
Smith et al. Plant Methods          (2024) 20:129  
https://doi.org/10.1186/s13007-024-01236-w

METHODOLOGY
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as affected by variable type, modelling strategy 
and sampling location
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Abstract 

Background This study explores the use of Unmanned Aerial Vehicles (UAVs) for estimating wheat biomass, focus‑
ing on the impact of phenotyping and analytical protocols in the context of late‑stage variety selection programs. 
It emphasizes the importance of variable selection, model specificity, and sampling location within the experimen‑
tal plot in predicting biomass, aiming to refine UAV‑based estimation techniques for enhanced selection accuracy 
and throughput in variety testing programs.

Results The research uncovered that integrating geometric and spectral traits led to an increase in prediction accu‑
racy, whilst a recursive feature elimination (RFE) based variable selection workflowled to slight reductions in accuracy 
with the benefit of increased interpretability. Models, tailored to specific experiments were more accurate than those 
modelling all experiments together, while models trained for broad‑growth stages did not significantly increase 
accuracy. The comparison between a permanent and a precise region of interest (ROI) within the plot showed neg‑
ligible differences in biomass prediction accuracy, indicating the robustness of the approach across different sam‑
pling locations within the plot. Significant differences in the within‑season repeatability  (w2) of biomass predictions 
across different experiments highlighted the need for further investigation into the optimal timing of measurement 
for prediction.

Conclusions The study highlights the promising potential of UAV technology in biomass prediction for wheat 
at a small plot scale. It suggests that the accuracy of biomass predictions can be significantly improved through opti‑
mizing analytical and modelling protocols (i.e., variable selection, algorithm selection, stage‑specific model develop‑
ment). Future work should focus on exploring the applicability of these findings under a wider variety of conditions 
and from a more diverse set of genotypes.
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Introduction
Utilizing secondary physiological traits in grain crops to 
adapt to the environment is a crucial approach for secur-
ing food supply in an increasingly unpredictable world 
[52]. Biomass formed during the vegetative stage of crop 
development acts as a potential source of resources that 
can be translocated into harvestable yield [53]. Under 
non-limiting conditions, there is a positive relation-
ship between biomass accumulation and grain yield 
[46], whereas excessive biomass formation under water 
or nutrient limitation may lead to asynchrony between 
resource use and availability, with potential to impede 
final yield. In wheat, biomass, along with fraction of 
intercepted radiation, is a key variable in defining radia-
tion use efficiency (RUE), which relates to the ability of 
a plant to capture, and harness photosynthetic energy to 
produce the photosynthates necessary for growth [62]. 
The accurate monitoring of in-season biomass dynamics 
can thus provide a deeper understanding of the physi-
ological dynamics of crop performance, especially when 
examined through the lens of genetic, environmental, 
and management-based interactions. This can lead to 
more appropriate selection of varieties more suitable for 
the target population of environments (TPE) for which 
they are destined [8].

Physical assessment of biomass formation at a plot level 
is laborious, time consuming and limited by the need for 
destructive sampling in the field [17]. The logistical dif-
ficulties and time constraints associated with measuring 
large numbers of biomass samples, mean that they are 
typically taken at a few key stages of crop growth, and 
from a limited number of plots. These limitations make 
it difficult to evaluate the differences between geno-
types in large trials and where multiple environments are 
involved. As a result, approaches to estimating biomass 
using high throughput phenotyping (HTP) have become 
commonplace for a wide range of species, for example, 
in wheat [14, 16, 32], sorghum [36], maize [79] and soy-
bean [75]. A large body of research has been conducted 
to develop indirect methods for the prediction of bio-
mass using effective information extracted from RGB 
[39], multispectral [38], hyperspectral [75] and LIDAR 
sensors [13, 14]. Indirect methods for biomass prediction 
provide opportunity for repeatable measurements that 
are less prone to human error, and are scalable, making 
them more amenable to use in large-scale variety selec-
tion programs [64].

Biomass prediction has been approached by model-
ling univariate relationships with HTP features, or more 
complex multivariate approaches. For example, [4] used 
UAV-based crop height as input for biomass prediction 
in the simple linear model. Such a univariate regression 
model presents an explicit biological relationship but 

cannot take advantage of the complimentary nature of 
data obtained from multiple sources [18]. Data fusion has 
been shown in many studies to improve the prediction 
accuracy for crop traits [47, 50, 76]. However, a major 
consideration in such datasets is they are often high 
dimensional and include both redundant and irrelevant 
variables, which reduce model interpretability and per-
formance whilst increasing training time [26, 35]. Thus, 
effective variable selection is vital in optimizing model 
development to improve model performance for predict-
ing target crop traits (e.g., biomass) using high-dimen-
sional HTP datasets.

In addition to variable selection, several factors regard-
ing model selection have implications for biomass pre-
diction accuracy. First, the algorithm used to develop 
prediction models play a key role, and machine learning 
models have been demonstrated to improve the accu-
racy of predictions over traditional statistical methods 
for a wide range of regression-related tasks [63]. Second, 
a major challenge in predictive modelling surrounds 
the trade-off between model specificity and generaliz-
ability. While a model that is trained on as many data 
points as possible, using a wide variety of growth stages 
and geographic locations, might be widely generaliz-
able (scalability), the ability of such a model to identify 
important nuances in the data may be reduced. As such, 
multiple strategies exist for modelling experiment- level 
biomass: A single model could be trained across all avail-
able experiments and time-points with a focus on gen-
eralizability, or multiple models could be trained for 
individual circumstances (i.e., different growing stages, 
management practices, or years), with the aim of enhanc-
ing specificity. There is also the practical question of how 
to obtain high precision in the field, perhaps by estab-
lishing a ‘global’ prediction model, and enhancing it by a 
small set of biomass sampling in any given experiment, 
i.e., ‘real-time calibration’ by using a subset of the plots to 
build an enhanced model or check a ‘global’ model [29].

Another standing question in field-based phenotyping 
surrounds the region of interest (ROI) that image fea-
tures are analysed [61]. While there are a range of options 
for automating the creation of ROIs within HTP work-
flows [70], the impact of the location of the ROI within 
the plot has not received sufficient attention. While bio-
mass itself is only typically taken from a small area within 
a plot, provided the plot is homogeneous, it is often 
assumed that the ROI should be representative enough to 
correlate with the location where the sample was taken 
[28, 59]. This approach has the advantage of allowing 
repeated measures over time, which may not be a major 
issue where within-plot variability is low, however, this 
may become an issue that reduces model accuracy where 
plot variability is high, for example [59]. Thus, how well a 
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permanent ROI represents ground-truth measurements, 
and whether other approaches, such as sampling UAV 
indices directly from where the trait was measured would 
be more appropriate, remains an important factor to con-
sider in HTP workflows.

