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Abstract 

Leaf water content (LWC) is a vital indicator of crop growth and development. While visible and near-infrared (VIS–
NIR) spectroscopy makes it possible to estimate crop leaf moisture, spectral preprocessing and multiband spectral 
indices have important significance in the quantitative analysis of LWC. In this work, the fractional order derivative 
(FOD) was used for leaf spectral processing, and multiband spectral indices were constructed based on the band-
optimization algorithm. Eventually, an integrated index, namely, the multiband spectral index (MBSI) and moisture 
index (MI), is proposed to estimate the LWC in spring wheat around Fu-Kang City, Xinjiang, China. The MBSIs for LWC 
were calculated from two types of spectral data: raw reflectance (RR) and the spectrum based on FOD. The LWC 
was estimated by combining machine learning (K-nearest neighbor, KNN; support vector machine, SVM; and artifi-
cial neural network, ANN). The results showed that the fractional derivative pretreatment of spectral data enhances 
the implied information of the spectrum (the maximum correlation coefficient appeared using a 0.8-order differential) 
and increases the number of sensitive bands, especially in the near-infrared bands (700–1100 nm). The correlations 
between LWC and the two-band index  (RVI1156, 1628 nm), three-band indices (3BI-3(766, 478, 1042 nm), 3BI-4(1129, 1175, 471 nm), 
3BI-5(814, 929, 525 nm), 3BI-6(1156, 1214, 802 nm), 3BI-7(929, 851, 446 nm)) based on FOD were higher than that of moisture indices 
and single-band spectrum, with r of − 0.71**, 0.74**, 0.73**, − 0.72**, 0.75** and − 0.76** for the correlation. The pre-
diction accuracy of the two-band spectral indices  (DVI(698, 1274 nm)  DVI(698, 1274 nm)  DVI(698, 1274 nm)) was higher than that of 
the moisture spectral index, with R2 of 0.81 and R2 of 0.79 for the calibration and validation, respectively. Due to a large 
amount of spectral indices, the correlation coefficient method was used to select the characteristic spectral index 
from full three-band indices. Among twenty seven models, the FWBI-3BI− 0.8 order model performed the best predic-
tive ability (with an R2 of 0.86, RMSE of 2.11%, and RPD of 2.65). These findings confirm that combining spectral index 
optimization with machine learning is a highly effective method for inverting the leaf water content in spring wheat.
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Introduction
Water is the main medium for transporting mineral 
nutrients and conducting physiological and biochemical 
reactions in plants [1–3]. Lack of water can lead to weak-
ened plant transpiration, hindered mineral transport, and 
decreased chlorophyll content, and ultimately, it restricts 
the accumulation of assimilates [4, 5]. Spring wheat can 
be divided into three stages: early stage (emergence and 
tillering), middle stage (jointing and booting), and late 
stage (heading and maturing) [6, 7]. During the heading 
stage, wheat grains begin to develop rapidly, absorbing 
nutrients and forming components such as starch and 
protein [8]. It is necessary to enhance irrigation, main-
tain soil moisture, and apply fertilizer in a timely manner 
to promote wheat growth [9]. The water content in the 
internal tissues of leaves can reflect information about 
soil moisture, crop growth and development, disease 
resistance, and other factors [10, 11], making it an impor-
tant indicator for evaluating crop growth and develop-
ment [12]. Therefore, obtaining real-time and accurate 
information on leaf water content (LWC) in field crops 
has important guiding significance for assisting regional 
agricultural production management.

With the development of remote sensing techniques, 
remotely sensed data have been widely used to accu-
rately and non-destructively monitor crop parameters 
[13, 14]. Hyperspectral had the characteristics of multi-
ple bands, strong continuity, and large information; and 
was performed accurately and quickly with the following 
objectives: diagnosis of crop leaf water, nutrient status, 
monitoring of crop growth, spatial variation informa-
tion of crop biochemical components and evaluation of 
crop yield [15, 16]. Hyperspectral remote sensing-based 
modeling can utilize visible and near-infrared reflectance 
(Vis–NIR) spectra to rapidly respond to changes in crop 
parameters [17]. However, Hyperspectral data are char-
acterized by a large amount of data and multicollinear-
ity and are usually composed of three types of spectral 
information: valid information, redundant information, 
and invalid information [18, 19]; and spectral preprocess-
ing constitutes an important step in spectral modeling 
analysis. Several spectral preprocessing methods, includ-
ing spectral continuum removal, spectral logarithmic, 
first/second-order derivative, and reciprocal logarithmic, 
and to improve prediction of crop parameters [20]. In 
general, integer differentials (first/second-order deriva-
tive) are mainly used to reduce the influence of baseline 
drift and isolate overleaping peaks. However, the inte-
ger differentials fail to account for some subtle details 
regarding the reflectance spectra [21, 22]. In contrast, 
fractional-order derivatives (FOD) not only refine the 
spectral spacing and amplify weak spectral absorption 
characteristics in a small interval but also reflect changes 

in spectral information to some extent [74, 75]. Further-
more, several studies analyzed the relationship between 
crop components and hyperspectral data based on inte-
ger differentials, identified spectral absorption regions 
(approximately 970 nm, 1200 nm, 1450 nm, 1940 nm, and 
2500  nm) of crop leaf moisture, followed by the selec-
tion of sensitive bands to predict LWC using partial least 
square regression (PLSR), Support vector regression 
(SVR), linear or non-linear functions, and their accuracy 
is validated [23, 24]. However, there is a lack of accurate 
research on the simulation models of LWC based on 
FOD.

The use of spectral indices is a simple and effective 
method for measuring surface properties, and the band 
optimization algorithm is widely used in the develop-
ment of hyperspectral techniques [12, 49]. Compared to 
single sensitive spectral data, this method has the ability 
to provide more spectral features and enhance the rela-
tionship between crop parameters and spectral features 
[25]. The spectral index constructed by combining two 
sensitive bands can improve the accuracy of crop param-
eter estimation [26, 27]. For example, the ratio of R1600 

nm/R820 nm was significantly correlated with the effective 
moisture thickness of leaves [28, 29], while the applica-
tion of R1450 nm/R1940 nm can provide a better estimate of 
plant water status [30]. The depth and area of the absorp-
tion valley in the spectral curve are more sensitive to the 
water content of the crop leaves, and there is a linear 
positive correlation between the characteristic absorp-
tion depth and the area of water near 1450 nm [31, 32]. 
DR1647 nm/DR1133 nm and DR1653 nm/DR1687 nm are based on 
derivative spectra and have higher fitting accuracy with 
crop leaf water compared with that of single band indi-
ces [33]. It was demonstrated that combining two bands 
within the 400–2400 nm range to construct spectral indi-
ces (such as RVI, NDVI, and DVI) can improve sensitivity 
to moisture levels in wheat leaves and enhance the mod-
eling accuracy [47, 49]. However, in practice, the band 
determination of the sensitivity index depends on the 
two-dimensional contour map, so the band optimization 
algorithm is mostly limited to the two-band index form 
[48]. In previous studies, few researchers have considered 
extending the spectral index method to more than two 
bands, particularly optimizing three-band indices and 
estimating crop leaf moisture by combining traditional 
spectral indices. Therefore, there is a need to further 
explore the integrated index based on the fusion of multi-
band spectral indices.

