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Abstract 

Background Pesticide efficacy directly affects crop yield and quality, making targeted spraying a more environ-
mentally friendly and effective method of pesticide application. Common targeted cabbage spraying methods often 
involve object detection networks. However, complex natural and lighting conditions pose challenges in the accurate 
detection and positioning of cabbage.

Results In this study, a cabbage detection algorithm based on the YOLOv8n neural network (YOLOv8-cabbage) 
combined with a positioning system constructed using a Realsense depth camera is proposed. Initially, four 
of the currently available high-performance object detection models were compared, and YOLOv8n was selected 
as the transfer learning model for field cabbage detection. Data augmentation and expansion methods were applied 
to extensively train the model, a large kernel convolution method was proposed to improve the bottleneck section, 
the Swin transformer module was combined with the convolutional neural network (CNN) to expand the perceptual 
field of feature extraction and improve edge detection effectiveness, and a nonlocal attention mechanism was added 
to enhance feature extraction. Ablation experiments were conducted on the same dataset under the same experi-
mental conditions, and the improved model increased the mean average precision (mAP) from 88.8% to 93.9%. 
Subsequently, depth maps and colour maps were aligned pixelwise to obtain the three-dimensional coordinates 
of the cabbages via coordinate system conversion. The positioning error of the three-dimensional coordinate 
cabbage identification and positioning system was (11.2 mm, 10.225 mm, 25.3 mm), which meets the usage 
requirements.

Conclusions We have achieved accurate cabbage positioning. The object detection system proposed here can 
detect cabbage in real time in complex field environments, providing technical support for targeted spraying applica-
tions and positioning.
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Introduction
Crop diseases and pests pose significant threats to agri-
cultural production, affecting crop yields and quality and 
leading to shortages in the food supply. Farmers primar-
ily use agricultural chemicals to control plant diseases, 
pests, and weeds despite their negative impact on the 
environment and human health. Reducing the adverse 
effects of agricultural chemicals is a major societal chal-
lenge worldwide [1]. Compared to traditional continu-
ous uniform spraying methods, targeted spraying is a 
more environmentally friendly alternative method that 
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can reduce pesticide pollution and costs and improve 
spraying effectiveness. To spray cabbage in a targeted 
manner, a cabbage positioning system needs to be built 
for the spraying equipment. Detection is a prerequisite 
for positioning technology, and common target detec-
tion technologies in agricultural fields include machine 
vision, ultrasonic sensors [2], and 3D laser radar [3, 4]. 
However, ultrasonic sensors and 3D laser radar struggle 
to accurately distinguish crops from weeds in large fields. 
Machine vision technology, with the benefits of large 
information acquisition, high accuracy, and intelligence, 
has potential advantages in cabbage recognition [5].

This article describes the use of deep learning for cab-
bage detection because it is difficult to achieve good 
accuracy when manually extracting features from photos 
captured in highly complex agricultural environments. A 
convolutional neural network (CNN) can discover more 
abstract and hidden features in images, thus improving 
performance, reducing the manual workload, and realiz-
ing target positioning.

Since the introduction of the AlexNet algorithm [6] in 
2012, deep learning has gradually become mainstream, 
with various types of deep learning algorithms constantly 
emerging. Currently, deep learning-based object detec-
tion algorithms can be divided into two main types: 
one-stage and two-stage algorithms. Notable one-stage 
algorithms include the YOLO series [7–11] and SSD 
[12], while the mainstream two-stage algorithms include 
R-CNN, Fast R-CNN, and Faster R-CNN [13–15]. One-
stage algorithms have a clear advantage in terms of detec-
tion speed, while two-stage algorithms often achieve 
better detection accuracy. Due to the complexity of agri-
cultural environments, directly applying the abovemen-
tioned object detection algorithms often fails to yield 
satisfactory results; thus, extensive research has been 
conducted to improve outcomes.

