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METHODOLOGY

Mapping and quantifying unique branching 
structures in lentil (Lens culinaris Medik.)
Adam M. Dimech1*   , Sukhjiwan Kaur1,2    and Edmond J. Breen1    

Abstract 

Background  Lentil (Lens culinaris Medik.) is a globally-significant agricultural crop used to feed millions of people. 
Lentils have been cultivated in the Australian states of Victoria and South Australia for several decades, but efforts are 
now being made to expand their cultivation into Western Australia and New South Wales. Plant architecture plays 
a pivotal role in adaptation, leading to improved and stable yields especially in new expansion regions. Image-based 
high-throughput phenomics technologies provide opportunities for an improved understanding of plant develop-
ment, architecture, and trait genetics. This paper describes a novel method for mapping and quantifying individual 
branch structures on immature glasshouse-grown lentil plants grown using a LemnaTec Scanalyser 3D high-through-
put phenomics platform, which collected side-view RGB images at regular intervals under controlled photographic 
conditions throughout the experiment. A queue and distance-based algorithm that analysed morphological skel-
etons generated from images of lentil plants was developed in Python. This code was incorporated into an image 
analysis pipeline using open-source software (PlantCV) to measure the number, angle, and length of individual 
branches on lentil plants.

Results  Branching structures could be accurately identified and quantified in immature plants, which is suffi-
cient for calculating early vigour traits, however the accuracy declined as the plants matured. Absolute accuracy 
for branch counts was 77.9% for plants at 22 days after sowing (DAS), 57.9% at 29 DAS and 51.9% at 36 DAS. Allowing 
for an error of ± 1 branch, the associated accuracies for the same time periods were 97.6%, 90.8% and 79.2% respec-
tively. Occlusion in more mature plants made the mapping of branches less accurate, but the information collected 
could still be useful for trait estimation. For branch length calculations, the amount of variance explained by linear 
mixed-effects models was 82% for geodesic length and 87% for Euclidean branch lengths. Within these models, 
both the mean geodesic and Euclidean distance measurements of branches were found to be significantly affected 
by genotype, DAS and their interaction. Two informative metrices were derived from the calculations of branch angle; 
‘splay’ is a measure of how far a branch angle deviates from being fully upright whilst ‘angle-difference’ is the dif-
ference between the smallest and largest recorded branch angle on each plant. The amount of variance explained 
by linear mixed-effects models was 38% for splay and 50% for angle difference. These lower R2 values are likely due 
to the inherent difficulties in measuring these parameters, nevertheless both splay and angle difference were found 
to be significantly affected by cultivar, DAS and their interaction. When 276 diverse lentil genotypes with varying 
degrees of salt tolerance were grown in a glasshouse-based experiment where a portion were subjected to a salt 
treatment, the branching algorithm was able to distinguish between salt-treated and untreated lentil lines based 
on differences in branch counts. Likewise, the mean geodesic and Euclidean distance measurements of branches 
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Background
Lentils (Lens culinaris Medik.), a member of the 
Fabaceae legume family, is an annual grain legume crop 
cultivated globally for its high dietary benefits. Rapidly 
increasing populations in developing countries have led 
to an increased demand for pulses, including lentils, as 
a protein source in diets. Furthermore, there has been a 
noticeable shift in dietary habits in Western countries, 
with a growing preference for nutritious, sustainable, 
and healthier foods. Lentils, with their rich nutrient pro-
file and eco-friendly cultivation practices, align perfectly 
with these changing consumer preferences. According 
to [1], global lentil production in 2022 reached 6.8 mil-
lion tonnes from an estimated 5.5 million hectares, with 
an average yield of 1218  kg  ha−1. Canada is the major 
producer of lentils, followed by India, Australia, and 
Turkey. However, Australia takes the lead in the export 
market, with over 95% of its total lentil production 
being exported. The Australian lentil industry emerged 
in the 1990s, with South Australia and Victoria serving 
as major production zones. Over the years, the demand 
and export value of Australian lentils have increased sig-
nificantly. Australian lentil production scaled up to 1.68 
million tonnes in 2022, compared to a mere 0.03 million 
tonnes produced in 1990 [2].