Remote sensing technology and its integration with 
machine learning are examples of effective and low-cost 
acquisition, particularly in the field of environmental 
studies and earth sciences for optimal management [69]. 
Several studies have been conducted on hyperspectral 
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remote sensing and inversion models. For instance, Fel-
egari et al., mapped the Cd concentration and introduced 
the most suitable regression models, including support 
vector regression (SVR), partial least square regression 
(PLSR), and artificial neural networks (ANN) [70]. A 
Wavelet-Attention convolutional neural network (WA-
CNN), Random forest (RF) and support vector machine 
(SVM) algorithms were utilized to automatically map 
the crops over the agricultural lands [71]. Seyed et  al., 
proposed the two architectures: the first model includes 
2D-CNN, skip connections, and LSTM-Attentions and 
the second model comprises 3D-CNN, skip connec-
tions, and Conv-LSTM Attention (The Input data given 
from MODIS products) [72]. Many strategies have been 
used to evaluate agricultural products, such as Deep-
Yield, CNN-LSTM, and Conv-LSTM. And it showed that 
machine learning is widely applied in remote sensing 
technology. However, In the above-mentioned research, 
there are more studies on the application of machine 
learning in multi-source remote sensing image, while 
there are fewer applications of high-precision modeling 
in ground-based hyperspectral.

The LWC and hyperspectral data were acquired on 
heading stage of spring wheat. The hypothesis of this 
study was that band-optimization algorithm using frac-
tional order derivative (FOD) was still effective, and thus, 
the indices (two-band index and three-band index) cal-
culated based on well processing spectrum will better 
predict LWC. The combined indices (spectral, two-band 
index and three-band index) will help to improve the 
accuracy of predictions of LWC values with the machine 
learning approaches at heading stage of spring wheat [31, 
34].

In this study, twenty seven different models were estab-
lished separately based on multiband spectral data (single 
bands, moisture indices, two-band spectral indices and 
three-band spectral indices) and machine learning (KNN, 
ANN and SVR). The main purpose of this investigation 
was to provide a future reference for hyperspectral moni-
toring of spring wheat leaf moisture under similar pro-
duction conditions. To achieve this purpose, the major 
sub-goals were defined:

(1) generate and analyze the spectral indices with FOD 
(with an interval of 0.2, ranging from 0 to 2) for 
LWC of spring wheat;

(2) to evaluate the performance of newly developed 
spectral indices and combination spectral indices 
(spectral, moisture indices, two-band index and 
three-band index) based on FOD for LWC at head-
ing stage of spring wheat;

(3) to compare the ability of twenty seven models 
established by the machine learning approaches to 

monitor LWC and to identify the optimal model 
among them.

Materials and methods
Location of the study area
The study was carried out in Fu-kang City, Xinjiang 
China, situated at an altitude of 577 m and characterized 
by a temperate continental dry climate, the study sites 
are depicted in Fig. 1. The experimental site is a typical 
arid farming area, and the site experiences an average 
annual temperature of 6.7 °C and an annual precipitation 
of 205  mm. During the summer season, temperatures 
are exceptionally high, with significant diurnal variations 
[34]. In the experimental site, sowing of spring wheat 
commenced on April 20, 2017 (day of the year (DOY) 96), 
utilizing 225 kg of seeds per hectare and 17 cm row spac-
ing. Diammonium phosphate (150  kg/ha), ammonium 
sulfate (150 kg/ha), and potash fertilizer (105 kg/ha) were 
applied during sowing. At the three-leaf stage, fertilized 
urea (20 kg) was applied, along with drip irrigation and 
750 to 900  m3/ha of irrigation in response to rainfall. 
Chemical methods were employed to remove weeds from 
the field, 100 ml of 20% Bromoxynil octanoate E.C. was 
sprayed before jointing stage of the spring wheat (from 
the 2-leaf stage) [34].

Field data collection and LWC determination
To ensure consistency in the measurements, the same 
treatments were maintained throughout the growing sea-
son, and a drip irrigation system was used to determine 
the timing and amount of water applied. The research 
area consists of 154 sampling plots, the size of each meas-
uring plot is 1 m × 1 m. Measurements were taken at nine 
distinct points within each plot (as illustrated in Fig. 2a). 
Daily average precipitation, maximum and minimum air 
temperature were collected in the field over the course of 
a year (as illustrated in Fig. 2b). In 2017, the highest daily 
average precipitation occurred in July, reaching 38  mm. 
The highest daily temperature occurred in June and 
August, while the lowest temperature occurred in Janu-
ary. The lowest temperature in June was 11℃.

We obtained plant samples (on June 04, 2017) from each 
small sampling area in sealed plastic bags and ensured 
that plant moisture was not lost. In the laboratory, the 
leaves and stems of spring wheat were separated, and the 
weight of each sample was measured with an electronic 
balance with a sensitivity of 0.0001 g and recorded as the 
fresh weight [35]. Then, all the samples were dried in an 
oven (80 ℃) for 36 h and weighed, and the dry weight was 
recorded. The 154 samples were randomly divided into two 
groups: one was a modeling sample (70%), which was used 
to establish a spring wheat leaf moisture content prediction 
model; the other was a verification sample (30%), which 
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was used to verify the established estimation model [36]. 
The leaf water content was calculated according to formula 
(1).

(1)LWC =
FW − DW

FW
× 100%,

where FW and DW are the fresh and dry weight (g) of 
spring wheat leaves, respectively.

Hyperspectral measurement and preprocessing
Spectral reflectance data were collected using the Ameri-
can ASD FieldSpec3 spectrometer, with a band range of 

Fig. 1 Geographical location of the study area and planting region for spring wheat. a Sampling area for field data. b, c Was spectral data collection

Fig. 2 Sample design and climate change. a Design of sampling points for field data in the study area. b For the 1-year study, daily average 
precipitation, maximum and minimum air temperature, and precipitation data were collected
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350–2500  nm [37]. The sampling interval was 1.4  nm 
for the range of 350–1000  nm and 2  nm for the range 
of 1000–2500  nm [38]. Data collection was carried out 
in cloudless and sunny weather, the collection time was 
10:00 am–02:00 pm, and whiteboard correction was per-
formed every 3–5 min [34]. Ten spectral curves were col-
lected for each sample with a measurement interval of 
0.1 s. The average value of these spectral curves was used 
as the spectral data for that particular sample.

The measured spectral data are preprocessed by 
removing the noisy edge bands (350–399 nm and 2401–
2500  nm) as well as the infrared bands (1355–1444  nm 
and 1777–1949 nm). Then, the remaining spectral curves 
are smoothed using mathematic morphological filtering 
[39], as shown in Fig.  3. Finally, the processed spectral 
data are used as the basis for calculating the spectral indi-
ces in the subsequent step.