The inference process of deep learning models requires 
significant computational resources, whereas mobile 
devices typically have lower computational capabili-
ties. Currently, one of the main challenges with the use 
of mobile devices is balancing speed and accuracy. Ong 
[16] and others formerly performed weed detection 
among commercial Chinese cabbage crops using images 
acquired by unmanned aerial vehicles. The acquired 
images were preprocessed and subsequently segmented 
into crop, soil, and weed classes using the simple linear 
iterative clustering superpixel algorithm. The segmented 
images were then used to construct the CNN-based 
classifier, and random forest (RF) was applied to com-
pare its performance with that of the CNN. To effec-
tively and accurately identify field vegetables and weeds, 
Ma [17] and others proposed a semantic segmentation 
model called MSECA-Unet based on an improved U-Net 

architecture. This model significantly reduces the num-
ber and size of the parameters by introducing multiscale 
inputs and a nonlocal attention mechanism, achieving 
rapid identification of cabbage crops and weeds. Ye [18] 
and others compared the performance of two advanced 
methods, DL and OBIA, in individual cabbage plant 
detection tasks. The results show that the Mask R-CNN 
deep learning model outperforms the object-based image 
analysis multilevel distance transform watershed seg-
mentation method in crop extraction and counting, with 
an overall mean F1 score and accuracy that are 2.70 and 
4.15% greater, respectively. Sun [19] and others proposed 
a cabbage transplantation state recognition model based 
on YOLOv5-GFD. Compared to the original model, 
the mean average precision (mAP) increased by 3.5%, 
the recall increased by 1.7%, and the detection speed 
increased substantially by 52 FPS.

These studies demonstrate the various approaches that 
have been applied to address the challenge of balancing 
speed and accuracy in deep learning models for cabbage 
detection on mobile devices. From the above literature, it 
can be seen that there has been relatively little research 
on the comprehensive detection of cabbage growth pro-
cesses, and there is considerable room for improvements 
in positioning accuracy. Considering the acceptable range 
in precision of target spray positioning for mechanical 
transplanting of cabbage in actual spraying processes 
and the characteristics of complex natural environments 
and severe cabbage occlusion during mature stage, in 
this paper, a field cabbage position recognition algo-
rithm, YOLOv8-cabbage, based on improved YOLOv8n, 
is proposed. This algorithm incorporates three strategies 
for improvement large kernel convolution, a Swin trans-
former module, and an attention mechanism to enhance 
the detection accuracy. Additionally, this algorithm is 
combined with a depth camera to obtain the real-time 
three-dimensional coordinates of cabbages. The results 
indicate that the error of this algorithm is within an 
acceptable range.

Materials and methods
Data acquisition and preprocessing
Cabbage dataset
The height of the camera during the collection of the 
dataset was set to around 70 cm. This height fully con-
siders the size of the existing spraying equipment and 
the installation position of the camera. The images and 
videos were collected vertically downwards, with a 
resolution of 3000 pixels × 4000 pixels. The dataset for 
this experiment has three main sources: The first part 
comes from the open-air vegetable experiment base 
of Hunan Agricultural University. It mainly collects 
images of cabbage from germination to seedling stage. 
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From November 12 to December 30, 2023, images 
were collected every 15  days starting from the 7th 
day after planting, for a total of three times. To ensure 
the diversity of the sample environment, the light-
ing conditions included sunny, cloudy, and rainy days. 
A total of 1087 images were collected, and the images 
taken under different weather conditions are shown in 
Fig.  1. Each image contains multiple cabbage targets 
and various weeds, reflecting the real scene. The sec-
ond part of the data includes 400 images taken in the 
field of Wangcheng District, Changsha City by Jinxiu 
Ecological Agriculture Co., Ltd. These images cover all 
growth stages of cabbage, filling the gap of rosette stage 
and mature stage in the first part. Images of different 
growth stages are shown in Fig. 2. The third part con-
sists of 159 images from the Internet, which are used to 
improve the robustness of the model. This part of the 
data is composed of images taken under different envi-
ronmental conditions with different pixel sizes.

Data preprocessing
To enhance the richness of the dataset, this study 
employed computer vision techniques for data augmen-
tation on the original images (Fig.  3a). The techniques 
used in this study include image rotation (Fig. 3b), Gauss-
ian blur/noise (Fig.  3c), and cutout (Fig.  3d) processing 
[20]. The cutout technique involves randomly deleting 
multiple rectangular regions. After deleting important 
regions, the model relies on other information for clas-
sification, which results in better model generalizability.