The widespread and increased cultivation of lentils in 
Australia has been facilitated by extensive plant breeding 
efforts over successive decades, which have significantly 
contributed to yield gains [3]. Over time, breeders have 
focused on improving disease resistance, abiotic stress 
tolerance, plant phenology and seed quality traits, all 
leading to better and stable yields. Recent studies sug-
gest that crop architecture has also played a key role in 
yield gains in Australian national lentil breeding pro-
grams over the past 27 years and increased plant height 
and leaf size along with reduced branching, changes that 
are positively correlated with yield. Whilst breeders have 
been modifying crop architecture through the direct 
selection of these traits, they were not correlated with 
the year of variety release, which indicates the useful-
ness of these traits for increasing yield has not yet been 
fully realised in Australian lentil breeding programmes 
[3]. Accurate selection in plant breeding programs relies 
heavily on precise phenotyping, which involves the quan-
titative measurement of various complex traits such as 

growth, development, tolerance, resistance, architecture, 
physiology, and yield [4]. In recent years, there have been 
significant advancements in image-based plant phenom-
ics, enabling researchers to non-destructively phenotype 
traits across a wide range of plant species. This has been 
made possible through the utilisation of high-through-
put automated phenotyping platforms like the Lem-
naTec Scanalyser 3D. The development of image-based 
plant phenomics has revolutionised the field, offering 
researchers the ability to accurately measure biomass 
accumulation, growth patterns, changes in nutrient sta-
tus, and stress responses in crop plants. One of the major 
advantages of these automated platforms is their ability 
to collect time-course data in a consistent and quantita-
tive manner. The introduction of hyperspectral [5] and 
fluorescence [6] imaging technologies has significantly 
expanded the range of traits that can be measured in 
plant phenotyping, allowing researchers to capture and 
analyse a broader spectrum of information related to 
plant physiology, biochemical composition, and stress 
indicators. Despite the increasing popularity of these 
advanced imaging modalities, red–green–blue (RBG, i.e.: 
visible-spectrum) imagery remains the most prevalent 
and practical choice in plant phenotyping systems.

Until now, none of the technologies and associated 
software have been able to reliably measure architectural 
traits such as branching, a valuable morphological trait in 
complex dicotyledons. In contrast, there has been some 
progress in monocotyledonous species such as barley [7], 
wheat [8] and corn [9], to quantifying leaf architectural 
traits such as angle, quantity, and length. Analysing the 
structure of thalli from the liverwort Riccardia longispica 
is another example of using morphometrics to describe 
plant structure [10]. Recent examples of phenotyping 
dicotyledonous species have continued to rely on man-
ual counts [11] rather than a programmatic approach as 
described here.

This paper describes a methodology to quantify the 
number of branches in lentil plants via RGB imagery 
and derive some simple statistics including length (both 
Euclidean and geodesic), and branch angle. The experi-
ments described here aimed to (i) develop an algo-
rithm for extracting branching data from RGB images 
of lentils; (ii) test the algorithm on diverse lentil lines 
to demonstrate reliability and accuracy; and finally (iii) 

were both found to be significantly affected by cultivar, DAS and salt treatment. The amount of variance explained 
by the linear mixed-effects models was 57.8% for geodesic branch length and 46.5% for Euclidean branch length.

Conclusion  The methodology enabled the accurate quantification of the number, angle, and length of individual 
branches on glasshouse-grown lentil plants. This methodology could be applied to other dicotyledonous species.

Keywords  Lentil, Morphology, Structure, Phenotyping, Image analysis, Python, LemnaTec, PlantCV
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test whether the algorithm could be used to discrimi-
nate between different lentil lines based on their growth 
habit or exposure to salt as a demonstration of a practical 
application.

Methods
Glasshouse conditions
Two glasshouse experiments were conducted at ‘Plant 
Phenomics Victoria’ in Bundoora, Victoria, Australia 
(− 37.724251, 145.056586). Experiment 1 was conducted 
for two months from August 2020 (Fig.  1); Experiment 

2, which comprised a re-analysis of data from an earlier 
experiment, was conducted for 3 months from July 2019.