In the context of variety selection, the goal of any phe-
notypic assessment is to determine genotypic differences 
to help understand the physiological basis of perfor-
mance (i.e., yield) [17, 52]. While in the earlier stages of a 
breeding program, genotypic differences in performance 
can be wide, given the diversity in early populations, at 
later stages, the variation can be reduced as selection may 
favour similar physiological adatptation pathways. While 
many studies have explored biomass prediction where 
variability is high, either at earlier stages of a breed-
ing program [71], or where experimental treatments 
have been imposed to increase variability [4], we are not 
aware of studies that have attempted to estimate biomass 
between commercial varieties where variability is lower.

Given the spatial variability inherent in the field, there 
are a range of factors that can confound genetic effects, 
such as soils, moisture, shade, slope, and management 
[27]. To account for this variability, experimental design 
[9] and post-hoc analyses using linear mixed models is 
often a necessary step [56]. Based on this process, the 
genetic variance  (VG) and residual variance  (VR) of a 
trait can be estimated and used to predict within-sea-
son repeatability  (w2). While many studies have used  w2 
to evaluate the efficacy of a prediction model [66], how 
these factors vary with regards to a model’s prediction 
accuracy has to our knowledge, not been explored [60].

In light of the issues surrounding variable selection, 
ROI determination and the estimation of  w2 for HTP 
derived predictions, in this paper we explored the sensi-
tivity of biomass prediction models in wheat to a range 
of factors, by (a) exploring the effects of variable selec-
tion and various popular analytical algorithms to build 
prediction models (b) investigating the impact of within-
plot position used to derive predictive variables; (c) mak-
ing comparisons between a generic model and stage/
experiment specific models to better understand the 
trade-offs between generalisability and specificity, and 
(d) Computed  w2,  VG and  VR for each growth stage and 
experiment to better understand the optimal timing of 
measurements. 

Methods
Field experiment
Wheat experiments were grown at Gatton Research Sta-
tion, Queensland (27.56°S, 152.33°E) in 2020─2022 and 
at Boorowa Research Station, NSW (34.47°S, 148.69°E) 
in 2020. These sites contrast in the timing of rainfall and 
their temperature regimes throughout the season. Gatton 

receives most rainfall in the summer months leading up 
to the wheat growing season, and available crop water 
is normally dependent upon water stored in the soil 
profile during a summer fallow period. Alternatively, 
Boorowa typically receives rainfall during the grow-
ing season (Fig. 1). Gatton experiences higher in-season 
maximum and minimum temperatures than Boorowa, 
resulting in more rapid phenological development and 
a shorter growing season spanning May to October, 
whereas Boorowa, with its lower latitudes, experiences 
cooler mean temperatures that result in a longer grow-
ing season. While Gatton has a heavy, dar k Vertosol, 
Boorowa has a sandy loam with a sandy clay-loam subsoil 
described as a chromosol [42].

Table 1 describes the field experiments that were used 
for this study. At Gatton research station, three experi-
ments (i.e., Early sowing date with high nitrogen, early 
sowing date with standard nitrogen, and a standard sow-
ing date with standard nitrogen) were planted in 2020 
and 2021, while a single experiment (i.e., late sown stand-
ard nitrogen) was planted in 2022. At Boorowa research 
station, one experiment (i.e., standard sowing standard 
nitrogen) was planted in 2020. Whereas Boorowa was 
grown under rainfed conditions, the Gatton site received 
supplementary irrigation to avoid the effects of drought 
stress. For each experiment, a variety trial (NVT) was 
planted, containing pre-commercial and commercial 
spring wheat varieties deemed suitable for the local envi-
ronment by the GRDC NVT program (https:// nvt. grdc. 
com. au). Compared to the original progeny of parental 
crosses and the several stages of selection that have been 
made by commercial breeders, these genotypes might be 
termed ‘elite’ given their history of selection.

The NVTs were designed with a row column configu-
ration with 3 replicates using the R package DiGGer [9]. 
Additionally, a biomass calibration trial (BioCal) accom-
panied each NVT. In 2020 and 2021 for Gatton (E1, E2, 
E3, E5, E6 and E7), BioCal trials consisted of 6 geno-
types × 3 densities (75, 150 and 225 plants per metre), 
in addition to a ‘check’ genotype planted again at 150 
plants per meter, and 187 and 112 plants per meter. This 
resulted in a total of 21 plots for the BioCal trials. In 2022 
(E10), the Gatton BioCal trial consisted of 8 genotypes × 3 
densities (75, 150 and 300 plants per meter), with 7 out of 
8 genotypes replicated once, and a single ‘check’ variety 
replicated twice (resulting in a total of 27 plots).

Biophysical measurements
For each experiment, dry weight of aboveground biomass 
(DWAGB) was measured by cutting plants at ground level 
within a quadrat area (Quadarea) of a known size (Since 
row spacing and number varied, the quadrat area from 
which the sample was made varied for each experiment. 

https://nvt.grdc.com.au
https://nvt.grdc.com.au
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The fresh weight of each sample was measured (FWquad) 
and the fresh weight of a subsample consisting of approx-
imately 20 stems was taken (FWsub). This sample was 

oven dried at 750C until reaching a constant weight 
 (DWsub). DWAGB was thus calculated as:

Fig. 1 Minimum temperature (Min Temp) and maximum temperature (Max Temp), rainfall, and irrigation for each location and year combination. 
Dashed vertical lines represent planting dates and solid vertical lines represent harvest dates for individual experiments for a particular site and year 
combination. E1‑E3 represent Gatton experiments in 2020, E4 represents Boorowa in 2020, E5‑E7 represent Gatton experiments in 2021, E10 
represents Gatton experiment in 2022

Table 1 Agronomic characteristics of the 8 trials used in this study

a Applied at time of sowing – Urea N equivalent
b Cumulative in-season rainfall and irrigation

Experiment Location Year Sowing date Harvest date N fertilization (kg/ha)a Total water 
supply (mm)b

NVT 
genotype 
number

E1 Gatton 2020 5 May (early) 19 Oct 300 (high) 319 30

E2 Gatton 2020 5 May (early) 19 Oct 100 (standard) 319 30

E3 Gatton 2020 12 June (standard) 23 Oct 300 (high) 271 18

E4 Boorowa 2020 18 May (standard) 14 Jan 100 (standard) 596 39

E5 Gatton 2021 4 May (early) 22 Oct 300 (high) 343 36

E6 Gatton 2021 4 May (early) 22 Oct 100 (standard) 343 36

E7 Gatton 2021 2 June (standard) 01 Nov 300 (high) 274 30

E10 Gatton 2022 21 June (late) 06 Dec 100 (standard) 378 36
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At the time of each cut, biomass was measured from 
every plot within the BioCal trial, and additional bio-
mass cuts were taken from a single replication of the 
NVT. In Gatton, growth stage was measured from only 
BioCal plots in 2020, and both BioCal and NVT plots 
in 2021 and 2022, using the Zadok’s growth scale on a 
weekly basis [77]. In Boorowa, Zadok’s growth scale was 
determined on two separate dates. To assign a particu-
lar DWAGB sample with a growth stage, the trial mean 
Zadok’s stage was calculated on each date with a Zadok’s 
score. Then, a generalized additive model (GAM) was 
built with using the following notation.