Through these three techniques, the dataset was 
expanded threefold, and manual labelling was performed 
using LabelImg software in YOLO file format. Consid-
ering the significant morphological changes in the cab-
bage during the mature stage and the requirements for 
pesticide application, the images taken after the cabbage 
had entered the mature stage were labelled as mature 
cabbage, while those not yet in the mature stage were 
labelled as immature cabbage to improve the accuracy of 
the detection model. The dataset was further divided into 

(a) Sunny day. (b) Cloudy day. (c) Rainy day. 
Fig. 1 Images acquired under different environmental conditions

(a) Germination stage. (b) Seedling stage. (c) Rosette stage. (d) Mature stage. 
Fig. 2 Cabbage in different growth stages
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a training set (80%), a validation set (10%), and a testing 
set (10%). The training set was used for model fitting, the 
validation set was used to adjust the hyperparameters 
used during training and for preliminary evaluation of 
the model’s capabilities, and the testing set was used to 
evaluate the generalizability of the final model.

Cabbage detection CNN
YOLOv8
This study conducted a comparative analysis and Pre-
liminary experiment on four mainstream object detec-
tion models, Faster R-CNN, YOLOv5s, SSD, and 
YOLOv8n, to determine the most suitable transfer 
learning model for cabbage detection. Faster R-CNN 
differs from other models in that it has an additional 
step at the beginning to generate region proposals, 
which is typically time-consuming, followed by feature 
extraction and classification. SSD works by generat-
ing many boxes of different shapes and sizes for each 
pixel, and then selecting the appropriate boxes as the 
detection results after feature extraction and classifica-
tion. YOLO, on the other hand, first divides the image 
into grids and then generates a small number of boxes 
on each grid, further reducing the computational cost. 
YOLOv8 replaces the C3 structure in YOLOv5 with 
the C2f structure, which has richer gradient flow, and 
adjusts the number of channels for different scale mod-
els. This enables even very small models like YOLOv8n 
to achieve good detection performance, especially for 
images captured by mobile devices with fewer image 
pixels. Compared with other lightweight detection 
models, YOLOv8n demonstrated the fastest detec-
tion speed and the best detection performance on the 

dataset. Therefore, YOLOv8n was selected and opti-
mized to construct a detection model capable of quickly 
and accurately identifying cabbage targets in complex 
field environments. YOLOv8 is an object detection 
model that was released by Ultralytics on January 10, 
2023. The detailed architecture of YOLOv8n is shown 
in Fig. 4.

The architecture of YOLOv8 consists of the following 
components:

Backbone: Responsible for extracting feature infor-
mation from the image and providing input to the 
subsequent networks. CBS is a standard convolu-
tional module that extracts features. The C2f mod-
ule extracts and fuses features using concat fusion, 
which is a type of residual connection, with features 
from different bottleneck layers. SPPF fuses fea-
tures that have not been maxpooling or have been 
maxpooling at most three times. After continuous 
fusion and convolution through these modules, the 
backbone can provide an image with rich feature 
information.
Neck: This layer is located between the backbone 
and the head, aiming to better utilize the features 
extracted by the backbone network for feature 
fusion. The neck network employs numerous con-
cat and C2f modules to fuse low-level feature maps 
with high-level feature maps that have undergone 
extensive convolutions.
Head: This layer utilizes previously extracted features 
for object detection. The Bbox loss module is respon-
sible for bounding box regression, while the Cls loss 
module is responsible for category classification.

(a) Original image. (b) Rotation processing. (c) Gaussian blur/noise 
processing. 

(d) Cutout processing. 

Fig. 3 Illustrations of the dataset augmentation



Page 5 of 15Jiang et al. Plant Methods           (2024) 20:96  

Large kernel convolutions
To address the issue of the model’s poor adaptability to 
detecting cabbages in different growth stages and under 
different conditions, we propose using larger convolu-
tion kernels to attempt to solve this problem. Typically, 
dilated convolutions come with high computational 
costs because the size of the convolutional kernel is 
directly proportional to the number of parameters 
and floating-point operations. However, this drawback 
can be mitigated by using deep convolutions [21]. The 
computational formula for standard convolutions is as 
follows.

Additionally, the calculation formula for the computa-
tional complexity of depthwise convolution is:

where FLOPs represents the number of floating-point 
operations, W  represents the number of pixel columns in 
the image, H represents the number of pixel rows in the 
image, C represents the number of input channels in the 
image (or feature map), C ′ is the number of output fea-
ture maps, and K  indicates the size of the convolutional 
kernel.