Seeds from diverse cultivars and lines (hereafter 
referred-to collectively as genotypes to prevent confusion 
with ‘lines’ in image analysis) from the Australian Len-
til Breeding Program were germinated in white 200 mm 
diameter plastic pots (catalogue P200E04, Garden City 
Planters Pty. Ltd., Dandenong South, Victoria, Australia) 
using a commercial potting mix blend that contained coir 
peat, composted pine bark, composted sawdust, Satu-
rAid® soil-wetting agent, lime and gypsum (Australian 

Fig. 1  Lentils growing at “Plant Phenomics Victoria”: A Young lentil plants growing in white 200 mm diameter pots with blue support cages 
on the LemnaTec Scanalyser 3D phenomics platform; B a typical RGB image of a lentil plant captured by cameras in the LemnaTec Scanalyser 
3D phenomics platform; C lentil plants being moved from the glasshouse to the imaging cabinet via conveyors; D mature lentil plants 
on the LemnaTec Scanalyser 3D phenomics platform at the conclusion of Experiment 1
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Growing Solutions Pty. Ltd., Tyabb, Victoria, Australia). 
The potting mix was supplemented with iron chelate 
and Green Jacket® 9-month controlled-release fertiliser 
(18:2.5:10, Australian Growing Solutions Pty. Ltd., Tyabb, 
Victoria, Australia). Three seeds were sown to a depth of 
50 mm per pot, then thinned at 5 days to leave a single 
plant per pot. To provide support for emerged seedlings, 
a wire ‘cage’ powder-coated with a blue (Reichs-Auss-
chuss für Lieferbedingungen [RAL] 5012 ‘Light Blue’) 
resin was placed in each pot at the time of sowing. 
Watering was conducted daily and targeted to 80% soil 
gravimetric water content.

The pots were each placed in a carrier which contained 
a radio frequency identification (RFID) chip and loaded 
onto a LemnaTec Scanalyzer 3D (LemnaTec GmbH, 
Aachen, Germany) high-throughput phenomics plat-
form. Seedlings were grown in a climate-controlled glass-
house at 22 °C from 7:00 to 20:00 and 15 °C from 20:00 to 
7:00. Supplemental light was provided by full-spectrum 
‘white’ overhead light-emitting diodes (Photon Systems 
Instruments spol. s r.o., Drásov, Czech Republic) dur-
ing daylight hours that provided a photosynthetic pho-
ton flux of 600 µmol m−2 s−1. The glasshouse was clad in 
‘plexiglass’ (poly(methyl methacrylate)) double-walled 
sheeting that allowed the full spectrum of sunlight to 
pass through.

Experiment 1
A random block design was used, where each block con-
sisted of 19 positions with a single replicate of each line. 
Each physical row on the LemnaTec Scanalyser 3D plat-
form contained two blocks, and these extended over 5 
lanes to contain 10 blocks of 190 pots in total. A random 
number generator in R (version 4.3.1), was used to assign 
each genotype to a position in the block.

Nineteen genotypes were selected for detailed imag-
ing based on their diverse characteristics; ‘Aldinga’, ‘CDC 
Ruby’, ‘CIPAL0717’, ‘Cobber’, ‘Commondo’, ‘Cumra’, ‘Dig-
ger’, ‘Eston’, ‘ILL2024’, ‘ILL7537’, ‘Indianhead’, ‘Matilda’, 
‘Nipper’, ‘Northfield’, ‘PBA Bolt’, ‘SP1333’, ‘PBA Hallmark 
XT’, ‘PBA Jumbo2’ and ‘PBA Greenfield’ (refer to SI01).

Experiment 2
The experimental methodology for Experiment 2 is 
described as “Experiment 3” in [12]. In summary, 276 len-
til accessions were grown under identical conditions to 
Experiment 1 but exposed to one of two salt conditions: 
control (0 mmol NaCl) and salt (100 mmol NaCl). A par-
tial replication design was used to screen 912 plants. A 
complete list of the genotypes used in Experiment 2 are 
detailed in SI02. Images from Experiment 2 were re-
analysed in PlantCV to demonstrate a practical applica-
tion for the current work by determining whether salinity 

would affect branch architecture data and whether this 
could be quantified using the approach described.

