predictions made by the model [41].

Precision quantifies how many of the predicted positive 
instances are actually correct. Recall quantifies how many 
of the actual positive instances are correctly identified by 
the model. F1-score combines both precision and recall 
giving a single value that represents the algorithm’s over-
all accuracy. A higher F1-score indicates a better algo-
rithm performance in achieving both high precision and 
high recall simultaneously.

Mean Average Precision (mAP) is a widely adopted 
evaluation metric for assessing the performance of object 
detection algorithms across multiple classes. In this 
paper, we considered mAP 50 and mAP 50–95, in which, 
mAP 50 calculates the average precision for all classes 
at an IoU threshold of 0.5 while mAP 50–95 computes 
the average precision for all classes over a range of IoU 
thresholds from 0.5 to 0.95, with a step size of 0.05. This 
variation of mAP offers a more comprehensive evaluation 
by considering a wider range of IoU thresholds.

Result and discussion
Model selection
In this work, we used the pre-trained YOLOv8 to detect 
and segment fibers and vessels. We trained with  our 
custom dataset using three YOLO variants: m, l, and x. 
The quantitative results for precision, recall, F1 score, 
mAP@0.5, and mAP@0.5−0.95 values of the three 
YOLOv8 models in fiber and vessel segmentation are 
presented in Table 2. Among these models, YOLOv8m-
seg demonstrated the highest precision (0.97), recall 
(0.91), and F1 score (0.94), while performing relatively 
lower in mAP: 0.5−0.95 (0.75). YOLOv8l-seg exhibited 
slightly lower precision (0.96) and recall (0.91) compared 
to YOLOv8m-seg, but had a comparable F1 score (0.93) 
and a marginally better mAP: 0.5−0.95 (0.76). YOLOv8x-
seg matched YOLOv8m-seg in precision (0.97), had a 
slightly lower recall (0.90), and an F1 score (0.93) equal 
to YOLOv8l-seg, but it outperformed both in mAP: 0.5−
0.95 with the highest value of 0.78. Furthermore, the 
YOLOv8x-seg model had the highest weight (70.1), com-
pared to YOLOv8m-seg (27.2) and YOLOv8l-seg (45.9).

Based on these findings, the YOLOv8x-seg model was 
identified as the optimal choice for fiber and vessel detec-
tion and segmentation, exhibiting superior performance 
across the evaluation metric of mAP@0.5−0.95. Conse-
quently, the YOLOv8x-seg model was selected for further 
analysis, specifically in estimating fiber and vessel length, 
width, and area. This selection ensures a consistent and 
focused evaluation of the model’s practical application, 
aligning with the study’s objectives.

Model performance
We thoroughly evaluated model performance for the 
tasks of detecting and segmenting fiber and vessel 
objects in images. We examined precision-recall curves 
to understand the trade-off between precision and recall 
for detection. For segmentation, we focused on how 
precisely the model delineates the boundaries and seg-
ments of the detected objects. Additionally, we analyzed 
F1-confidence curves to understand the relationship 
between F1 scores and model confidence levels for detec-
tion and segmentation. Examining the F1-confidence 
curves provided insights into how precision and recall 
were balanced across varying confidence thresholds. 

Table 1 The table compares YOLOv8m-seg, YOLOv8l-seg, and 
YOLOv8x-seg models trained on our generated dataset using 
both SGD and Adam optimizers

Model Optimizer Best 
Epoch

mAP 50 mAP 
50-95

Speed 
GPU V100 
(ms)

YOLOv8m-
seg

SGD 405 0.93 0.73 8.3

Adam 413 0.94 0.75 9.0

YOLOv8l-
seg

SGD 421 0.93 0.74 17.4

Adam 487 0.94 0.76 17.2

YOLOv8x-
seg

SGD 553 0.93 0.76 24.5

Adam 543 0.94 0.78 22.2

Table 2 The table shows the evaluation metrics for different YOLOv8 models when detecting fibers and vessels

Model Precision Recall F1-Score mAP 50 mAP 50-95 Weight

YOLOv8m-seg 0.97 0.91 0.94 0.95 0.75 27.2

YOLOv8l-seg 0.96 0.91 0.93 0.94 0.76 45.9

YOLOv8x-seg 0.97 0.90 0.93 0.94 0.78 70.1



Page 8 of 13Qamar et al. Plant Methods          (2024) 20:126 

Evaluating the model’s performance step-by-step is 
important for assessing its effectiveness.