(1)FLOPs =
(

2× C × K 2
− 1

)

×H ×W × C
′

(2)FLOPs = C × K 2
×H ×W

During deep convolution, each convolutional kernel 
acts on each channel of the input image or feature map. 
Using deep convolutions results in less growth among 
floating-point operations and fewer parameter counts. 
Dilated convolutions allow a larger receptive field, which 
can have an impact on downstream tasks [22]. Addition-
ally, the design of dilated convolutions introduces more 
shape biases into the network, helping to improve the 
model’s generalizability and reduce the risk of overfitting 
[23]. Therefore, a set of dilated convolutional neural net-
work (ConvFFN) modules was used, as shown in Fig. 5, 
to replace the convolution modules in the bottleneck 
module. The improved bottleneck module is shown in 
Fig.  6. By implementing these modifications, we antici-
pate an improvement in detection accuracy while incur-
ring a minimal decrease in detection speed.

Swin transformer
Due to their inherent characteristics, CNNs exhibit 
relatively weak responses at the edges of images. This 
is because the pixels located at the edges of images 
contribute less to gradient updates due to fewer con-
volution operations, resulting in poor cabbage detec-
tion performance in the edge regions of images. 
Adding a Swin transformer detection layer to the origi-
nal network allows the improved model to overcome 

Fig. 4 Overall architecture of the YOLOv8n
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the limitations of CNN convolution operations, 
enhancing edge detection performance and recognizing 
abstract information from low-level features, thereby 
strengthening the semantic information about the cab-
bage during the seedling stage [24–26].

Figure  7 provides an overview of the Swin trans-
former architecture. First, it utilizes the patch partition 
module to partition the input RGB image into dimen-
sions of H ×W × 3 , where each 4 × 4 adjacent pixels 
form a patch. Assuming that the input is an RGB three-
channel image, each patch contains 4 × 4 = 16 pixels, 
and subsequently, each pixel has three values (R, G, B); 
i.e., a feature dimension of 16 × 3 = 48. After patch par-
titioning, the shape of the image changes from [H, W, 
3] to [H/4, W/4, 48].

Next, the linear embedding layer performs linear 
transformations on the channel data of each pixel. The 
feature maps are then fed into four self-attention trans-
former blocks, generating a hierarchical representation. 
The Swin transformer does not require pooling or other 
downsampling methods to reduce the size of the feature 
maps, which thereby prevents information loss.

Nonlocal attention
Significant breakthroughs have been made in recent years 
in the attention mechanisms of various fields, such as 
image processing, natural language processing, and com-
puter vision, which have been suggested to be beneficial 
for improving model performance. The marked effective-
ness of channel or spatial attention mechanisms in gener-
ating more discernible feature representations is evident 
in various computer vision tasks. However, modelling 
cross-channel relationships with channel dimensionality 
reduction may have unwanted effects on extracting deep 
visual representations.

Fundamentally, the aim of spatial domain atten-
tion methods is to transform spatial information from 
the original image into another space while preserv-
ing key information. This approach avoids the potential 
unwanted effects that may arise from reducing dimen-
sions using channel attention mechanisms [27–29]. The 
nonlocal attention module is shown in Fig. 8.

Overall structure of the cabbage detection model
Our proposed fusion network, YOLOv8-cabbage, is 
shown in Fig.  9, which has been improved to address 
challenges that may arise during field detection.

First, the ConvFFN structure replaces the convolu-
tion module in the bottleneck module. By employing 
large kernel convolution modules in C2f, we increase the 
receptive field to enhance the overall robustness of the 
model and reduce the risk of overfitting. The C2f module 
modified by this method is here renamed DW-C2f. Plac-
ing the attention mechanism in the middle layer of the 
network allows for a better combination of low-level and 
high-level features. Therefore, we inserted the nonlocal 
attention mechanism module after the original second 
C2f module. To address the challenges in small target 
detection and edge detection, we replaced the original 
second and third C2f layers of the backbone network 
with the Swin transformer module.

Results and discussion
Cabbage detection experiment
Experimental conditions
The model training platform is a desktop workstation 
with the following configuration: 16  GB of memory, 
equipped with an AMD Ryzen 7 5800 × CPU, and an 

Fig. 5 Illustration of the ConvFFN

Fig. 6 Improved bottleneck module



Page 7 of 15Jiang et al. Plant Methods           (2024) 20:96  

NVIDIA RTX 4060 GPU. The operating system is Win-
dows 11 (64-bit), the programming language is Python 
version 3.10.13, the CUDA version is 11.8, the compiled 
IDE is PyCharm, and the deep learning framework is 
PyTorch 2.0.1. The learning rate is set to 0.01, the opti-
mizer is Adam, the batch size is set to 16, and the experi-
ment is configured with 300 iterations (epoch).