Collection of images
For Experiment 1, plants were imaged daily on the Lem-
naTec Scanalyser 3D automated phenomics platform via 
a series of visible-spectrum (red–green–blue, RGB) cam-
eras (Prosilica GT, Allied Vision Technologies GmbH, 
Stadtroda, Germany) fitted with a 50 mm focal lens (T* 
250 ZF, Carl Zeiss AG, Oberkochen, Germany), located 
within an imaging cabinet to control lighting conditions. 
RGB images of each plant were taken from above (top 
view, TV) and from the side at five angles (0°, 20°, 40°, 60°, 
80°) as per the methodology of [2]. Imaging for Experi-
ment 2 was collected several times a week and from only 
two angles (0°, 90°) as described in [12].

Snapshot images were stored in a PostgreSQL database 
as blob files. A modified version of PlantCV ‘Data Science 
Tools’ was used to extract each snapshot from the data-
base as a series of six 24-bit Portable Network Graphic 
(PNG) images measuring 4384 × 6576 pixels.

Definition of a branch
A lentil “branch” was defined as an outgrowth from the 
primary stem or the base of the plant marked by an inter-
node extension reaching about 80% of the length of other 
adjacent internodes and at least half of the pinnae had 
opened on the first leaf. Any branches that were visible 
by manual inspection but located below the upper rim of 
the pot were excluded from the count.

Image processing and analysis
A customised PlantCV [13] analysis pipeline was writ-
ten to perform the image analysis steps. PlantCV version 
3.12.0 with OpenCV version 3.4.10.35 and Python ver-
sion 3.8.2 under CentOS Linux version 7.9.2009 oper-
ating system was used on the Biosciences Advanced 
Scientific Computer (BASC) at the Centre for AgriBiosci-
ence in Bundoora, Victoria, Australia.

PNG images from each snapshot were read into the 
program and processed (Fig. 2). Images were rotated 90° 
and cropped to standardise them for further processing. 
The RGB images (Fig. 2A) were converted to CMYK col-
our space (cyan, magenta, yellow, and black bands) [14]. 
The Y channel (Fig. 2B) was found to be useful for sep-
arating the plant from its background, and as the light-
ing was held constant across all images, this was easily 
accomplished by thresholding it at a constant grey-level 
(Fig. 2C). Next, a 9 × 9 dilation was applied to this binari-
sation to help fuse isolated plant sections (Fig. 2D). Simi-
larly, by applying a threshold to the M channel (Fig. 2E) 
the blue plant support cage could be isolated (Fig. 2F). To 
further extend the fusing of isolated plant sections; first, 
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Fig. 2  Representation of stages in the image analysis pipeline to identify unique branches in lentils: A a cropped section of the original RGB image; 
B the ‘Y’ channel from a CMYK transformation of the original RGB image, this gives a greyscale representation that is used to help isolate the plant 
from its background. C A binary image derived from the Y channel, thresholded at grey level 63. D A 9 × 9 pixel dilation applied to the binary 
image to bind some of the objects; E the ‘M’ channel from CMYK transformation of the original RGB image, this gives a greyscale representation 
which is used to isolate the cage; F a binary image derived from the M channel, thresholded at grey level 55; G a pixel-wise logical-AND operation 
applied between the thresholded images of the plant and the cage to identify pixels that overlap the cage and the plant so as to restore the parts 
of the plant occluded by the cage; H binary image of the plant without the cage; J the ‘K’ channel from a CMYK transformation of the original RGB 
image that gives a greyscale representation and is used to help isolate any visible potting mix. This is thresholded to create a binary image [not 
shown]; K the potting mix is subtracted from the plant mask via the application of a pixel-wise logical-AND operation between an inverted potting 
mix mask and the plant mask; L a 13 × 13 pixel dilation applied to the binary mask; (M) A skeleton derived from the binary shape in L. Note the two 
disconnected components; N a heatmap showing the distance of each pixel from the top of the pot where greater distance values map to lighter 
pixel values; P the original RGB image superimposed with unique branch lines derived from the skeleton when all loops are removed, lateral 
branches clipped and small independent branches restored
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a pixel-wise logical-AND operation was applied between 
(Fig. 2C and F) producing Fig. 2G; and second on Fig. 2G, 
the following cascade was applied: a 9 × 9 erosion fol-
lowed by an 11 × 11 dilation, followed by a pixel-wise 
logical-AND with Fig. 2C producing the result shown in 
Fig. 2H.