Figure 3 depicts the behavior of the selected YOLOv8x-
seg model used for object detection and segmentation 
of fiber and vessel objects. The precision-recall curve in 
Fig.  3a represents the trade-off between precision and 
recall for the detection task. At a threshold of 0.5, the 
mean average precision (mAP) values were 0.930 for fiber 
and 0.959 for vessel detection. The overall mAP of 0.944 
for all classes combined indicated the model’s overall per-
formance in object detection.

Figure 3b shows the F1-confidence curve, which illus-
trates the relationship between the F1 score and the 
model’s confidence. At a confidence threshold of 0.66, 
the F1-score was 0.91 for both fiber and vessel classes. 
This score represents the balance between precision and 
recall. A higher F1-score indicates better model per-
formance in terms of both precision and recall. These 
findings provide valuable insights into the model’s per-
formance and help assess its suitability for detecting fiber 
and vessel objects in images.

Moving on to the segmentation task, the model 
achieved values of 0.923 and 0.959 at a threshold of 0.5 
for fiber and vessel segmentation, respectively. The over-
all mAP of 0.94 for all combined classes at the same 
threshold is shown in (Fig. 3c), highlighting the model’s 
effectiveness in segmenting objects. Figure  3d displays 

the F1-confidence curve for the segmentation task, where 
the model attained an F1-score of 0.91 at a confidence 
threshold of 0.66. This score represents the trade-off 
between precision and recall for both fiber and vessel 
classes.

We conclude that for fiber and vessel detection and 
segmentation, the YOLOv8x-seg model performed 
best compared to other models in terms of mAP. The 
YOLOv8m-seg model had the lowest mAP value specifi-
cally for fiber detection and segmentation.

Qualitative results
Figure 4 shows fiber and vessel detection and segmenta-
tion examples achieved using the YOLOv8x-seg model. 
These examples highlight the model’s ability to accu-
rately identify and outline fiber and vessel structures in 
the images. The visual results obtained from the model 
not only demonstrate its potential within the scope of our 
study but also provide valuable insight into its practical 
application for fiber and vessel analysis.

Because the model was primarily trained on RGB color 
images of safranin stained samples, we next aimed to test 
whether it was also able to detect and segment fibers in 
images obtained with different staining protocols and 
color acquisition parameters. We acquired several images 
with  an imperfect white balance (Fig.  4a), Toluidine 
blue stained samples, unstained samples, and unstained 

Begränsad delning

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Recall

Precision-Recall Curve

fiber 0.930
vessel 0.959
all classes 0.944 @0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Recall

Precision-Recall Curve
fiber 0.923
vessel 0.959

all classes 0.941 @0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F1

Confidence

F1-Confidence Curve
fiber
vessel 

all classes 0.91@ 0.66

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F1

Confidence

fiber
vessel 

all classes 0.91 @0.66

F1-Confidence Curve

Detection

Segmentation

(a) (b)

(c) (d)

Fig. 3 These plots showcase the precision-recall (a, c) and F1-confidence (b, d) curves used to evaluate the performance of YOLOv8x in detecting 
(a, b) and segmenting (c, d) fibers and vessels. The model demonstrates strong mAP and F1-score across thresholds, confirming its effectiveness 
in object detection and segmentation tasks
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samples acquired in grayscale mode, all other images 
were acquired in RGB color mode (Fig. 4b). Despite these 
variations, our model consistently succeeded in detect-
ing and segmenting fiber and vessel structures. This 
highlights the effectiveness of the model, as it still can 
perform well. Such robustness is particularly valuable in 
fiber and vessel segmentation, where images with diverse 
backgrounds are encountered.

Based on the findings of this study, we conclude that 
our retrained version of the YOLOv8x-seg model effec-
tively detects and segments fibers and vessels in micros-
copy images. Despite achieving high accuracy in fiber 
detection and segmentation, our YOLOv8 model still 
made some mistakes by generating false positives and 
false negatives in certain cases. We highlight examples of 
this in Fig. 5 (a), where the model failed to identify several 
fibers and fiber segments, for instance, highlighted by the 
yellow ellipse. Similarly, in Fig. 5(b), the ellipse highlights 
one of the regions where YOLOv8 failed to identify the 
fiber and vessel. This failure to detect the fiber could be 
attributed to limitations in the training of the model but 
is also likely a consequence of the very high density and 
crowding of the fibers in this example image. This issue 
can also be easily alleviated during sample preparation 
by increasing the dilution of the sample before mounting 
it between the slide and coverslip and imaging. Never-
theless, to tackle this issue from the computational side, 
Adar et al. [12] suggested that training the model with a 
larger dataset containing more input features can greatly 
enhance its ability to generalize and perform well on 
new and unseen data. A larger dataset would enable the 
model to capture the subtle differences in fiber and vessel 

structures in various background images. Additionally, a 
larger dataset can help to mitigate the risk of overfitting, 
where the model becomes too specialized to the training 
dataset and performs poorly on new samples.