where Y  represents the dependent Variable (Zadok’s 
stage), β0 represents the intercept term, and 
f (TTcumulative) represents the smoothing function of the 
predictor variable Cumulative thermal time ( TTcumulative ) 
using a spline made up of third-degree polynomial seg-
ments joined smoothly using 10 knots.  TTcumulative and 
was calculated as per the method outlined by [80]. Using 
the relationship between  TTcumulative and predicted 
Zadok’s stage (illustrated in Fig.  2), growth stage was 
determined to be ‘vegetative’ where Zadok’s was between 
11 and 49 (1-leaf stage up to the end of booting), ‘flower-
ing’ was determined where Zadok’s values were between 
50 and 69 (head emergence to the end of anthesis), and 
‘grain-fill’ where Zadok’s values fell between 70 and 99 
(milk stage to the end of ripening). Solving for the equa-
tion of the GAM model resulted in categorizing the 
crop stages as follows: Vegetative stage when  TTcumulative 
was less than or equal to 1189  °C day, Flowering stage 
when  TTcumulative was greater than 1189  °C day but less 
than or equal to 1523  °C day, and Grain-Fill stage when 
 TTcumulative exceeded 1523 °C day.

Image collection and processing
Unmanned Aerial Vehicle (UAV) flights were performed 
as close in time as logistically possible to the biomass 
cuts. In E4 (Boorowa), the mean difference between 
biomass cuts and flight dates was 4.75  days due to the 
remoteness of the site, whereas the mean difference for 
Gatton experiments was 1.15  days, with the final cut 
during grain-fill for E3 an outlier with 7 days difference 
(see Fig. S1 for overview of flight dates and biomass cut 
dates). Fixed ground control points were placed within 
each experiment and their GPS coordinates were meas-
ured using Propeller Aeropoints (Propeller, Australia). All 
flights were performed within 2  h of solar noon, under 

(1)DWAGB =

FWquad∗

(

DWsub
FWsub

)

Quadarea

(2)Y = β0 + f (TTcumulative)+ ∈

full sunlight and with a wind speed of less than 10 km/
hr. (see Table  2 for an overview of flight parameters). 
In Gatton 2021 and 2022, a DJI M300 was used, which 
allows for the use of both an RGB and Multispectral 
sensor simultaneously in the same flight. In Gatton and 
Boorowa in 2020, two separate flights had to be made, 
given the fact that the RGB and multispectral sensors 
were carried on separate UAVs. For RGB flights, shut-
ter speeds of ≤ 1/1600th of a second were used to reduce 
motion blur, and a front and side overlap of 80% was 
used for all flights to ensure sufficient matching of pix-
els between adjacent images. All multispectral imagery 
was radiometrically calibrated using a nadir image of a 
MicaSense calibration panel taken before and after each 
flight. A total of 36 RGB and 36 Multispectral datasets 
were processed for this study.

Raw imagery from each mission was processed using 
Agisoft Metashape (Agisoft, St Petersburg, Russia) which 
uses a structure from motion (SfM) algorithm to pro-
duce a 3d reconstruction of a scene from a set of images. 
First, multispectral imagery was calibrated through 
Metashape’s ‘calibrate reflectance’ option, which involves 
interpolation of the relationship between the known 
reflectance values of calibration panels and the times-
tamp of the before and after calibration panel images. 
This allows for in-flight reflectance values to be cor-
rected based on estimated reflectance at a given time-
point. Subsequently, Metashape was used to produce 
point clouds, which allow georectification and subse-
quent orthomosaic and digital elevation model (DEM) 
generation. A high degree of accuracy is enabled through 
SfM processing due to the presence of GCPs in the field. 
The average marker error across RGB orthomosaics was 
1.62 cm and for MS orthomosaics was 1.37 cm. For each 
biomass cut taken within a plot, two ROIs were created 
for analysis: an ROI directly above the area where the 
biomass cut was taken  (ROIprecise), and an ROI in a sec-
tion of the plot that was not to be disturbed at any time 
 (ROIpermanent) throughout the experiment until final har-
vest (see Fig.  3 for example trial design and illustration 
of the different ROIs used for the study). Each  ROIprecise 
was created by manually locating the location of bio-
mass cut using the closest orthomosaic generated after 
the biomass sampling. This process was completed using 
ArcMap.

Variable extraction from proximal sensing
For both ROI types  (ROIprecise and  ROIpermanent), spec-
tral traits and geometric traits were calculated using a 
Python pipeline described by [12]. The spectral traits 
included 66 (33 × 2) variables, consisting of the median 
value for 33 vegetation indexes (Spectral traits) calcu-
lated from the entire or masked area within the ROI of 
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Fig. 2 a Relationship between trial mean Zadok’s value and Cumulative thermal time (°C day) for measurements taken in each experiment (see 
coloured points). The solid line represents the line of best fit for a generalized additive model (GAM) and b the relationship between Cumulative 
thermal time (°C day) and aboveground biomass  (DWAGB) for each experiment in the study, with point colours representing the Growth‑stage 
as classified

Table 2 Overview of flight heights, multispectral and RGB sensor types and ground sample distances (GSD)

Experiment Flight height 
(m)

Multispectral sensor Multispectral GSD 
(cm)

RGB sensor RGB GSD (cm)

E1, E2, E3 25 DJI P4M 1.33 DJI P4P 0.69

E4 25 MicaSense RedEdge MX 1.04 DJI P4P 0.69

E5, E6, E7, E10 20 MicaSense Altum 0.86 DJI Zenmuse P1 35 mm 0.25
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the multispectral orthomosaic images. For the formulas 
of these Spectral traits refer to Table S4. The masked area 
represents the fraction of green plant matter within the 
ROI, which was distinguished based on a specific thresh-
old value  (OSAVIthreshold) of optimized soil-adjusted veg-
etation index (OSAVI) (i.e., OSAVI >  OSAVIthreshold for 
green plant matter, while OSAVI <  OSAVIthreshold for soil 
background). The threshold value was calculated by using 
Otsu’s method [49] and OSAVI was selected for this 
purpose due to its demonstrated ability to distinguish 
between green plant matter and soil across phenological 
stages [43]. For example cases of the thresholding results 
images please refer to figure Fig. S2.