Evaluation criteria
To comprehensively assess the model performance, the 
precision (P), recall (R), mAP, and average image pro-
cessing time are adopted as the evaluation parameters. 
mAP, is the average value of the average precision (AP) 
and a primary evaluation metric for object detection 

algorithms. Object detection models are often described 
in terms of speed and accuracy (mAP). A higher mAP 
indicates better detection performance on the given data-
set. This paper uses mAP@0.5, meaning that the target is 
a confidence level that exceed 0.5.

Mainstream model test results
On the cabbage dataset, we conducted experiments with 
Faster R-CNN, SSD, YOLOv8n, and YOLOv5s, and these 
results are listed in Table  1. We observed that Faster 
R-CNN has an advantage in terms of detection accu-
racy, but its detection speed is slower, making real-time 
detection challenging for further research and applica-
tions. The average processing time for a single-frame 

(a) Overall architecture of the Swin transformer.

(b) Architecture of the Swin transformer block.
Fig. 7 Illustration of the Swin transformer
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Fig. 8 Illustration of the nonlocal block

Fig. 9 Overall architecture of the YOLOv8-cabbage
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image in YOLOv8n is 20.1 ms, which is only 14.8% of the 
time required by Faster R-CNN, with a mAP of 88.8%, an 
improvement of 2.7% compared to YOLOv5s. Overall, 
in terms of balancing cabbage recognition accuracy and 
image processing speed, YOLOv8n has certain advan-
tages over the other networks tested.

Ablation experiments
A series of ablation experiments were conducted to vali-
date the performance of the improved algorithm, and 
tests were carried out on a self-built dataset. The experi-
ments included data augmentation, the addition of 
nonlocal attention modules, ConvFFN large kernel con-
volution modules, and Swin transformer modules. These 
results are shown in Table  2. All networks used models 
pretrained on the COCO dataset [30]. The training and 
validation datasets were kept consistent across all experi-
ments to control variables and ensure the validity of the 
results.

From Table  2, the average accuracy of the original 
model increased from 86.0% to 88.8% when trained on 
an image dataset with data augmentation compared to 
without data augmentation. When the original model 
and YOLOv8-cabbage were both trained on an image 
dataset with data augmentation, the mAP increased 
from 88.8% to 93.9%, with precision and recall increas-
ing by 3.6% and 7%, respectively. By enhancing the data 
and introducing an attention module, particularly one 
that focuses on the edge features of cabbage images, 
improvements were achieved. The combination of the 
global attention advantage of the Swin transformer 

module and the feature extraction advantage of the 
large convolutional kernel enhances the network’s per-
formance in extracting feature information.

Given that the improved model ensures a higher AP 
and a processing speed suitable for practical use, we 
further aimed to verify that the improved algorithm, 
which combines the global attention advantage of the 
Swin transformer module with the feature extraction 
advantage of the large convolutional kernel, outper-
forms models that rely solely on either convolutional 
feature extraction or Swin transformer feature extrac-
tion. Furthermore, we compared the YOLOv8-cab-
bage model with the original model that included only 
the Swin transformer; these test results are shown in 
Fig.  10. YOLOv8-cabbage achieves higher detection 
accuracy than the other two models.

Test results
Figure 11 shows a comparison of the detection results 
before and after the YOLOv8n network was improved 
using the same validation set images. In both sets of 
detection results, it can be observed that the improved 
model not only achieves better confidence levels in 
simple detection tasks but also avoids missing detec-
tions at the image edges. There are fewer instances of 
repeated detection under sufficient lighting conditions, 
and the occurrence of missed detections is significantly 
reduced under conditions of insufficient lighting or 
severe occlusion.