Quantifying fibers and vessels in microscopy images
In order to complete the task of fiber and vessel detec-
tion and segmentation, we implemented standard meas-
urements to describe the shape of the objects based on 
the model output. Specifically, we evaluated how well our 
model performed with images of different sizes. We sepa-
rated the images into two categories based on size. The 
first type measured 1920 x 1440 pixels, similar to those 
used to train the model. The second type was large tile 
images of 33,384 x 25,112 pixels stitched from 361 small 
1920 x 1440 images. The model first identified the loca-
tions of fibers and vessels in the image. Then, it assesses 
the morphological traits (e.g., length, width and area) of 
the detected objects using the method described in sub-
section 3.3. The total detected items in two large images 
are 1818 fibers and 62 vessels. Note that we implemented 
a post-processing step that removes fibers that are touch-
ing the borders in the image to avoid a bias of shorter fib-
ers due to partially segmented objects.

Figures 6 and 7 show box plots summarizing the meas-
urements of the detected fibers and vessels. The fibers’ 
length ranged from 254–364 µ m (average 310 µm), the 
width ranged from 21–25 µ m (average 23 µm), and the 
area ranged from 3 283-5 145 µ m2 (average 4 347 µ m2 ). 
Whereas for most vessels, the length ranged from 218–
275 µ m (average 247 µm), the width ranged from 44–55 
µ m (average 51 µm), and the area ranged from 6 536–9 

Fig. 4 The images depict YOLOv8 effectively detecting and segmenting images obtained with various staining protocols and color acquisition 
parameters. Panels in (a) depict only Safranin stained fibers with diverse backgrounds typically associated with imperfect white balance and (b) 
shows from left to right, Toluidine blue stained samples, unstained, unstained with properly adjusted white balance, and unstained acquired 
in grayscale mode. Note that in these representations, the overlayed mask of fibers and vessels is displayed as red and should not be confused 
with red staining
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494 µ m2 (average 8 142 µ m2 ). In the supplementary 
materials, scattered and histogram plots offer a detailed 
visualization of the distribution and relationship between 
the length, width, and area as depicted in Fig. S3.

Further, testing on different image sizes allowed us to 
check if the model performance stayed consistent regard-
less of size changes. The results show that the model’s 
effectiveness is independent of image dimensions. This 
scale-invariance makes the model more robust and can 
analyze images of varying sizes which are encountered in 
real applications. This property is crucial for real-world 
problems, as different image dimensions will inevitably 
be encountered in practice. To evaluate scale invariance 
and object detection and segmentation abilities, includ-
ing overlapped objects, 20 small images of size 1920 x 
1440 pixels were randomly selected, containing 115 fibers 
and 17 vessels. Measurements were compared to those 
from the large 33,384 x 25,112 pixel image.

We found the model extracted consistent average 
dimensions for fibers across these two image sizes. This 
includes an average length of 376 µ m, a width of 23 µ m, 
and an area of 10 689 µ m2 for the fibers. For fiber length, 
width, and area, the p-values were 0.954, 0.963, and 
0.945, respectively, indicating no statistically significant 
difference between small and large image measurements. 

However, we noted a variability when comparing the 
vessel measurements with a lower average length of 269 
microns and an average width of 57 microns. The vessel 
area averages were closer between image sizes at 17 755 µ 
m2 on small images and 13 533 µ m2 on large images. The 
p-values for vessel length, width, and area were 0.275, 
0.142, and 0.454, respectively. These results illustrate the 
scale invariance performance of the model across differ-
ent image dimensions. In the supplementary material, we 
also provide the analysis of 20 small-sized images (1920 x 
1440), see Fig. S4 and two mid-sized images consisting of 
99 tiles (8275 x 7250), see Fig. S5, using box plots, scatter 
plots, and histogram plots to assess the robustness of the 
model.