For each ROI type, the geometric traits (9) included 4 
height-related variables, 3 area-related variables, 1 vol-
ume-related variable, and 1 coverage-related variables 
(refer to Table  S5 for details). The height-related vari-
ables consisted of the 50th, 75th, 95th and 98th percen-
tile values as well as standard deviation of canopy height 
across the entire ROI. The canopy height was calculated 
by subtracting pixel values of the crop surface model 
(CSM) by corresponding pixel values of digital terrain 
models (DTM). A date specific CSM was derived from 
the 3d point cloud created using RGB images; while the 
DTM was produced from a fight made at the begin-
ning of the season (before emergence). The area-related 
variables consisted of the area within the ROI where the 
height values were below the 25th, 50th, 75th percen-
tiles. The volume-related variable indicated the sum of 
the pixel heights within a given ROI multiplied by the 

ground sample distance, divided by the area of the ROI. 
The coverage-related variable indicated the proportion 
of masked area of the total area within ROI, where the 
masked area was distinguished based on the Otsu thresh-
old values of OSAVI (see Table S5 and Fig. S2 for further 
details).

Feature selection and biomass prediction models
The following section was performed using the Caret 
Package [34] in R Studio 3.0, and the R programming 
language version 4.2.3 and an overview of the workflow 
used in this study can be seen in Fig. 4. The dataset was 
spilt into two parts: 80% as the training set and 20% as 
an independent test set. This was performed using strati-
fied sampling so that each experiment was represented 
equally within both the training and test sets. The differ-
ent combinations of broad growth-stages (i.e., vegetative, 
flowering, grain-filling, whole season) and predictive var-
iables (i.e., spectral traits, geometric traits, spectral + geo-
metric traits) resulted in 12 different combinations of 
broad growth-stages and features. Prior to the recursive 
feature selection using PLSR outlined below, for each of 
these combinations of features un-supervised filtering of 
variables based on pairwise correlations was performed 
to remove highly correlated variables using a correlation 
coefficient of 0.95 This final number of input parameters 
for each dataset can be seen in Table S1.

Supervised feature selection was performed on 
each of the 12 Broad Growth-stage x variable subset 
groups by recursive feature elimination using a nested 

Fig. 3 a Locations of Gatton and Boorowa sites in relation to the eastern and southern winter cropping region of Australia, b Gatton 2022 trial (E10), 
which includes a Biomass Calibration and NVT and c an example of paired plots with both an  ROIpermanent which was repeatedly measured for each 
biomass cut across the season and five  ROIprecise which were each analysed once for their respective biomass cuts
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cross-validation approach, as per [1]. PLSR was used as 
the base-learner for this purpose with the number of com-
ponents in the PLSR model tuned using tenfold cross-
validation, and a grid containing 1:the number of features 
available for that dataset. Each dataset was resampled 30 
times into training and test sets with an 80:20 split. For 
each resample, a PLSR model was initially trained using all 
features, then, from the set of original features, those with 
the lowest importance values were removed iteratively 

until only one feature remained in the model. Feature 
importance was calculated using the varImp function in 
caret, which is computed according to the weighted sums 
of absolute coefficients for each input variable [34]. After 
each iteration, feature importance was re-calculated, and 
performance was assessed on the corresponding valida-
tion set. The results of the 30 resamples were then aggre-
gated to obtain a performance profile over the feature 
subset sizes and robust feature importance rankings. The 

Fig. 4 Overall workflow for this study. PLSR Partial least squares regression, GCP Ground Control Point, DEM Digital elevation model, ROI Region 
of Interest, XGBoost Extreme Gradient Boosting
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optimal subset size was chosen by selecting the simplest 
model (with the lowest number of components) whose 
RMSE value was within 1 standard error of the absolute 
best model with the lowest RMSE value [5]. This process 
resulted in 12 sets of features corresponding with the dif-
ferent Broad Growth-stage x variable subsets.The variables 
selected using this approach served as predictive variables 
for the models explored below.

[34] PLSR, Random Forest, Support Vector Machine 
(SVM) and Extreme Gradient Boosting (XGBoost) mod-
els were trained for each variable and growth-stage com-
bination using the selected variables based on the RFE 
feature selection outlined above For an overview of these 
models refer to the citations provided in Table 3. Each of 
these models was trained on the training set using a tuning 
grid of model specific hyperparameters, and K-fold cross 
validation with 10 folds and 10 repeats (see Table 3 for an 
overview of model-specific hyperparameters). The average 
of each individual fold x repeat performance using k-fold 
validation was calculated as the mean performance of a 
specific model to reduce the prediction bias caused from 
random sampling in this small dataset. To decide upon 
optimal model performance, Root Mean Squared Error 
(RMSE) was used, while the coefficient of determination 
 (R2), and Relative Root Mean Squared Error (rRMSE) was 
calculated using the R Package Metrica [10].

(3)R2
=

∑

(Oi − Pi)
2

∑
(

Oi −O
)2

(4)RMSE =

√

∑

(Pi − Oi)
2

where Oi is the observed value for the ith observation, Pi 
is the predicted value for the ith observation, n is the total 
number of observations, and O¯ is the mean value of all 
observations.

Within‑season repeatability
The R Package SpATS was used to fit a spatial model for 
the predictions of each prediction model [57]. SpATS 
uses restricted log-likelihood (REML) to estimate vari-
ance components in the model, and accounts for spatial 
trends using 2-dimensional p-splines with anisotropic 
penalties, implemented through the Separation of Ani-
sotropic Penalties (SAP) algorithm [56]. This approach 
incorporates experimental rows and columns to model 
the spatial or environmental effect as a two-dimensional 
penalized tensor-product of marginal B-Spline basis 
functions.

Genotypic variance ( σG ) in SpATS is estimated fol-
lowing [48], where genetic effects are treated as random 
effects. Within season repeatability is calculated using 
effective dimensions, defined as the trace of the corre-
sponding hat matrix, reflecting the contribution of each 
model component to the phenotypic variation. This 
approach uses the following equation:

where EDg is the effective dimension for the genetic com-
ponent, mg is the total number of observations, and ζg  is 
the shrinkage factor.