Fractional order derivative
The concept of fractional order derivative (FOD) is 
an extension of the idea of integer order derivatives. 
This field is dedicated to studying the properties and 

applications of derivatives with arbitrary orders [40, 41], 
as noted by Ortigueira et  al. in 2011 and Pan et  al. in 
2013. The FOD method has been successfully employed 
in system modeling, signal filtering, and pattern recogni-
tion. There are three main types of FOD algorithms: Rie-
mann–Liouville (R–L), Grünwald–Letnikov (G–L), and 
Caputo [42], as described by Saadia et al. in 2016.

The Grünwald–Letnikov (G–L) definition is relatively 
simple and was used in our study. In general, the first 
derivative of a function is defined as follows:

where h is the increment of the independent variable x. 
Then the second derivative of function can be defined as 
follow:

(2)f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

(3)
f ′′(x) = lim

h→0

f ′(x + h)− f ′(x)

h

= lim
h→0

f (x + 2h)− f 2(x + h)+ f (x)

h2
.

Fig. 3 Preprocessing steps for hyperspectral data. a Mean raw spectra of all spring wheat leaf samples (n = 154) and (b) removal of the external 
disturbance spectra of all spring wheat samples. c The green shaded areas represent the standard deviations of the spectra
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If the derivative order of the function f (x) is increased 
to the higher order (v) , then the vth derivative order of 
the function f (x) can be expressed as:

By substituting the Gamma function into the binomial 
coefficient and extending the fractional order to non-
integer orders, we can obtain the G-L formula for the 
v-order fractional derivative in the interval [a, b].

where h is the step length and is set to 1 in this study, and 
[ (b− a/h) ] is the integer part of (b− a/h). Which can be 
converted to:

To develop spectra-FOD, Eq.  (5) was implemented 
using MATLAB R2014a (The MathWorks Inc.: Natick, 
MA, USA). The value of v was set to values between 0 
and 2 in increments of 0.2 at each step. It is notewor-
thy that v = 0 indicated that the raw reflectance was not 
processed.

Spectral index selection
The spectral index comprises several narrow or wide 
bands combined through some mathematical transfor-
mation, which not only considers the interaction between 

(4)f v(x) = lim
h→0

1

hv

v
∑

m=0

(−1)

m
( v

m

)

f (x −mh).

(5)

f v(x) = lim
h→0

1
hv

[(b−a/h)]
∑

m=0
(−1)

m
�(v + 1)

m!�(v −m+ 1)
f (x −mh),

(6)

dvf (x)
dxv

≈ f (x)+ (−v)f (x − 1)+
(−v)(−v + 1)

2
f (x − 2)

+ · · ·
�(−v + 1)

m!�(−v +m+ 1)
f (x −m).

bands but also improves the response to the measured 
attributes to some extent. Previous studies have mostly 
used two-band spectral indices for environmental mode-
ling and attribute quantification. Based on previous stud-
ies, two-band water vegetation indices sensitive to water 
content in crop leaves were collected. The 12 spectral 
indices selected in this study are listed in Table 1.

The 12 moisture indices listed in Table 1 are commonly 
used and are sensitive spectral indices for assessing the 
water content in crop leaves. These spectral indices have 
fixed bands and serve as the reference for comparing and 
analyzing the performance of optimized band combina-
tions in this study. The main focus is on assessing the 
sensitivity strength between traditional spectral indices 
and band-optimized spectral indices.

Recent studies have calculated the correlation coeffi-
cients between two given bands (λ1 and λ2) in the Vis–
NIR range and the attributes to be measured and have 
displayed the results visually [48, 49]. This two-dimen-
sional correlation analysis method is beneficial for visu-
alizing the external response and internal meaning of 
spectra. For example, the normalized difference vegeta-
tion index (NDVI) places the strongest reflection band 
and the weakest reflection band in the numerator and 
denominator, respectively, and further enlarges the gap 
between the bands by a normalized ratio operation to 
maximize the sensitivity of the attributes of the objects to 
be measured [50, 51].

The addition of a third band in a specific sensitive 
region to the two-band spectral index can often improve 
the accuracy of the index estimation, enhance anti-inter-
ference ability, and eliminate the saturation phenomenon 
of commonly used two-band indices [52, 53]. In this 
study, we used the entire dataset and band optimization 
algorithm to determine the best wavelength combination. 

Table 1 Traditional two-band combined spectral index

R represents spectral reflectance, λ stands for wavelength

Moisture index Abbreviation Equation References

Water index WI R900 nm/R970 nm [43]

Water band index WBI R970 nm/R900 nm [44]

Floating position water band index FWBI R900 nm/Min(R930 nm-980 nm)

Simple ratio water index-1 SRW-1 R858 nm/R1240 nm

Simple ratio water index-2 SRW-2 R1070 nm/R1340 nm

Moisture stress index MSI R1600 nm/R820 nm [45]

Moisture stress index-1 MSI-1 R870 nm/R1350 nm [44]

Normalized different infrared index NDI-1 (R850 nm − R1650 nm)/(R850 nm + R1650 nm)

Normalized different vegetation index NDVI (R858 nm − R648 nm)/(R858 nm + R648 nm)

Normalized different water index-1 NDWI (R858 nm − R2130 nm)/(R858 nm + R2130 nm)

Normalized different water index-1 NDWI-Hyp (R1070 nm − R1200 nm)/(R1070 nm + R1200 nm) [46]

Normalized different mass index NDMI (R1649 nm − R1722 nm)/(R1649 nm + R1722 nm) [47]
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In Table 2,  Rλ1,  Rλ2, and  Rλ3 represent the spectral reflec-
tance of bands λ1, λ2, and λ3 in the range of 400–2400 nm.

In order to calculate spectral indices in two bands and 
three bands in batch, we have designed an index cal-
culation software based on the Java environment. The 
software version is 1.0, and the registration number is 
2018Sr281300.

Overall workflow
In this study, the FOD was used for leaf spectral process-

ing, and developed new two-band and three-band indices 
using the band-optimization algorithm, and collectively 
referred to multiband spectral indices (MBSIs). Addition-
ally, an integrated index is created by combining 

Hyperspectral data

Plant samples to Lab

Determination of LWC

Preprocessing data Fractional order derivative

Spectral-Pro Spectral-Fod

Spectral indices were 

calculated and correlated 

with LWC

Sensitive parameters 

Single-band-pro Two-band-pro

Three-band-pro

Single-band-Fod Two-band-Fod

Three-band-Fod

Verification of 

model accuracy

KNN, K-Nearest Neighbor

ANN, Artificial Neural Network

SVR, Support Vector Regression

Combining Fod and ML

for LWC estimation of 

Spring Wheat by 

Hyperspectral indices

traditional water indices (MIs) with MBSIs to explore 
whether the combination of different spectral indices 
improves the accuracy of estimating LWC.