In conclusion, the model’s ability to accurately extract 
metrics for fibers and vessels including those that over-
lap, at various scales, underscores its proficiency in man-
aging overlapping objects and scale invariance. Such 
capabilities are crucial for the robust detection and seg-
mentation of high-resolution images, ensuring consistent 
performance regardless of image size. This model, there-
fore, becomes a valuable tool for research groups aiming 
to quantify metrics from extensive datasets.

Fig. 5 The detection of fibers and vessels encountered some challenges in densely packed regions, as shown in these examples where several 
fibers and vessels were not properly detected or segmented

Fig. 6 Boxplots depict fibers’ and vessels’ length, width, and area measurements from two large images of 33,384 x 25,112 pixels. The box plots 
show the 1st and 3rd quartiles (box limits), mean values (cross sign), and median values (solid line)
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Comparison of GA20ox 1A line and wildtype T89
To further evaluate our approach for research applica-
tions, we tested it on a new dataset consisting of 12 large 
images of samples taken from T89 wildtype trees and 
12 large images from the transgenic line overexpressing 
the GA20ox1 gene. This transgenic line was previously 
reported to show approximately 10 % increase in fiber 
length compared to the wildtype T89 [11]. In total, the 
model identified 5717 fibers in the 12 T89 images with 
an average length of 422.5 µ m and for the GA20 line it 
identified 6303 fibers with an average of 471.25 µ m, see 
Fig.  7. A student t-test indicated that the samples were 
highly significantly different, as evidenced by a p-value 
less than 0.0001. These results show an approximately 12 
% length increase for the GA20ox line compared to the 
wildtype, in line with previously reported results [11]. 
Overall, these results suggest that our new high-through-
put microscopy-based AI-assisted fiber characterization 
method works accurately to quantify differences between 
wild-type and mutant lines. As such it will be particularly 
useful in the future to study much larger mutant and nat-
ural variation tree collections.

GUI application and GitHub resources
We have developed a desktop application using Python’s 
Flask framework, designed to simplify the process of 
uploading and analyzing images with our automated 
algorithm. The application’s workflow is shown in Fig. S6. 
Users can select an image from a gallery or upload one 
via drag-and-drop. Note, that the image should be in a 
RGB format. Once an image is uploaded, the application 

predicts the presence of fibers and vessels. It also quan-
tifies each detected object, with results available in a 
downloadable data file. Note that segmented objects that 
touch the edge of the image and may thus not be fully 
segmentable, are automatically excluded from the analy-
sis at this postprocessing step. This file includes details 
like object type, length, width, and area. It also generates 
a folder containing the full set of segmented masks corre-
sponding to each segmented fiber and vessel. Such binary 
masks can then be further analysed to quantify other 
shape descriptors of interest using, for example, OpenCV 
[6, 46], and ImageJ/Fiji [1, 24, 37]. When installed on a 
local computer with an i9 10th Gen processor and 32GB 
of RAM, the application processes a 1024 x 1024 image in 
an average of 140 milliseconds.

Detailed instructions for installation of the developed 
code and instructions for implementation are found in 
the supporting information. Additionally, users can find 
instructions on how to retrain and test the model using 
Google colab in the GitHub resources [32]. The ’Train_
custom_data.ipynb’ file can be used to retrain the model; 
simply follow the instructions provided in the file. The 
’prediction_file.ipynb’ file is used to test the model on 
your custom dataset.

Conclusion
This paper introduces a deep learning solution using 
YOLOv8 to automatically analyze and quantify wood fib-
ers and vessels in challenging microscope images, offer-
ing high-throughput capabilities. To achieve this, we 
trained multiple YOLOv8 models on diverse wood image 

Fig. 7 Violin plots that depict fibers’ length measurements from large images of 33,384 x 25,112 pixels from T89 and GA20ox line. The envelope 
shows the distribution, the thick center lines represent the 1st and 3rd quartiles (black line limits), and median values (center yellow dots)
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datasets and evaluated their performance in detect-
ing and segmenting fibers and vessels. The most robust 
model was chosen. The model can consistently and reli-
ably extract essential cell metrics across different image 
scales, such as length, width, and area. The model’s con-
sistent metric extraction underscores its strong practical 
applicability. We also created a web application pipe-
line that is useful in practical situations. Users can then 
upload images for automatic cell counting and shape 
quantification. Thus, we conclude that this study intro-
duces an innovative high-throughput method for ana-
lyzing wood cells in densely populated 2D microscopy 
images, even when cells are partially obscured.
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13007- 024- 01244-w.
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