(5)rRMSE =

√

1
n

∑

(Pi − Oi)
2

O

(6)w2
=

EDg

mg − ζ_g

Table 3 Overview of hyperparameters used in cross‑validation for each model

a Nvars the number of input variables for that model

Model Tuning parameter Min value Max value R package Citation

PLSR Ncomp 1 Nvarsa PLS Wehrens and Mevik [45]

Random Forest Mtry 1 Nvarsa Ranger Wright and Ziegler [74]

Min. Node Size 5

Split Rule Variance

SVM Degree 1 2 svmPoly Kuhn [34]

C 100 1000

Scale 0.0001 0.01

XGBoost Nrounds 20 40 xgbTree Chen et al. [7]

Max Depth 9 10

Eta 0.1 0.3

Gamma 0.7 0.9

Colsample by tree 0.7 1
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Results
Predictive variable selection
The correlation coefficients of the 9 geometric variables 
as well as 66 median values of spectral variables with 
 DWAGB across all growth stages are illustrated in Fig. 5. 
These values were calculated on the entire dataset. For 
geometric traits, the weakest correlation was found 
for OSAVI canopy coverage. The different percentiles 
of height each had a positive correlation with  DWAGB, 
whereas the area below a particular percentile of height 
had a negative correlation with  DWAGB. For spectral 
traits, the median value of each trait provided the strong-
est correlation with  DWAGB, so the sum and mean were 
disregarded for the analysis. Since masked and unmasked 
spectral traits provide information that relates to differ-
ent aspects of the crop canopy and surrounding soil, we 
decided to use both the masked and unmasked median 
values in the prediction models. Overall, geometric vari-
ables displayed the strongest correlation with  DWAGB, 
with 50th, 75th,98th percentile heights each having the 
greatest correlations (r 0.87–0.88). Meanwhile, spectral 
traits had a markedly lower correlation with  DWAGB, 

with the strongest variable, GSAVI having an r value of 
0.43.

From the pairwise correlations seen in Fig. S3 (which 
utilized all geometric variables (9) and spectral variables 
(66)), a high degree of co-linearity was apparent amongst 
spectral traits and certain geometric traits across all 
growth stages (see Fig. S3). s.. For the four models where 
geometric and spectral traits were combined, the optimal 
set of variables always included both spectral traits and 
geometric traits, however overall, geometric traits were 
consistently ranked as being the most important, apart 
from at grain-fill, where red-edge reflectance was ranked 
as the most important variable (see Table  S2). Canopy 
Volume, ranked as most important geometric trait for all 
growth-stages combined, vegetative and flowering stages, 
while at grain-fill, canopy coverage (%) was the most 
important variable. For spectral traits, rankings varied 
more considerably, and the overall number of variables 
chosen was also greater than for geometric variables.

The results of the RFE nested cross validation per-
formance is illustrated in Fig.  6. The optimal RMSE of 
the underlying PLSR models varied depending on the 

Fig. 5 Correlation coefficients (r) of a the 9 Geometric variables with dry biomass and b both the masked and unmasked median values of spectral 
traits
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variable x broad growth-stage grouping investigated. A 
similar pattern for each of the broad growth-stage group-
ings was found, where spectral models had the highest 
RMSE, geometric models had slightly lower RMSE and 
combined geometric and spectral models had the lowest 
RMSE. When investigating all maturities combined, the 
optimal RMSE ranged from 202.8 g/m2 using 13 variables 
when using spectral traits alone, to 208.27  g/m2 when 
using 5 geometric variables alone, and was most accurate 
when using both geometric and spectral traits combined 
(147.77 g/m2 using 16 variables). For vegetative models, 
RMSE ranged from 64.4 to 81.24 g/m2 when using com-
bined and geometric traits respectively, with the number 
of chosen variables ranging from 4 (geometric model) to 
14 (combined model). For flowering time models, RMSE 
ranged from 112.89 to 149.44  g/m2 when using Com-
bined and Spectral traits respectively, with the number 
of chosen variables ranging from 1 (geometric model) 
to 3 (combined model). This stage resulted in the small-
est number of chosen variables. For grain-fill models, 
RMSE ranged from 165.43 to 182.02  g/m2 when using 

Combined and Spectral traits respectively, with the num-
ber of chosen variables ranging from 2 (geometric model) 
to 14 (spectral model).

Comparison of ML models for biomass prediction
Depending upon the broad growth-stage at which mod-
els were trained, models varied in their performance 
on the independent test set (see Fig.  7). In general, for 
any specific growth stage, the best model was always 
obtained using a combination of geometric and spec-
tral variables. For the entire season, the XGBoost model 
exhibited the highest accuracy, with an RMSE of 31.2 g/
m2 on the test set and 29.47 g/m2 on the training set. The 
RF model followed with an RMSE of 46.39 g/m2 on the 
test set and 46.6 g/m2 on the training set. In contrast, the 
PLSR_Refined model was the least accurate, with RMSE 
values of 164.45  g/m2 and 159.36  g/m2 for the test and 
train sets, respectively.

At the vegetative stage, the XGBoost model again 
demonstrated superior performance with RMSE val-
ues of 16.14 g/m2 (test) and 14.05 g/m2 (train). The RF 

Fig. 6 Results of the Feature selection method using recursive feature elimination (RFE), on the x axis is the subset of features, and the y axis 
is the RMSE (g/m2) achieved using nested cross validation. Error bars represent the standard deviation of the RMSE, while points represent the mean 
RMSE. The Vertical dashed line represents the optimal subset, chosen using the 1.se rule, with the final number of variables indicated in the label
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model was slightly less accurate, with RMSEs of 22.11 g/
m2 (test) and 19.45  g/m2 (train). The PLSR_Refined 
model had higher RMSE values of 68.76 g/m2 (test) and 
64.51 g/m2 (train), indicating lower performance. Dur-
ing the flowering stage, the RF model showed robust 
accuracy, achieving RMSEs of 54.69  g/m2 on the test 
set and 57.84  g/m2 on the training set. XGBoost was 
comparable, with RMSE values of 67.74 g/m2 (test) and 
72.11 g/m2 (train). Conversely, the PLSR_Refined mod-
el’s performance was poorer, with RMSEs of 104.9  g/
m2 (test) and 111.33 g/m2 (train). In the grain-fill stage, 
the XGBoost model maintained high accuracy, with 
RMSEs of 56.28 g/m2 (test) and 51.47 g/m2 (train). The 
RF model followed, with RMSEs of 81.31  g/m2 (test) 

and 70.94 g/m2 (train). The PLSR_Refined model, how-
ever, lagged with RMSE values of 180.22 g/m2 (test) and 
171.02 g/m2 (train).

When comparing the use of spectral traits, geometric 
traits, and combined spectral and geometric traits, sev-
eral general trends emerged. Models using combined 
spectral and geometric traits consistently outperformed 
those using only spectral or geometric traits across all 
stages. For instance, the combined trait models often 
achieved lower RMSE values, indicating higher predic-
tive accuracy. Specifically, at the vegetative stage, the RF 
model with combined traits had an RMSE of 22.11 g/m2, 
compared to 48.99 g/m2 for geometric traits and 25.79 g/
m2 for spectral traits.