The algorithm automatically separated any potting mix 
from the image in a pre-processing step; the K channel 
(Fig.  2J) from the CMYK transformation was inverted, 
and a static threshold was applied (Fig.  2K). A logical-
OR operation was then used to create a new mask that 
excluded the potting mix, focusing solely on the plant. 
A 13 × 13 dilation was applied to achieve the final mask 
size (Fig.  2L). Subsequently, a skeletonisation [15] was 
applied (Fig.  2M) to facilitate the identification of the 
plant’s branch structures. As shown in Fig. 2M, it is pos-
sible for a plant’s skeleton to be composed of discon-
nected segments, therefore a connected component 
analysis was used to label each skeletal component. The 
skeleton image is composed of pixels classified into two 
groups (0 and 1, OFF and ON). The pixels composing the 
skeleton can be further classified into at least three cat-
egories (endpoints, junctions, and slabs). Endpoint pixels 
have only one ON neighbour; slab pixels have only two 
ON neighbours and junction pixels have more than 2 ON 
neighbours (Fig. 3A).

The lowest point on each skeleton was identified as 
the pixel with the greatest y-value, as images have coor-
dinate (0,0) at the top left corner with y increasing 

top-to-bottom and x increasing left-to-right. The (x,y) 
position of the lowest point was added to a vector 
called base. When there were multiple pixels with an 
equally maximal value of y, such as when a skeleton had 
multiple components (for example, Fig.  2M), multiple 
points were added to the vector (base).

A geodesic distance is a distance measure that is con-
strained to lie within a certain path, in this case within 
the skeleton [16]. To determine geodesic distance val-
ues, an 8-connected neighbourhood array was defined. 
Within the neighbourhood of each pixel, 4-connected 
neighbours had a distance of 1, whilst the 8-connected 
neighbours had a distance of 

√
2 (Fig.  4) from the 

Fig. 3  Schematic representation of a simplified binary skeleton that is being processed to identify unique branches which are branches 
that reach the base (nominally the level of the potting mix). A A skeleton consisting of 23 pixels comprising of one main branch with one left 
and one right lateral branches. Note that the base of the skeleton is highlighted with a geodesic distance value of 1. Endpoint pixels are displayed 
in orange, slab pixels are displayed in pink/red and junction pixels are displayed in blue. Each pixel has a geodesic distance value measured 
from the base point (shown as a number within each pixel). A queue-based algorithm processes each branch sequentially, starting at the endpoint 
of the longest branch (highlighted with a yellow arrow). The tracking process, which has a current position indicated by a pixel with a blue 
border, sets each visited pixel to 0 and then progresses down the branch using the 8-connected neighbourhood (dotted orange box) to identify 
the neighbour with the minimum distance value before moving to that position. B All of the pixels in the main branch have been set to zero. 
Note that the tracking process terminated at a pixel with the geodesic distance value of 1; therefore, it is a unique branch. The starting condition 
of the left lateral branch is highlighted. C All of the pixels in the left branch have been set to zero and the tracking process terminates at a pixel 
with a distance value of 7, which is greater than 1. Note that the starting condition of the right lateral branch is highlighted. D All pixels in the right 
branch have been set to zero. Note that the right branch terminates at a pixel with a distance value of 4, which is greater than 1

Fig. 4  Representation of a pixel neighbourhood around a pixel 
at position p. 4-connected pixels have a distance value of 1 (light 
green) whilst 8-connected pixels have a distance value of √2 (dark 
green) in accordance with Euclidean geometry
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centre pixel. A First-In-First-Out (FIFO) queue-based 
algorithm and a neighbourhood function were used 
to assign geodesic distance values to pixel positions 
within the skeleton from the base point of each skele-
ton component (refer to Algorithm  1). These geodesic 

distance values were collected within a 32-bit single-
precision floating-point format (float32) Portable Net-
work Graphic (PNG) image of the same dimensions 
(Algorithm 1, Line 7).