Calibration strategies
The K-nearest neighbor KNN algorithm is used in a 
variety of classification and regression tasks in machine 

learning. The key idea behind its machine learning 
applications is that points tend to share the properties 
of nearby points [10] (the distance function from one 
point to another often depends on the context-some 

Table 2 The vegetation index of different bands and multiple combinations

R represents spectral reflectance, λ stands for wavelength

Type Spectral index Equation References

Two-band index (2BI) Ratio vegetation index (RVI) Rλ1/Rλ2 [54, 55]

Normalized difference vegetation index (NDVI) (Rλ1 − Rλ2)/(Rλ1+Rλ2)

Difference vegetation index (DVI) Rλ1 −  Rλ2

Three-band index (3BI) 3BI-1 Rλ1/(Rλ2×Rλ3) [56, 57]

3BI-2 Rλ1/(Rλ2+Rλ3)

3BI-3 (Rλ1 − Rλ2)/(Rλ2+Rλ3)

3BI-4 (Rλ1 − Rλ2)/(Rλ2 − Rλ3)

3BI-5 (Rλ2+Rλ3)/Rλ1

3BI-6 (Rλ1 − Rλ2)/[(Rλ1 − Rλ2) −  (Rλ2 − Rλ3)]

3BI-7 (Rλ1 − Rλ2) −  (Rλ2 − Rλ3)
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common ones include Euclidean distance between par-
ticles in space, Hamming distance between words, etc.) 
In a regression setting (where regression is a machine 
learning technique commonly used to obtain continu-
ous outputs as opposed to discrete outputs in classifi-
cation), an average (or maximum or minimum) of the 
KNN is typically used to determine the value of the var-
iable being regressed [76].

Explanation of how KNN works is discussed below: 
(1) Selecting the optimal value of K; (2) Calculating 
distance; (3) Finding Nearest Neighbors; (4) Voting for 
Classification or Taking Average for Regression. In the 
regression problem, the class label is calculated by tak-
ing average of the target values of K nearest neighbors. 
The calculated average value becomes the predicted 
output for the target data point.

Artificial neural network (ANN) is a powerful tool 
used in computer science to solve machine learning 
problems [58]. It is commonly used for regression and 
classification tasks. ANN models simulate the electrical 
activity of the brain and nervous system. In generally, 
it can fit any non-linear function through a reasonable 
network structure configuration [59, 77].

ANNs seek to replicate the capabilities of biological 
neural networks. A node is used to describe an artifi-
cial neuron. Like its biologic counterpart, these nodes 
receive input from synapses and send output when a 
weight is exceeded [60]. Single-layer ANNs have one 
layer of input nodes; multilayer ANNs have multiple 
layers of nodes, including hidden nodes. Both single 
and multilayer artificial neural networks eventually 
trigger an output node to fire: this output node makes 
the decision.

Support vector regression (SVR) is a type of support 
vector machine (SVM) that is used for regression tasks. 
It tries to find a function that best predicts the continu-
ous output value for a given input value [61, 62]. The 
basic steps for building an SVR model are as follows: (1) 
Data preparation: Collect and preprocess the training 
data, including feature selection, data cleaning, and nor-
malization; (2) Feature scaling: Scale the input features to 
ensure they have similar ranges and magnitudes. Com-
mon techniques include standardization or normaliza-
tion; (3) Model selection: Choose an appropriate SVR 
variant and kernel function; (4) Model training: Use the 
training data to estimate the model parameters. SVR 
uses a subset of the training data, called support vectors, 
to define the regression line or hyperplane; (5) Hyper-
parameter tuning: Optimize the hyperparameters of the 
SVR model to improve its performance; (6) Model evalu-
ation: Assess the performance of the trained SVR model 
using appropriate evaluation metrics.

Verification of model accuracy
Commonly used evaluation indicators for model estima-
tion capability include coefficient of determination (R2), 
root mean square errors (RMSE), and relative percent 
deviation (RPD).

(1) A high coefficient of determination (R2), indicating 
a strong linear relationship.

(2) Low Root Mean Square Errors (RMSE) of the mod-
el’s variables, indicating that the low error between 
measured and predicted data.

(3) Relative Percent Deviation (RPD), indicating the 
predictive ability of the model. Its computation pro-
cess is the ratio between standard deviation (SD) 
and standard error of prediction (SEP). According 
to the predictive ability of the model, the RPD is 
divided into three categories: (I) The value of RPD 
exceeds 2.0, indicating a model with better predic-
tive ability. (II) The RPD values ranging from 1.4 to 
2.0 represent a model with general predictive abil-
ity. (III) The RPD value is less than 1.4, indicating 
that it has poor predictive ability.

A model with an R2 approaching 1, an RMSE approach-
ing 0, and an RPD greater than or equal to 2.0 exhibits 
estimation ability and stability [49].

Note: xi and yi are measured and predicted values, 
respectively; x  and y  represent the means measured and 
predicted values, respectively; and n is the number of 
samples. SD and SEP represent the standard deviation 
and Standard error of prediction, respectively.

Results
Leaf water content and FOD hyperspectral curves
Figure  4 displays the statistical characteristics of the 
measured LWC for the entire dataset, including the 
calibration and validation subsets. The analysis reveals 
that the whole dataset exhibited a wide variation, with a 
minimum, maximum, and coefficient of variation (CV) 
of 64.94%, 91.54%, and 4.58%, respectively, indicating a 
diverse range of soil samples in the study area. The range 
of LWC contents observed in the validation dataset was 

R2 =





�N
i=1(xi − x)(yi − y)

�

�N
i=1 (xi − x)2 +

�N
i=1 (yi − y)2





2

,

RMSE =

√

∑N
i=1 (γi − βi)

2

n
,

RPD = SD/SEP.
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consistent with that of the calibration dataset. The mean, 
standard deviation (SD), and CV values from these three 
datasets were relatively similar, suggesting that the cali-
bration and validation subsets are representative of the 
entire population.

The spectral profiles of the spring wheat canopy cor-
responding to different moisture contents of leaves are 
presented in Fig. 5a. The reflectance changed due to the 
difference in leaf water content, and a decreasing trend 
was observed in spectral reflectance with an increase 
in leaf water content. The slopes at 930–970  nm and 

1100–1200  nm increased with an increase in leaf water 
content. Among them, wavelengths of approximately 
970  nm and 1200  nm were considered better choices 
for estimating leaf water content due to the absence of 
atmospheric disturbance.

Figure 5b shows the canopy spectral profiles of spring 
wheat treated with differentiation at order 0–2. Each 
order of differential spectral profiles had a gradual pro-
cess with an increase in order, resulting in a decrease 
in spectral reflectance. The commonly used first- and 
second-order differentiation of spectral profiles differs 

Fig. 4 Descriptive statistics of spring wheat leaf water content. Max, Min, CV and SD represent the maximum, minimum, coefficient of variation 
and standard deviation, respectively

Fig. 5 Canopy spectral curves of spring wheat. a Canopy spectral curves of spring wheat based on different water contents. b Canopy spectra 
of spring wheat with 0.0–2.0 order differentials
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significantly from the original one, and the information 
between them may be missed. On the other hand, frac-
tional differentiation can exploit intermediate informa-
tion, which can further extract and utilize hyperspectral 
information.