Fig. 7 Performance metrics for the prediction of  DWAGB (g/m2) on the training and test set using the permanent ROI. Each horizontal facet 
represents the three different metrics used to evaluate model performance:  R2, RMSE and rRMSE, while vertical facets represent the growth‑stage 
stage at which the models were trained (vegetative, flowering, grain‑fill, all (all maturities combined). The X axis includes the three different trait 
combinations, Geometric + Spectral (Combined), Geometric and Vi. The colour of each bar represents the respective model used to predict DWAGB, 
and the label represents the number of samples for a particular Growth‑stage group
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Spectral traits alone generally provided better perfor-
mance than geometric traits alone but were still infe-
rior to the combined approach. For example, during the 
flowering stage, the RF model using spectral traits had 
an RMSE of 54.69 g/m2, while the geometric traits model 
had an RMSE of 63.04  g/m2. Similarly, at the grain-fill 
stage, spectral traits models showed an RMSE of 85.77 g/
m2, compared to 110.72 g/m2 for geometric traits.

Permanent ROI vs. Precise ROI
While XGBoost models provided the greatest accuracy 
when using a combination of geometric and spectral 

traits, we used RF models for the following section, given 
their similar performance, but faster training times in 
comparison to XGBoost. In addition to the existing RF 
models, we trained 12 additional models (on the same 
combination of 4 maturities and 3 trait combination) 
using the traits measured from the precise location where 
biomass cuts were taken  (ROIprecise). Model performance 
when comparing the ROIs can be seen in Fig.  8, which 
illustrates that overall, the differences in RMSE between 
 ROIprecise and  ROIpermanent were negligible, although we 
do see an increase in overall error on  ROIprecise when 
examining the test set performance. For example, when 

Fig. 8 Observed versus predicted DWAGB on the permanent ROI, when looking at a Cross validation training set and b the independent test 
set and for the precise ROI when looking at c Cross‑validation performance and d Test set performance, for random forest (RF) models trained 
on combinations of variable types (geometric, spectral, geometric + spectral (Combined)) and different growth‑stage combinations (vegetative, 
flowering, grain‑fill, all maturities combined)
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using training data from entire season with combined 
variables, the  ROIpermanent model had slightly higher 
accuracy (RMSE 46.6 g/m2) than the  ROIpermanent model 
(RMSE 56.12  g/m2. The largest differences between the 
ROI types were found when using only geometric traits 
across the entire season where  ROIprecise had a RMSE 
20.78 g/m2 higher than  ROIpermanent. Similarly, across the 
entire season using spectral traits only, the difference 
in RMSE was 21.87  g/m2, with  ROIpermanent having the 
higher accuracy.

Exploring model generalizability versus specificity
In the exploration of model generalizability, we com-
pared the performance of models trained from data 
varying in growing stages or experiments (all models 
using RF with combined geometric and spectral vari-
ables). Figure 9 illustrates the prediction accuracy at spe-
cific growth stages when using a general model trained 
on data across all stages (stage-general model) and spe-
cific models trained only using data from a specific stage 
(stage-specific model). The analysis indicates that the 
optimal model type varies depending on the growth 
stage. At the vegetative stage, the stage-specific model 
outperformed the stage-general model with an RMSE 
of 22.111 g/m2 compared to 25.924 g/m2. At the flower-
ing stage, the stage-general model had a slightly lower 
RMSE of 53.341  g/m2 compared to 58.782  g/m2 for the 
stage-specific model. Similarly, at the grain-fill stage, 
the stage-general model achieved an RMSE of 76.207 g/
m2, whereas the stage-specific model had an RMSE of 
81.31 g/m2. These results suggest that while stage-specific 

models can provide more accurate predictions at certain 
stages, the stage-general model may offer better overall 
performance at other stages, highlighting the need for 
tailored modelling approaches depending on the specific 
growth stage being analysed.

In addition to growth stages, we trained different mod-
els using data based on experiments, i.e., a general model 
(experiment-general model) trained on data from all 
experiments, and individual models (experiment-specific 
models) trained only on data from specific experiments. 
The observed versus predicted biomass results are illus-
trated in Fig.  10. Among the experiments, E1, E3, E4, 
E7, and E10 showed significant improvements in accu-
racy when using experiment-specific models over the 
experiment-general model. For example, in E4, the RMSE 
decreased from 56.59  g/m2 in the experiment-general 
model to 31.86  g/m2 in the experiment-specific model, 
showing the greatest benefit from having a specific model 
with a decrease in RMSE of 24.73  g/m2. In E2 and E5, 
the experiment-general model outperformed the experi-
ment-specific models, with RMSEs decreasing from 51.2 
to 42.46 g/m2 in E2 and remaining nearly the same in E5 
(44.13 g/m2 vs. 44.04 g/m2). For experiments E6 and E10, 
the differences in RMSE were smaller but still indicated 
improved performance with experiment-specific models. 
These results suggest that while the experiment-general 
model can perform well, experiment-specific models 
often provide better accuracy, likely due to the ability to 
capture subtle differences in experimental conditions.

We also examined the prediction accuracy of the RF 
model for each individual experiment x  DWAGB cut. 

Fig. 9 A comparison of biomass prediction on the test set at different growth stages using RF regression using a a single model trained across all 
maturities, and b individual models trained only on biomass samples taken from that growth stage
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The model trained on combined geometric + spectral 
variables was able to predict  DWAGB with relatively 
high accuracy across growth stages and experiments. 
A general increase in RMSE can be seen as cut num-
bers and crop-growth-stage increased (i.e. RMSE at 
cut 1 ranged from 4.4 to 9.16  g/m2 and increased to 
47.94–89.07 g/m2 by cut 5. At the same time, the rela-
tive error remained stable, and saw a decrease as cut 
numbers increased (i.e. rRMSE ranged from 6 to 29% 
at cut 1, while at cut 5 it ranged from 3 to 6%).

Within season repeatability biomass prediction models
A significant difference in  w2 was identified across dif-
ferent experiments (p < 0.05), with no apparent rela-
tionship between  w2 and growth-stage. For  VG, no 
relationship with the experiment was found, but a sig-
nificant relationship with growth-stage was observed 
(p < 0.01). In the context of  VR, an interaction effect 
was detected between growth-stage and experiment 
(p < 0.001). Specifically, experiments 4 and 7 showed 
higher  VR for predicted biomass, while Experiments 3, 
5, 6, and 7 reported increases in  VR during the grain-
fill stage. Conversely, E4 and E7 exhibited lower  VR 
during the vegetative stage. The temporal dynam-
ics of  w2 based on the predictions from the RF model 
trained on data points from all maturities and geomet-
ric + spectral traits are illustrated in Fig. 11.