Algorithm 1  Queue based geodesic distance transform
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The geodesic transformation, outlined in Algorithm 1, 
begins at the base pixel of the skeleton (Line 2). It then 
pushes this pixel with a starting distance of 1, on to the 
queue (Line 5). The algorithm then iteratively pops items 
off the queue (Line 6) and pushes their neighbouring pix-
els onto the queue (Line 13) until all skeleton pixels have 
been processed. To prevent backward iterations, the algo-
rithm sets visited pixels to zero (Line 8). Neighbouring 
pixels that have a value of 1 (non-background pixels) are 
checked and added to the queue (i.e., non-background 
pixels; Lines 9–10). The collected pixel positions and dis-
tance values (x, y and distance) are added to the queue 
with an updated distance value 1+item.d for 4-connected 
neighbours, 

√
2+item.d for 8-connected neighbours as 

shown in Algorithm 1, Line 12. These collected distance 
values can be used to generate a heatmap graphic for 
inspection, as shown in Fig. 2N.

To collect the plant branches, the skeleton endpoints 
(x, y) that had a geodesic distance greater than 1 (Fig. 3A) 
were collected and stored in a vector called dval_skel. 
Then Algorithm 2 was used to iterate over these skeleton 

endpoints (Line 2) to identify two types of branches: (1) 
the longest unique branches (which are branches within 
each skeleton that extended from a skeleton endpoint to 
the base of the plant) and (2) significant lateral branches 
(which are branches that are at least 40% of the length 
of the longest branch, see Line 18). Note, as the image 
scale is held constant, distance values are comparable 
across images. Further, a test was applied to the skeleton 

Table 1  Discrepancies between manual branch counts 
and automated branch counts for lentil images collected in 
Experiment 1 at 22, 29, and 36 days after sowing (DAS) from a 
LemnaTec Scanalyser 3D phenomics platform

Counts are shown with percentages in parenthesis

DAS n Number of 
discrepancies

Number of 
underestimations

Number of 
overestimations

22 154 34 (22.1%) 33 (21.4%) 1 (0.6%)

29 152 64 (42.1%) 62 (40.7%) 2 (1.3%)

36 154 74 (48.1%) 68 (42.1%) 6 (3.9%)

Fig. 5  Box plots showing the distribution of mean number of branches counted by the lentil branching algorithm in Experiment 1 for each 
lentil cultivar at 0°, 20°, 40°, 60° and 80° imaging angles which have been pooled. The mean value is indicated with an orange cross. Across 
the experiment, the image angle at which an image was taken was not found to have a significant effect on branch counts (p = 0.5751)
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endpoints in the list; if there was more than one skeleton, 
the minimum length required for a branch to be retained 
was set at 100 pixels, otherwise it was set to 40 to ensure 
the retention of small emergent seedlings whilst eliminat-
ing insignificant lateral branches.

The Algorithm 2 traces a pathway following the lowest 
pixel distance values to the base (Lines 7–20). To protect 
the algorithm from getting trapped in a loop, visited pix-
els are set to zero (Line 8). This procedure has the benefit 
of isolating lateral branches from the skeleton (Fig. 3) and 
implicitly removing loops (an example of a skeleton with 
two loops is shown in Fig. 2M and N).

Algorithm 2  Collection of skeleton branches

Data analysis and validation
For each identified branch its length was determined by a 
Euclidean distance between the start and endpoints of the 
branch, d =

√

(x2 − x1)
2 +

(

y2 − y1
)2 , where (x, y) repre-

sents image position. To calculate branch angle (α), angles 
were restricted to the range [0°,180°):
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θ = tan−1

�

y2 − y1

x2 − x1

�

α =







θ + 180 if θ < 0

θ − 180 if θ > 0

θ otherwise

These two values (d and α) were added to the CSV file 
output along with the geodesic distance of the branch 
endpoint (Algorithm 2) and other branch metadata (such 
as a unique branch ID, plant ID and snapshot timestamp).

Validation of algorithm
Manual scoring was conducted on 463 images isolated 
from snapshots taken at 4 different developmental stages; 
22, 29, 36 and 43 days after sowing (DAS) at both 0° and 
90°, to confirm the reliability of the method and test 
whether the accuracy of the algorithm diminished with 
plant maturity. The images were examined to determine 
the branch count, after which the identical images were 
subjected to algorithmic analysis to compare results.

To verify the accuracy of the angles, approximately 10% 
of the branches were manually examined by overlaying 
a line at the respective angle onto each branch, ensuring 
alignment, and achieving a consensus of results.

Statistical analysis of Experiments 1 and 2
Statistical analyses were all performed using R v4.3.1. 
Mixed-effects models were used to model experimental 
responses. Analysis of Variance (ANOVA, from the car 
package) was used to test the significance of the mod-
els, where statistical significance was indicated at the 5% 
level.