One‑dimensional correlation analysis based on FOD
Based on the above analysis, a Pearson correlation analy-
sis was conducted on the water content of spring wheat 
leaves and 0–2 order differential reflectance, resulting in 
the distribution of correlation coefficients at each wave-
length. As illustrated in Fig.  6a, the differential spectral 
curves of each order displayed a gradual change with 
increasing differential order, whereas the correlation 
coefficient curves exhibited increasing fluctuations and 
lacked strong regularity. The number of bands whose cor-
relation coefficients passed the 0.01 level significance test 
displayed an initial increasing and then decreasing trend.

The 0–0.8 order differential spectral curves displayed 
little fluctuation and similar shapes. The number of bands 
with correlation coefficients gradually increased by pass-
ing the 0.01 level significance test (critical value ± 0.201), 
mainly concentrated in the range of 700–1100  nm, 
and exhibited positive and negative correlations with 
leaf water content (Fig.  6a). The maximum correlation 

coefficient appeared at 778 nm (Fig. 6b) using a 0.8-order 
differential, reaching 0.35. The fluctuation of 1.0–2.0 
order differential spectral curves gradually increased, and 
the number of bands with correlation coefficients passing 
the 0.01 horizontal significance test gradually decreased 
(Fig.  6c), with the absolute values of correlation coef-
ficients decreasing gradually. The absolute values of the 
correlation coefficients displayed an initial increase and 
then a decreasing trend, with the peak value appearing in 
the 0.8-order differential spectral reflectance. This finding 
indicates that the best order between 400 and 2400 nm is 
the 0.8 order.

The above results show that the fractional differential 
of the spring wheat canopy spectrum has some advan-
tages in screening sensitive bands compared with the 
commonly used first- and second-order differentials and 
can more accurately find the bands that have a higher 
correlation with LWC.

Two‑dimensional correlation analysis based on FOD
The correlation between 12 traditional moisture indi-
ces and LWC is shown in Table  3. The analysis showed 
that the water vegetation index and LWC had a signifi-
cant correlation, both passing the 0.01 significance level 
(ρ < 0.01), and the correlation coefficient is between 

Fig. 6 Color map of correlation coefficients (r) and statistical analysis. a Correlation coefficients between LWC and spectral reflectance based on 0.0 
to 2.0 order differentials. b Maximum-minimum correlation coefficient for each order. c Number of bands with correlation coefficients tested by 0.01 
level significance
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− 0.22 and 0.33. The correlation coefficient between the 
FWBI and LWC is 0.33**, which means that the correla-
tion between the FWBI and LWC is higher than that of 
the traditional water spectral index. The results show that 
the performance of the traditional water spectral index 

varies with geographic environment. Therefore, it is nec-
essary to find a better spectral vegetation index for sensi-
tive combinations.

Pearson correlation analysis was conducted between 
the DVI and LWC utilizing fractional differential pro-
cessing, and the results are presented in the form of a 
heatmap in Fig. 7. An analysis of Fig. 7I. revealed that the 
DVI calculated at each order displayed varying degrees 
of sensitivity to LWC. Specifically, the correlation coeffi-
cient of the DVI to LWC calculated at orders 0–0.8 first 
decreased and then increased, reaching its highest corre-
lation at order 0.8 with an absolute correlation coefficient 
value of 0.69. For calculations at orders 1–2, the correla-
tion coefficient of DVI on LWC gradually decreased, and 
the absolute values of the correlation coefficient ranged 
from 0.46 to 0.69.

An analysis of Figs.  8I and 9I revealed that the NDVI 
and RVI, respectively, calculated at each order exhib-
ited varying degrees of sensitivity to LWC. Specifically, 

Table 3 Correlation coefficient between moisture indices and 
LWC

** and * represent the 0.01 level and 0.05 level, respectively

Variable Correlation 
coefficient

Variable Correlation 
coefficient

WI + 0.22** MSI-1 0.24**

WBI − 0.22** NDI 0.20**

FWBI − 0.33** NDVI 0.23**

SRWI-1 + 0.18* NDWI 0.19*

SRWI-2 + 0.25** NDWI-Hyp 0.21**

MSI − 0.20** NDMI 0.13

Fig. 7 Two-dimensional correlation coefficients (r) between LWC and DVI in the training dataset at eleven derivative orders. a Raw data, b 0.2-order, 
c 0.4-order, d 0.6-order, e 0.8-order, f 1.0-order, g 1.2-order, h 1.4-order, i 1.6-order, j 1.8-order, k 2.0-order, and l maximum–minimum correlation 
coefficient for each order



Page 12 of 24Zununjan et al. Plant Methods           (2024) 20:97 

the NDVI and RVI calculated at orders 0–0.8 showed a 
decreasing trend followed by an increasing trend in the 
correlation coefficient of LWC and displayed the highest 
correlation at order 0.8, with absolute correlation coef-
ficients of 0.68 and 0.71, respectively. For calculations at 
orders 1.0–2.0, the correlation coefficients of the NDVI 
and RVI for LWC gradually decreased, with absolute cor-
relation coefficient values ranging from 0.32 to 0.68 and 
0.34 to 0.71, respectively. The above analysis indicates 
that the RVI, NDVI, and DVI calculated using 0 to 0.8-
order spectral reflectance presented higher correlation 
coefficient in Figs. 7, 8I, 9. The band combination tested 
for significance at 0.01 mainly focused on the range of 
400–1300 nm, suggesting that this band region can pro-
vide more band combination information for changes 
in leaf moisture. Therefore, the next step is to utilize 
the 400–1300  nm band information to calculate the 

three-band combination vegetation index and examine 
its sensitivity trend to LWC.

Three‑dimensional correlation analysis based on FOD
The correlation analysis between fractional-order dif-
ferential spectroscopy and the spectral index revealed 
that spectral reflectance based on 0.8-order pretreat-
ment exhibited the highest correlation with LWC. 
The sensitive range of the two-band spectral index 
based on the 0.8-order differential to the LWC was 
400–1300  nm. To calculate the three-band spectral 
index, 0.8-order spectral data within the range of 400–
1300  nm were selected. Figure  10. shows the correla-
tion heatmap between the three-band spectral index 
and LWC. Specifically, Fig.  10a–g represent the corre-
lation results between LWC and all possible combina-
tions of three-band vegetation indices within the range 
of 400–1300 nm, while Fig. 10a*–g* represent the best 

Fig. 8 Two-dimensional correlation coefficients (r) between the LWC and NDVI in the training dataset at eleven derivative orders. a raw data, b 
0.2-order, c 0.4-order, d 0.6-order, e 0.8-order, f 1.0-order, g 1.2-order, h 1.4-order, i 1.6-order, j 1.8-order, k 2.0-order, and l maximum–minimum 
correlation coefficient for each order. (Note: the reason for the white areas in Fig. 11-k is due to limited correlation data and a dispersed distribution, 
making it difficult to discern the presence of data in the mapping results)
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three-band vegetation index, which is the combination 
of the most sensitive bands to LWC correlation.