Table 1 Mainstream model performance test results

Model mAP@0.5 (%) Precision (%) Recall (%) Average image 
processing time 
(ms)

YOLOv5s 86.1 86.7 80.0 25.7

YOLOv8n 88.8 91.9 78.1 20.1

SSD 81.9 79.9 72.2 29.4

Faster R-CNN 91.4 89.2 82.0 135.6

Table 2 Results of the ablation experiments

* “√” indicates that the current network uses this structure or method; X indicates that the structure or method is not in use on the current network

Group Image 
preprocessing

ConvFFN Nonlocal Swin 
transformer

Precision (%) Recall (%) mAP@0.5 (%) Detection 
time (ms)

1 × × × × 85.4 75.8 86.0 20.1

2 √ × × × 91.9 78.1 88.8 20.1

3 √ √ × × 91.3 83.3 91.3 20.7

4 √ √ √ × 92.6 83.0 91.9 23.5

5 √ √ √ √ 95.5 85.1 93.9 26.3
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Cabbage positioning experiment
Positioning methods and camera calibration
This article uses the mechanized production of cabbage 
vegetables proposed at the 2023 China Vegetable Indus-
try Conference as the standard and measures the allow-
able error range of three-dimensional coordinates based 

on the growth and planting characteristics of cabbage. As 
shown in Fig.  12, the existing spraying equipment noz-
zle sprays chemicals at a 110° angle, with the minimum 
vertical height of the connecting rod to the nozzle being 
35  cm. When operating at this minimum height, with 
a standard ridge height of 20  cm, the spraying radius is 

Fig. 10 Comparison of three structural models on the cabbage dataset

Fig. 11 Comparison of detection results before and after YOLOv8n network improvement
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21.45 cm. Measurements of 20 groups of cabbage plants 
during the seedling stage revealed an average radius of 
9  cm. Therefore, there is an error range of 12.45  cm in 
the XY plane, and at a distance of 6.3 cm from the ridge, 
a radius of 9 cm can be sprayed. In summary, the maxi-
mum X-axis and Y-axis coordinate errors are 88 mm, and 
the maximum Z-axis coordinate error is 87 mm.

This article uses Intel’s Realsense D435i series stereo 
camera for research. The camera consists of left and right 
infrared cameras for depth measurement and an RGB 
camera for capturing colour images. After calibrating the 
camera, improved models are used to obtain the coor-
dinates of the centre point of the colour image. Then, in 
the depth image aligned with the colour image, the depth 
value at the corresponding pixel point of the target can 
be obtained, thus achieving three-dimensional spatial 
positioning of the cabbage.

The spatial coordinates outputted by the midpoint of 
the cabbage detection box in the pixel coordinate system 
uv are used as the measurement position for cabbage-
targeted spraying, as shown in Fig.  13, with the bottom 
coordinates of the detection box corresponding to the 
coordinates of the red dot in the detection box.

Camera calibration
The GML Calibration Toolbox and Intel RealSense Viewer 
were used to view the intrinsic parameters. The colour and 
depth cameras were calibrated using a dynamic calibration 
board with fixed dimensions to obtain the camera’s intrin-
sic and distortion parameters. Using Zhang’s camera cali-
bration method, after obtaining an image of the calibration 
board, the corresponding image detection algorithm can be 
used to obtain the pixel coordinates of each corner point. 
Zhang’s calibration method fixes the world coordinate 

system on the checkerboard, and the size of each grid on 
the checkerboard is known. We can calculate the physical 
coordinates of each corner point in the world coordinate 
system. The camera intrinsic matrix can be solved by using 
the pixel coordinates and physical coordinates. The results 
of the camera calibration are shown in Table 3.

In the pixel coordinate system, the image is not in the 
ideal position p′

= [u
′

, v
′

] , so it is necessary to compen-
sate for nonlinear distortion based on the actual position 
p = [u, v] . Radial distortion occurs during camera produc-
tion due to uneven thickness. After correcting for radial 
distortion, the position p′

0
= [u

′

0
, v

′

0
] can be expressed as 

follows:

(3)
[

u′
0

v′
0

]

=

(

1+ k1r
2
+ k2r

4
+ k3r

6
)

[

u
v

]

Fig. 12 Working diagram of the existing spraying equipment

Fig. 13 Cabbage anchor point diagram
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where r represents the curvature radius, k1, k2, k3 repre-
sent the radial distortion coefficient, and p1, p1 represent 
the tangential distortion correction coefficient. Due to 
the nonparallelism between the imaging plane and the 
lens plane, tangential distortion occurs. After correcting 
for tangential distortion, the position p′

1
= [u

′

1
, v

′

1
] can be 

expressed as follows.