Discussion
The significant increase in interest related to UAV based 
high throughput phenotyping is partly a result of the 
need for improved throughput and selection accuracy 
in breeding programs and NVTs [2, 6]. While the accu-
rate prediction of biomass using HTP platforms has 
been demonstrated for a range of agricultural crops [17], 
several practical details with potential to optimize bio-
mass prediction results have yet to be discussed. HTP 
platforms generate large datasets and given the vast 
number of possible traits that can be calculated using 
multispectral and RGB sensors [2], the need for biologi-
cal interpretability in predictive models is an essential 
task. Depending on the crop stage at which prediction is 
made, the ranking of various traits will vary, influencing 
the type of sensor that is used, and the traits that are nec-
essary to be used.

Variable importance differs based on growth‑stage 
and sensor type
The importance of using a combination of spectral and 
Geometric traits in predicting biomass at various growth 
stages was shown in this study by both the variable selec-
tion strategy, and the prediction results from different 
ML models. Predictions had lower accuracy when mod-
els used only geometric variables or spectral traits com-
pared to when they were combined. For models across all 
maturities, geometric traits ranked as having the greatest 

Fig. 10 Observed versus predicted  DWAGB using a Random Forest (RF) model trained on a combination of Spectral traits and Geometric vars, 
trained on a ground truth data from all experiments, (‘experiment‑general model’ shown in blue) and b ground truth data for a particular 
experiment (‘experiment‑specific model’ shown in red)
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importance after recursive feature elimination, how-
ever, spectral traits clearly added additional information 
that improved overall performance. These results reflect 
recent studies that combine canopy height with spectral 
traits to predict  DWAGB. Canopy volume was consist-
ently the first trait selected, however, more complex traits 
related to the area below a given percentile of height, the 
standard deviation of height and canopy coverage were 
also chosen. Canopy Volume has been identified in other 
literature [41] as an important trait for biomass predic-
tion. Further studies that compare canopy surface pro-
vided by RGB cameras, to LIDAR derived volume could 
help to identify differences in actual biovolume to further 
improve model accuarcy [72].

When investigating models that used a combination 
of geometric and spectral traits, changes in the chosen 
variables may reflect the dynamic relationship between 
geometric and absorptive/ reflective properties of the 
canopy and the physiological state of the crop. At vege-
tative stage, vegetation indices related to canopy green-
ness (i.e. clg, ng) were highly favoured by the variable 
selection method. Corti et  al. [11] found that spectral 
traits related to canopy greenness had the strongest 
correlations with  DWAGB across multiple species. Can-
opy Volume the most important variable at this stage. 
In contrast, at flowering and grain-fill stages, vegetative 
indices contributed a smaller proportion to the final 

models. However, for the spectral indices that were 
chosen, Red Edge reflectance and traits related to can-
opy greenness (i.e., NG & masked VARIGREEN) were 
consistently chosen, which may be due to the relation-
ship between the Red Edge band and the rate and onset 
of canopy senescence (and consequent photosynthetic 
function) between different varieties [1].

This study highlighted that combining geometric and 
spectral traits consistently led to improvements in pre-
diction accuracy. This supports similar studies which 
found that sensor fusion can provide more comprehen-
sive information surrounding canopy characteristics 
[11, 14, 50] than individual sensors alone. At the same 
time, our comparison of spectral and geometric traits 
highlighted that geometric traits were more closely cor-
related with canopy biomass at all growth stages. Given 
both the ubiquity and low cost of modern RGB UAVs, 
these results indicate RGB UAVs alone may provide a 
low-cost solution to biomass monitoring in the field 
through the calculation of geometric traits. It is con-
sidered more difficult to obtain consistent results with 
Multispectral imaging (MS) given the sensitivity to 
lighting changes and the need for radiometric calibra-
tion. While in this study spectral traits (OSAVI) were 
used to derive Coverage %, the use of classification 
methods on pixels of RGB imagery, would mean that 
‘geometric traits’ could entirely come from an RGB sen-
sor [24, 40].

Fig. 11 Relationship between biomass cut number and proportion of error variances of predicted biomass from the RF model trained 
on geometric + spectral indices across all dates and experiments. The x axis represents the biomass cut number and the y axis represents 
the variation for each respective variance component. White dots represent the within season repeatability  (w2) for predicted  DWAGB 
at that timepoint
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Phenology‑based classification of growth stages
In this study, the objective of classifying broad growth 
stages into vegetative, flowering, and grain filling phases 
was to account for the variation in both structural char-
acteristics and spectral response throughout the develop-
ment of the canopy. This classification aimed to address 
the changes that occur as heads emerge (flowering phase) 
and as they mature and the canopy colour changes, 
marking the onset of rapid grain filling (grain filling 
phase). In our study, the vegetative phase was defined to 
end at Zadok’s score of 50, which indicates that 50% of 
the plants in a plot have at least one awn appearing. The 
flowering phase was considered to end at Zadok’s score 
of 70, when anthesis is completed on 50% of the plants, 
signifying that grain development has commenced in 
many spikelets. We considered further dividing the veg-
etative phase by introducing a threshold approximately 
halfway between stem elongation and booting.

However, this subdivision did not enhance the pre-
diction accuracy for the resulting phases. We recognize 
that with a larger dataset, it might be possible to better 
optimize the structural and spectral parameters for bio-
mass estimation. This could potentially involve adding an 
additional phase, such as late vegetative, or adjusting the 
existing phases to better reflect the relationships between 
remotely sensed proxies and biomass. A more refined 
approach could involve developing a generic biomass 
prediction model, which could then be adjusted using a 
phenology-derived parameter to optimize predictions 
continuously across the growth stages.

Comparison of permanent and precise ROI
While considerable work has been dedicated to the task 
of ROI generation, as highlighted by [67], the alignment 
of the ROI with the actual site of ground-truth measure-
ment has not been extensively tested. Through analysis 
in this work, we found  ROIprecise (corresponding to the 
actual locations of biomass cuts) demonstrated accuracy 
comparable to  ROIpermanent despite utilization of set of 
variables across all growth stages. However, variations 
were noted at different growth stages, and when analys-
ing geometric and spectral traits independently. The dis-
crepancies in model performance between the ROIs are 
thought to be related to spatial variability within the plot 
and the distinct characteristics of the areas where ROIs 
were established. These observations suggest the need for 
additional research into alternative ROI selection meth-
ods and to understand the factors influencing the dif-
ferences in model performance between ROIs.  ROIprecise 
may offer superior performance over  ROIpermanent par-
ticularly in scenarios where within-plot heterogeneity is 
pronounced.