After conducting a sensitivity analysis on three band 
vegetation indices with respect to LWC, the associa-
tions between 3BI-1 and 3BI-2 with LWC were ± 0.51 
and ± 0.54, respectively. However, there was no sig-
nificant increase in the correlation coefficient when 
compared to vegetation indices in the two bands. On 
the other hand, 3BI-3, 3BI-4, 3BI-5, 3BI-6, and 3BI-7 
showed significantly higher correlations with LWC, all 
of which had values above 0.70. Among them, 3BI-7 
exhibited the highest correlation with LWC, with an 
absolute coefficient value of 0.76. Overall, the correla-
tion coefficient showed some improvement when com-
pared to vegetation indices in the two bands.

Combining the data from Fig.  10, the optimal three 
band combination information was statistically deter-
mined, and among the operations of spectral reflectance 

based on the 0.8-order differential treatment for three 
band vegetation indices, the optimal three band combi-
nation information is shown in Table  4. The reflectance 
corresponding to the wavelengths (929 nm, 851 nm, and 
446 nm) was calculated in the form of the (R929 nm − R851 

nm)  −  (R851 nm  −  R446 nm) combination, which could 
enhance the susceptibility degree to LWC, indicating that 
the single band information was weaker than the result of 
the combined band information and that the three band 
vegetation index was better than the two band vegetation 
index in terms of the combined band information.

LWC prediction model based on ML
According to the correlation coefficient values and sig-
nificance test (p < 0.01), the important wavebands were 
identified and extracted efficiently. K-nearest neigh-
bor (KNN), Artificial neural network (ANN) and sup-
port vector machine (SVM) models were constructed to 

Fig. 9 Two-dimensional correlation coefficients (r) between LWC and RVI in the training dataset at eleven derivative orders. a Raw data, b 0.2-order, 
c 0.4-order, d 0.6-order, e 0.8-order, f 1.0-order, g 1.2-order, h 1.4-order, i 1.6-order, j 1.8-order, k 2.0-order, and l maximum–minimum correlation 
coefficient for each order (the reason for the white areas in Fig. 12k is due to limited correlation data and a dispersed distribution, making it difficult 
to discern the presence of data in the mapping results)
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Fig. 10 Three-dimensional correlation coefficients (r) between the LWC and three-band indices based on 0.8 order differentials. a 3BI-1, b 3BI-2, c 
3BI-3, d 3BI-4, e 3BI-5, f 3BI-6, and g 3BI-7
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Fig. 10 continued
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quantify the LWC, and an independent validation data-
set was used to verify the quantitative capabilities of the 
models. In this study, 27 models were constructed based 
on machine learning, and the performances of all models 
are shown as scatter plots (Fig. 11).

Research shows that the model accuracy R2
pre of the 

sensitive single-band reflectance estimation model of 
LWC can reach 0.32, and the  RMSEpre is 5.03%. The 
model accuracy R2

pre of the spectral data after fractional 
order differential processing can reach 0.61, and the 
 RMSEpre is 2.49%. The model accuracy R2

pre of estimating 
LWC using the 12 existing spectral indices reached 0.37, 
and the  RMSEpre was 5.43%. Compared with the single-
band reflectance, the model accuracy was improved. 
The model accuracy R2

pre of estimating with two-band 
optimized spectral indices (DVI, RVI and NDVI) was 
the highest, reaching 0.64, and the  RMSEpre was 2.35% 
(Table  5). The accuracy of the estimation model was 
significantly enhanced, indicating that optimizing the 
combination of spectral indices can improve the model’s 
estimation ability.

After 0.8 spectral processing, the model accuracy R2
pre 

of the constructed three-band spectral index estimation 
reached 0.83, and the  RMSEpre was 2.21%. The model 
accuracies R2

pre of FWBI + 2BI-FOD and FWBI + 3BI-
0.8 reached 0.81 and 0.86, respectively, and the  RMSEpre 
values were 2.25% and 2.11%, respectively. The existing 
spectral index and the MBSI index based on fractional 
order differentiation significantly improved the estima-
tion accuracy and reduced the error.

The results of the accuracy verification of the estimated 
LWC model constructed via sensitive bands, the existing 
moisture indices, two-band and three-band optimized 
indices. Screening was conducted on 27 estimation 
models constructed for 9 data types, and the results of 
the best estimation models corresponding to each data 
type were added to the part. Scatter plots of measured 
and predicted values were showed in Fig. 11. Among the 
27 models, the models based KNN and FOD algorithm 
showed better prediction ability. In this study, the FWBI-
3BI-0.8 order based on KNN illustrated the highest R2 
accuracy, the lowest error (RMSE) and the greatest esti-
mation ability (RPD).

Fig. 10 continued

Table 4 Optimum three-band combination information statistics

“r” represents the correlation coefficient

Type Fractional order Spectral index Optimum combination band r

Three-band index (3BI) 0.8-order 3BI-1 583 nm 656 nm 479 nm 0.51

3BI-2 636 nm 1167 nm 564 nm 0.54

3BI-3 766 nm 478 nm 1042 nm 0.74

3BI-4 1129 nm 1175 nm 471 nm 0.73

3BI-5 814 nm 929 nm 525 nm -0.72

3BI-6 1156 nm 1214 nm 802 nm 0.75

3BI-7 929 nm 851 nm 446 nm -0.76
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Fig. 11 Scatter plot of measured and predicted values. a The KNN estimation model based on Raw-data, the wavelength (769 nm–924 nm). b 
The KNN estimation model based on R-FOD, the wavelength (711 nm–8754 nm).the FWBI and  2BI-FOD. c The KNN estimation model based on exist 
moisture indices. d The KNN estimation model using two-band optimized indices. e The KNN estimation model using moisture index and two-band 
optimized index. f The KNN estimation model using two-band optimized indices based on FOD. g The KNN estimation model using moisture index 
and two-band optimized indices based on FOD. h The KNN estimation model using three-band optimized indices based on 0.8-order. i The KNN 
estimation model based on the FWBI and three-band optimized indices based on 0.8-order
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Discussion
Hyperspectral fulfilled the characteristics of multiple 
bands, strong continuity, and large information [64]. 
However, it was easy to produce overfitting problems, 
which can affect the predictive performance of models 
[65]. Therefore, in the Vis–NIR analysis of spring wheat 
properties, it is important to seek efficient methods to 
process the raw spectrum and reduce the number of 
redundant bands has become an important focus [65, 
66].

Spectral derivative preprocessing techniques can 
remove baseline drift effects, reduce overlapping spec-
tral bands, solve overlapping peaks, improve spectral 
resolutions and sensitivities, and eliminate interferences 
resulted from other background factors [31]. In previous 
studies, integer order derivative was commonly used for 

preprocessing the raw spectrum [49, 64, 65]. Wherein 
FOD could vary at a small interval to keep the spectral 
information changing slowly, further extract the effective 
information and allow us to detect more characteristics 
of certain spectral signal than integer order derivatives 
[18, 49]. And then some useful spectral information 
should not be ignored. The use of FOD improved corre-
lation between LWC and spectrum, the best correlation 
coefficient for LWC was achieved using 0.8-order reflec-
tance (Fig.  6b). These results provide the potential to 
establish a more LWC estimation model.