Since both types of distortion occur independently in 
the lens, they need to be considered simultaneously, as 
follows.

Coordinate system transformation
To obtain the position of the cabbage in the three-dimen-
sional coordinate system, coordinate system transfor-
mation is needed. As shown in Fig.  14, P ( Xw ,Yw ,Zw ) 
represents the coordinates of the cabbage in the world 
coordinate system Ow-Xw ,Yw ,Zw ; Oc-Xc,Yc,Zc repre-
sents the camera coordinate system with the optical cen-
tre as the origin; O-xy is the image coordinate system, 
with the origin at the intersection of the optical axis and 
the projection plane, known as the principal point; and 
uv represents the pixel coordinate system, which is in the 
same plane as the image coordinate system, with the ori-
gin at the top left corner of the projection plane. These 
four coordinate systems can be transformed using the 
camera’s intrinsic matrix and extrinsic matrix.

(4)
[

u′
1

v′
1

]

=

[

2p1uv + p2
(

r2 + 2u2
)

2p2uv + p1
(

r2 + 2v2
)

]

(5)
[

u
′

v
′

]

=

[

u
′
0

v
′
0

]

+

[

u
′
1

v
′
1

]

Depth image alignment
The D435i image is simultaneously received by a pair of 
stereo infrared sensors and a colour camera. Due to the 
position deviation of the two cameras, their correspond-
ing pixels have different positions and cannot be used 
directly. To use colour image data in target detection, the 
depth map is aligned to the colour map by coordinate 
conversion with the following conversion formula:

where Rw2c represents the rotation matrix of the world 
coordinate system to the colour coordinate system, tw2c 
represents the offset matrix of the world coordinate sys-
tem to the colour coordinate system, Rw2d represents the 
rotation matrix of the conversion from the world coordi-
nate system to the depth coordinate system of the infra-
red camera, and tw2d represents the offset matrix of the 
world coordinate system to the depth camera coordinate 
system.

Analysis of the positioning results based on the improved 
algorithms for cabbage detection
The positioning method mainly achieves the following 
functions: initializing the depth camera and colour cam-
era; calling the improved YOLOv8n algorithm to detect 
cabbages in the RGB images; using the pixel position of 
the detection box as the return value to access the depth 
image; and converting pixel coordinates into world coor-
dinates and outputting the true three-dimensional coor-
dinates of the cabbages relative to the camera position in 
the world coordinate system.

The experimental apparatus included a D435i depth 
camera, plumb bob, portable computer, measuring 
tape, etc., for conducting three-dimensional coordinate 

(6)Td2c =

[

Rw2cR
−1

w2d tw2c − Rw2cR
−1

w2dtw2d
0 1

]

Table 3 Internal parameters and distortion parameters of the 
binocular camera

Argument Camera calibration result

Depth camera Colour camera

Focal length

 fx/pixel 636.174 954.261

 fy/pixel 636.174 954.261

Principal point

 Cx/pixel 640.706 961.077

 Cy/pixel 356.945 535.417

Rotation matrix




−0.999 −0.013 −0.004

0.013 0.999 −0.001

0.004 0.001 0.999





Translation vector [−0.014,−0.0001,−0.0001]

Distortion [1.0171, 1.0116,−0.1046,−0.0232]

Fig. 14 Coordinate diagram
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accuracy measurement experiments in the field. The 
D435i depth camera is fixed on a test stand with a 
height of 72.2  cm, and the camera is pointed down-
wards horizontally. Using this positioning method, 
three-dimensional measurements of cabbages were 
obtained. The plumb bob is used to mark the projection 
of the depth camera on the ground and measure the 
vertical distance of the depth camera, and the meas-
uring tape is used to measure the coordinates of the 
projection marked by the plumb bob on the horizontal 
plane of the cabbage, considering it the actual position. 
The measured positions are compared with the actual 
positions to calculate the error. The test stand is moved 
to measure 20 cabbage plants. The physical image of 
the test stand is shown in Fig. 15, and the measurement 
results are shown in Table 4.