Model generalizability
A key aim in a variety testing situations is the scaling up 
of predictions to encompass multiple experiments and 
time points. However, a significant portion of the lit-
erature in this field focuses on testing biomass predic-
tion accuracy using a relatively small number of samples 
from single trials. Our strategy was to evaluate the accu-
racy of predictions with models trained using the same 
traits and approaches but distinguishing between specific 
experiments or growth stages and general models trained 
on a more comprehensive dataset. Our work indicated 
that models tailored to a particular growth stage or 
experiment exhibited comparable (in the case of broad 
growth-stage) or slightly higher (in the case of specific 
experiments) accuracy compared to those employing a 
general approach, presumably because specific models 
capture specific information that better represents those 
circumstances. However, the general models still pro-
vide adequate predictions across growth stages (Fig.  9), 
experiments (Fig.  10), and at individual time-points in 
experiments (Fig. 12) indicating the possibility of using a 
generic model to make predictions under a wide range of 
conditions.

Breeding and variety selection
The findings from the study, particularly those related to 
biomass prediction and the importance of various varia-
bles at different growth stages, can significantly influence 
breeding decisions and variety selection in wheat crops. 
 w2, a key parameter in breeding for trait improvement, 
was explored in the study, revealing variations across 
different experiments and maturities. The observed  w2 
can provide insights into the genetic control of the traits 
under investigation, thereby guiding breeders in select-
ing varieties that not only exhibit desirable traits but also 
have a higher probability of passing these traits to sub-
sequent generations. It should be noted that this study 
focused on a sample of ‘elite’ germplasm, and future 
research should investigate whether  w2 is as high for ear-
lier stage breeding material. This study was also limited 
by the fact that ground-truth  DWAGB  w2 or broad-sense 
heritability  (H2) could not be calculated, since only a sin-
gle replicate was physically sampled at one time. A com-
parison of the ground-truth  w2 to HTP derived proxy 
traits is a key step in determining the optimal timing of 
sampling, as it defines the ceiling by which the accuracy 
of remotely-sensed traits can be estimated. This is an 
important area for future research that requires extra 
attention.

Since  w2 is calculated based on the ratio of  VG to the 
total variance  (VG +  VR), to achieve high  w2, the ratio 
of  VG to  VR must also be high. The significant relation-
ship between both  VG and growth-stage and  VR and 
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growth-stage * experiment means that while  w2 can be 
highest at the latest growth stages, the risk of increased 
 VR due to experiment level factors (i.e., lodging or pest 
damage) can increase. In our experiments, while not sig-
nificantly different from other growth stages, the growth 
stage at which mean  w2 across experiments was highest, 
was during the flowering stage, which may be a result of 
this simultaneous increase of  VG and  VR. This may be due 
to the presence of larger differences among reflectance 
of genotypes as the differentially reach new phenological 
stages. This study was limited by the number of locations 
and years in which testing occurred, and as such, there is 
a need to investigate the relationship between  VG and  VR 
in a wider set of environments to examine whether the 
timing of measurement can be optimized to maximize 
 w2.

Limitations and future research directions
While the study provides valuable insights into biomass 
prediction using UAV-based high-throughput pheno-
typing, several limitations warrant acknowledgment and 

consideration. One potential limitation is related to the 
geographical and environmental specificity of the study. 
The findings and models developed might be highly tai-
lored to the specific environmental conditions and wheat 
varieties studied, potentially limiting their applicability 
to different geographical regions, environmental condi-
tions, or wheat varieties. Furthermore, the varieties used 
in this study were limited to ‘elite’ breeding materials, 
which potentially lack the range of variation that might 
be present in earlier-stage breeding trials where selection 
may be warranted. Future research should also compare 
the  w2 and  H2 of ground-truth samples to the estimated 
values for  DWAGB, so as to confirm the genetic-gain, or 
selection advantage for using HTP derived traits.

In future research, we also recommend exploring the 
use of parametric models to further analyse the rela-
tionships between biomass and selected predictors. This 
approach would involve selecting a subset of variables 
that maintains performance close to that of the full model 
and then fitting a parametric model to these predictors. 
Such a model would allow for clearer interpretation 

Fig. 12 Observed versus predicted  DWAGB (g/m2) using the Random Forest model trained using geometric and spectral variables 
on the cross‑validated training dataset. Vertical facets represent the different experiments in the study and the horizontal facets represent 
the  DWAGB cuts in order. Point colours represent the cumulative thermal time  (TTcumulative). Metrics for each cut x experiment are shown in each 
facet. For test set performance see \* MERGEFORMAT Fig. S4
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of the impact of each predictor on biomass at different 
stages of crop development, enhancing the overall inter-
pretability and robustness of the results.

This methodology, whilst providing a proof of concept 
for scaling up an empirical calibration for biomass, still 
requires manual ground-truth measurements for model 
building. Even taking a small number of biomass samples 
can be a costly undertaking, especially where multiple 
experiments and locations are concerned. As such, there 
is a need to determine an economically viable number 
of biomass samples that can be taken, whilst still main-
taining model accuracy and  w2. One such approach, as 
demonstrated by Hu et al. [29] is to take a self-calibration 
approach, which takes advantage of empirical ground-
truth measurements, but optimizes the number of sam-
ples necessary to maintain accuracy whilst maintaining 
low cost. In a situation with 1000 s of plots, you can use a 
generalized model to estimate biomass and immediately 
choose a diverse set of plots to measure the biomass (20 
to 50 plots) to create an improved model calibration. In 
addition, the topic of sub-plot selection and analysis war-
rants further exploration. Underlying within-plot vari-
ability is a source of variability that may not be properly 
accounted for when building the ROI to analyse sec-
ondary traits from UAVs. Whilst in experiments with 
low variability this may not be a major issue, but where 
variability is high, alternative approaches such as the one 
proposed in this paper might lead to higher prediction 
accuracies and  w2 values.

Conclusion
This study explored the sensitivity of UAV-based biomass 
prediction in wheat, exploring the influence of variable 
type, modelling strategy and sampling location on model 
accuracy. We utilised robust feature selection, using 
recursive feature elimination, to identify key features 
associated with biomass at varying growth stages and 
using different sensor traits. A combination of RGB and 
multispectral traits was confirmed to provide the great-
est accuracy across growth stages, with canopy height 
and volume having the greatest importance, but being 
supplemented by growth-stage specific spectral indices. 
The comparison of the specific and permanent ROI did 
not result in significant differences in model accuracy, 
however this may have been due to the relative homoge-
neity in experiments, and further investigation into this 
approach in heterogenous situations may provide greater 
accuracy. In this case a general model trained across all 
available data performed comparably with stage-specific 
and experiment-specific models, highlighting the ability 
for Machine Learning methods to capture complex rela-
tionships in the data. Overall, biomass prediction using 
UAV offers a non-destructive and scalable alternative 

to manual measurements, however, the need for careful 
modelling to demonstrate physiological relevance, and 
ability to be used for variety selection is still necessary.
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