Optimal spectral indices, which are calculated based on 
the sensitive wavebands related to characteristic attrib-
utes, can easily detect subtle absorption peaks and can 
be used to predict different spring wheat properties [63]. 
A number of algorithms have been proposed to optimize 
two-band and three-band combinations to obtain spring 

Fig. 11 continued
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wheat properties of interest. In this study, we optimized 
the two-band and three band spectral indices based on 
FOD. According to the correlation analysis, the LWC 
data and optimized indices (two/three-band indices) 
have a better correlation, correlation coefficients (r) of 
 RVI(1156  nm, 1628  nm) was −  0.71** and 3BI-7(929  nm, 851  nm, 

446 nm) was − 0.76**, respectively, and the optimized indi-
ces based on FOD was significantly better than that of the 
exist indices (shown in Fig. 12). The results showed that 
there was great potential in using the band optimization 
algorithm and FOD to estimate LWC.

In this study, the purpose of calculating two-dimen-
sional and three-dimensional indices is to effectively 
integrate relevant spectral signals and identify better 
band combinations. The two-band and three-band indi-
ces encompass the visible and near-infrared spectral 
ranges. It might be that moisture content can alter the 

absorption and reflection properties of leaves in the vis-
ible spectrum, while in the near-infrared spectrum, mois-
ture content primarily affects light scattering. As leaf 
moisture is lost, the biological activities of the leaves are 
inhibited, preventing normal leaf functioning, leading to 
an increase in reflectance in the spectral curve of leaves 
in the visible and near-infrared regions as moisture loss 
progresses [73].

Simultaneously, we constructed 27 models for esti-
mating the LWC in spring wheat based on multiband 
spectral data (single bands, moisture indices, two-band 
spectral indices and three-band spectral indices) and 
machine learning (KNN, ANN and SVR). And chosen 
3 metrics to evaluate the performance of the algorithm, 
including R2, RMSE, and RPD. The range of R2 is [0, 1], 
where R2 = 1 indicates the model perfectly predicted the 
data, and R2 = 0 indicates the model cannot explain the 

Table 5 The accuracy and validation of the models based on multiband spectral data

“sim” stands for simulation, “pre” stands for prediction

Data‑type Variable Method Training dataset Validation dataset RPD

R2
sim RMSEsim R2

pre RMSEpre

Raw-data The reflectance of 154 corresponding 
to the wavelength (769–924 nm)

KNN 0.41 4.06 0.32 5.03 1.61

SVR 0.25 5.21 0.21 5.62 1.50

ANN 0.19 5.39 0.11 6.07 1.33

R-FOD Reflectance of 165 at 0.8 order 
for wavelength 711–875 nm

KNN 0.65 2.42 0.61 2.49 1.96

SVR 0.55 3.11 0.48 4.01 1.92

ANN 0.46 4.18 0.37 4.56 1.84

MIs The existing 12 moisture indices KNN 0.46 4.12 0.37 5.43 1.75

SVR 0.21 5.19 0.17 5.71 1.69

ANN 0.22 4.68 0.16 6.26 1.55

2BI DVI(1046, 1057 nm)
RVI(1272, 1279 nm)
NDVI(1272, 1279 nm)

KNN 0.67 2.56 0.64 2.35 2.01

SVR 0.45 3.47 0.40 4.23 1.88

ANN 0.39 4.21 0.28 4.86 1.76

FWBI-2BI FWBI(900,930,980 nm)
RVI(1272, 1279 nm)

KNN 0.82 2.21 0.80 2.26 2.13

SVR 0.78 2.28 0.74 2.32 2.09

ANN 0.81 2.24 0.79 2.27 2.11

2BI-FOD DVI(698, 1274 nm)
RVI(1156, 1628 nm)
NDVI(1182, 1149 nm)

KNN 0.81 2.26 0.79 2.32 2.12

SVR 0.79 2.31 0.72 2.38 2.06

ANN 0.81 2.29 0.78 2.34 2.08

FWBI-2BI-FOD FWBI(900,930,980 nm)
RVI(1156, 1628 nm)

KNN 0.84 2.20 0.81 2.25 2.15

SVR 0.80 2.28 0.76 2.36 2.08

ANN 0.82 2.24 0.79 2.30 2.11

3BI-0.8 order 3BI-1(583,656,479 nm)
3BI-2(636,1167,564 nm)
3BI-3(766,478,1042 nm)
3BI-4(1129,1175,471 nm)
3BI-5(814,929,525 nm)
3BI-6(1156,1214,802 nm)
3BI-7(929,851,446 nm)

KNN 0.85 2.18 0.83 2.21 2.16

SVR 0.81 2.23 0.79 2.35 2.11

ANN 0.83 2.20 0.80 2.24 2.13

FWBI-3BI-0.8 order FWBI(900,930,980 nm)
3BI-7(929,851,446 nm)

KNN 0.89 2.05 0.86 2.11 2.65

SVR 0.85 2.24 0.83 2.26 2.13

ANN 0.86 2.19 0.84 2.21 2.19
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variance. RMSE is a metric used to measure the predic-
tive accuracy of a predictive model on continuous data. 
The value of RPD exceeds 2.0, indicating a model with 
better predictive ability.

The integrated index (MBSI) allows high-preci-
sion estimation of LWC, which acquired the high-
est coefficient of determination, the lowest root mean 
square error and the best predictive ability (R2 = 0.86, 
RMSE = 2.11% and RPD = 2.65). There is some vari-
ability in the fitting accuracy of all models, and the 
estimation capability of models could be ranked as fol-
lows:  Model(KNN based FWBI+3BI+0.8-order) >  Model(KNN based 

3BI+0.8-order) >  Model(KNN based FWBI+2BI+FOD) >  Model(KNN 

based 2BI+FOD) >  Model(KNN based FWBI+2BI) >  Model(KNN 

based 2BI) >  Model(KNN based R-FOD) >  Model(KNN based 

MIs) >  Model(KNN based Raw data).
The reasons may be described as follows:

(1) Spectral information is often easily affected by the 
leaf surface, leaf structure (lignin, cellulose, etc.) 
and the external environment, and the raw spectral 
data contains complex interference information. 
Simultaneously, the spectral information has a cer-
tain regional nature due to the variety and type of 
plants. Therefore, the estimation accuracy of single-
band reflectance and the existing 12 moisture indi-
ces is different.

(2) The spectral data can be refined by fractional dif-
ferential processing and highlight the hidden infor-

mation, which is helpful for screening the most 
sensitive bands, and therefore, the two-band and 
three-band optimized spectral indices can highlight 
the most influential indicators in the region, thus 
eliminating noise information and obtaining a more 
effective models.