According to Table  4, the maximum error on the 
X-axis is 23 mm, with an average error of 11.2 mm; the 
maximum error on the Y-axis is 25 mm, with an aver-
age error of 10.225  mm; and the maximum error on 
the Z-axis is 51 mm, with an average error of 25.3 mm. 
These errors are within the acceptable range; thus, the 
usage requirements have been met. In order to evalu-
ate the degree of data dispersion, standard deviation is 
introduced to further statistical analysis of the data, the 
formula for standard deviation is as follows:

where σ represents the standard deviation, N  stands for 
the number of constants, x stands for random variable, 
and µ represents the average of the variables. The stand-
ard deviations of the values on the X-axis, Y-axis and 
z-axis are 7.7 mm, 7.4 mm and 12.9 mm respectively. This 
means that the deviation of the measured data on the x 
and y axes is relatively stable, while the stability of the 
data on the Z axis is relatively poor.

Conclusion
In this paper, a field cabbage recognition and position-
ing method is proposed based on improved YOLOv8n 
for the detection of cabbage at different growth stages by 
training models with data from different growth periods. 
Field cabbage recognition experiments were conducted, 
and a stand was used to verify precise and accurate posi-
tioning, leading to the following conclusions:

1. In response to the morphological changes that occur 
throughout the entire growth process of cabbage in 
the field, a detection model specifically tailored for 

(7)σ =

√

√

√

√

1

N

N
∑

i=1

(xi − µ)2

Fig. 15 Physical diagram of the test bench

Table 4 Three-dimensional coordinate measurements of 
cabbage in the field

ID Cabbage field location coordinates

Real coordinate (mm) Detection 
coordinate (mm)

Coordinate 
error (mm)

1 (− 34, 162, 644) (− 11, 157, 623) (23, 5, 21)

2 (20, 61, 560) (33, 84, 580) (13, 23, 20)

3 (42, − 36, 537) (27, − 49, 504) (15, 13, 33)

4 (18, − 6, 619) (20, − 20, 630) (2, 14, 11)

5 (49, 168, 507) (53, 187, 521) (04, 19, 14)

6 (2, 135, 554) (− 12, 132, 565) (14, 03, 11)

7 (40, 62, 549) (42, 78, 512) (2, 16, 37)

8 (21, 44, 622) (24, 29, 589) (3, 25, 33)

9 (-12, 15, 613) (− 6, 13, 577) (6, 2, 36)

10 (28, 150, 503) (21, 162, 529) (7, 12, 26)

11 (53, 60, 592) (37, 65, 566) (16, 5, 26)

12 (22, 70, 546) (40, 77, 542) (18, 7, 4)

13 (42, 71, 523) (62, 49, 564) (20, 22, 41)

14 (11, 59, 520) (21, 58, 506) (10, 1, 14)

15 (55, 23, 531) (49, 13, 498) (6, 10, 33)

16 (− 1, 54, 554) (− 24, 76, 515) (23, 22, 39)

17 (28, 30, 530) (16, 35, 53.3) (12, 5, 3)

18 (19, 154, 619) (40, 149, 568) (21, 5, 51)

19 (16, 58, 639) (20, 47, 621) (4, 11, 18)

20 (41, 140, 588) (36, 126, 553) (5, 14, 35)
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cabbage crops, YOLOv8-cabbage, is proposed. This 
model employs data augmentation techniques for 
more comprehensive training, introduces a spatial-
based attention mechanism, replaces the C2f layer 
in the YOLOv8 backbone with a Swin transformer 
module, and incorporates large convolutional kernels 
into the backbone network to improve the perfor-
mance of small object detection and reduce the risk 
of overfitting. The experimental results demonstrate 
that the accuracy of the improved algorithm model 
reaches 95.5%, with an AP of 93.9%. Compared to the 
original YOLOv8n model, this model gives increases 
in the accuracy and AP of 3.6% and 5.1%, respec-
tively, indicating significant advantages in accuracy 
over existing models.

2. After camera calibration, coordinate system transfor-
mation, and alignment with the depth map, precise 
positioning of the cabbage was achieved in both pixel 
coordinates and world coordinates. The accuracy of 
the proposed method for three-dimensional cabbage 
coordinate positioning under field conditions was 
tested. The average errors in cabbage detection and 
positioning in the field were (11.2  mm, 10.225  mm, 
25.3 mm). Combining the recognition and position-
ing system of the YOLOv8-cabbage model improved 
the accuracy of cabbage recognition. The results indi-
cate that the positioning accuracy meets the require-
ments, providing a reference for cabbage-targeted 
spraying research.
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