Overall, our results show that there is great potential in 
using the FOD and ML to estimate LWC, and the opti-
mal model accuracy was comparable to those reported 
from studies. Alireza Sharifi et  al. used the Sentinel-1 
SAR data and three methods (MLR, RVR and SVR) to 
estimate rice parameters. The results indicated that the 
nonparametric methods (SVR and RVR) is much bet-
ter than that of the parametric regression (MLR) for rice 
parameter estimations [78]. Alireza Sharifi et  al. used 
Transformed chlorophyll absorption in reflectance index 
(TCARI) and Modified chlorophyll absorption in reflec-
tance index (MCARI) to determine crop nutrition status. 
The results indicated that the performance of TCARI 
and MCARI was allowed the creation of high accuracy 
crop nutrition maps, the use of the near infra‐red and 
red‐edge bands led to better results [79]. The findings of 
this study are similar in comparison, as the band combi-
nations in this study also focus on the near-infrared and 
shortwave infrared regions, highlighting the performance 
ability of spectral indices. Previous research on the esti-
mation of the moisture content of crop leaves from vis-
ible and near-infrared reflectance was shown in Table 6. 

Fig. 12 The relationship between multiband spectral data and LWC



Page 21 of 24Zununjan et al. Plant Methods           (2024) 20:97  

After analyzing the methods of constructing models and 
predicting accuracy, four models, Model-WC+FOD+ANN, 
Model-RVI437,466  nm+NDVI747,1956  nm+BPNN, Model-x-LW+KNN 
and the integrated Model-MBSI+MI+FOD+KNN, were found 
to have higher estimation capabilities. Except for the 
comparative Model-RVI437,466  nm+NDVI747,1956  nm+BPNN, 
Model-MBSI+MI+FOD+KNN has higher estimation accuracy. 
Thus, the best performance of Model-MBSI+MI+FOD+KNN 
can realize the regional-scale monitoring of wheat canopy 
water status. Xuenan Zhang et al. used a machine algo-
rithm of gradient boosted decision tree (GBDT) based 
on the combination of  ND(1287,1673) and crop water stress 
index (CWSI), the optimal prediction accuracy (R2 = 0.86, 
RMSE = 0.01) of rice LWC was produced. In previous 
studies, few researchers have considered extending the 
spectral index method to more than two bands, particu-
larly optimizing three-band indices and estimating crop 
leaf moisture by combining traditional spectral indices.

Currently, domestic and foreign research has 
achieved certain results, demonstrating the feasibil-
ity of using hyperspectral technology to monitor crops 
in farmlands. Previous studies often used complex 
algorithms to construct estimation models and screen 
feature bands. For instant, the precision of estimating 
LWC in winter wheat by combining stepwise regression 
method and partial least squares (SRM-PLS) or PLS 
based on the relational degree of grey relational analy-
sis (GRA) between water vegetation indexes (WVIs) 
and LWC [67, 68]. However, such algorithms have poor 
operability and are not conducive to obtaining fea-
ture bands intuitively and efficiently. In this study, the 
computational complexity of our proposed algorithm 
are slightly more easy; we extracted moisture-sensi-
tive bands by preprocessing the raw spectrum using 
spectral information from different leaf positions and 

canopy layers to select the optimal spectral characteri-
zation information for wheat moisture status. We used 
the optimal modeling method for feature band selec-
tion to construct the optimal wheat moisture estima-
tion models. Moreover, we achieved good results in the 
sensitivity band screening of the wheat leaf moisture 
spectral estimation model, the influence of the number 
of modeling bands on the accuracy of the estimation 
model, and the monitoring of moisture spectra in dif-
ferent leaf positions. This result indicates that in future 
research, it will be necessary to develop and utilize 
spectral pretreatment techniques to reduce the spec-
tral response of LWC in order to achieve the purpose 
of rapid and nondestructive estimation of other spring 
wheat property parameters. Esmaeili et al. proposed the 
band selection method based on CNN embedded GA 
CNNeGA, the evaluation of the proposed method and 
the obtained results are satisfactory [81]. This method 
also provides strong assistance for our future screening 
of hyperspectral data and spectral indices.

Limitations of this study: Spring wheat exhibits dif-
ferent hyperspectral characteristics in different regions 
due to the influence of climate, leaf size, shape, growth 
period and other factors, therefore, many factors must 
be considered when selecting the leaf moisture sensitiv-
ity index of spring wheat. First, the data collected from 
154 sampling points is limited, and further increasing 
the data volume is necessary to ensure the stability and 
applicability of the estimation model. Second, this study 
is limited to the heading stage of wheat, and it is neces-
sary to validate the three-band indices and models in 
each growth stage, lacking systematic data research and 
modeling. Addressing these limitations will be a key 
focus of future research in this study.

Table 6 Comparison of the estimation of LWC in wheat using hyperspectral data

WC wavelet coefficients, BPNN BP neural network, x-LW x-loading weight, WVI water vegetation index, GRA  grey relational analysis, PLSR partial least squares 
regression

Study area Year Methods R2 References

Changping Beijing, China 2021 WI-4 + NDWSI-4 + Linear regression 0.82 [8]

Jiaozuo City, Henan, China 2023 WC + FOD + ANN 0.86 [9]

Yangzhou, China 2021 RVI437,466 nm +  NDVI747,1956 nm + BPNN 0.88 [2]

Luoyang Henan, China 2021 x-LW + KNN 0.84 [11]

Fukang Xinjiang, China 2019 FD + GRA + PLSR 0.81 [13]

Astaneh-ye Ashrafiyeh region in the north of Iran 2019 MLR, RVR, SVR 0.92 [78]

he cities of Ray and Karaj, near the capital of Iran 2020 TCARI, MCARI 0.83 [79]

Anhui province ofChina 2024 ND(1287,1673 nm) and GBDT 0.86 [80]

Fukang Xinjiang, China – MBSI + MI + FOD + KNN 0.86 This work
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Conclusions
In this study, the fractional order derivative and 
machine learning methods were applied for estimating 
LWC of spring wheat, and results showed the integrated 
Model-3BSMI+FOD+KNN achieved high accuracy. The two-
band index and three-band index were extracted from 
spectrum based on FOD, and the linear regression 
analysis was conducted between these indices and LWC 
values. The fractional derivative pretreatment of spec-
tral data enhances the implied information of the spec-
trum, and both spectral and these indices were closely 
correlated with the LWC values. The machine learn-
ing method for LWC estimation of spring wheat based 
on sensitive spectral and indices. The results showed 
the proposed method by combing two-band indices 
and three-band indices improved the estimation accu-
racy. The moisture content of plant leaves is an impor-
tant indicator for measuring the water status of plants. 
Accurately estimating leaf moisture content is of great 
significance for studying plant physiology, ecology, 
agricultural production, and environmental protection. 
KNN, ANN and SWR were independently conducted 
to predict LWC values based on optimal combinations. 
The results showed that KNN performed better than 
ANN, SWR with higher R2and lower RMSE. Therefore, 
the results confirm that Model-3BSMI+FOD+KNN is sig-
nificantly effective in inverting the leaf water content of 
spring wheat.
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