While a Poisson model is normally used to describe 
the probabilities for count data, we observed a significant 
difference between the mean of the count distribution to 
that of a Poisson distribution with the same mean (the 

Fig. 6  Observed mean number of branches per plant over time 
counted by the branching algorithm in Experiment 1 for lentil 
plants grouped into classifications based on previously-reported 
branching phenotypes as shown in the legend. Note that from days 
23 to 32 (shaded), the reported classifications accorded 
with the measurements collected by the algorithm. The phenotype 
data was collected from field trials over several years conducted 
by Agriculture Victoria

Table 2  Summary of analysis of variance (ANOVA, Type II Wald chisquare test) results for Experiment 1

q-values are Holm [38], a family-wise error rate, multiple test-corrected p-value. Holm is generally considered to be a more powerful correction than the Bonferroni 
correction method

Response variable R2 Factor χ2 DF Pr(> χ2) q-value

Branch count 0.614 Cultivar 261.11 18 < 2.2e−16 3.3e−15

DAS 29,914.92 1 < 2.2e−16 3.3e−15

Cultivar:DAS 513.06 18 < 2.2e−16 3.3e−15

Geodesic length 0.824 Cultivar 79.784 18 9.35e−10 1.87e−09

DAS 20,422.71 1 < 2.2e−16 3.3e−15

Cultivar:DAS 1316.397 18 < 2.2e−16 3.3e−15

Euclidean length 0.868 Cultivar 67.935 18 1.01e−07 1.01e−07

DAS 13,589.36 1 < 2.2e−16 3.3e−15

Cultivar:DAS 1067.311 18 < 2.2e−16 3.3e−15

Angle difference 0.496 Cultivar 97.727 18 5.767e−13 2.3068e−12

DAS 3104.39 1 < 2.2e−16 3.3e−15

Cultivar:DAS 193.856 18 < 2.2e−16 3.3e−15

Splay 0.378 Cultivar 91.054 18 9.333e−12 2.7999e−11

DAS 1664.174 1 < 2.2e−16 3.3e−15

Cultivar:DAS 181.01 18 < 2.2e−16 3.3e−15
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χ2 p-value was 0.0005). Therefore, to model the branch 
counts in Experiment 1, the following R model was used:

where genotype is a factor with 19 levels, DAS is a fac-
tor with 28 levels, and genotype:DAS is an interaction 
with 526 levels instead of 532, because 6 cultivars had 
no reading on Day 6 and plant_id is a factor with 154 
levels. The expression (1|plant_id) specifies an inde-
pendent random intercept to account for repeat readings 
of the plants in each genotype. The linear mixed-effects 
model in Eq. 1 was modified to predict the other response 
variables in Experiment 1.

To model the branch counts in Experiment 2, the fol-
lowing R model was used:

(1)
branch_count ∼ genotype+ DAS+
genotype : DAS+ (1|plant_id)

where genotype is a factor with 276 levels, DAS is a 
factor with 5 levels, and treatment is a factor with 2 
levels, genotype:DAS is an interaction with 1385 lev-
els, genotype:treatment is an interaction with 554 
levels, DAS:treatment is an interaction with 10 levels 
and plant_id is a factor with 908 levels. The expres-
sion (1|plant_id) specifies an independent random 
intercept to account for repeat readings of the plants in 
each genotype. The linear mixed-effects model in Eq.  2 
was modified to predict the other response variables in 
Experiment 2.

(2)

branch_count ∼ genotype+ DAS

+ treatment+ genotype : DAS
+ genotype : treatment
+ DAS : treatment+ (1|plant_id)

Fig. 7  Box plots showing the distribution of geodesic lengths of branches counted by the branching algorithm in Experiment 1 for each lentil 
cultivar. The mean value is indicated with an orange cross. Note that the geodesic distances of branches increase over time for all cultivars and differ 
between cultivars. The break in the data on days 19 and 20 was due to a mechanical failure which prevented the collection of images on those days
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Derivative factors for analysis
Two derived statistics were calculated: ‘splay’ and 
‘angle-difference’.

Splay is a measure of how far a branch angle devi-
ates from being fully upright. Since branch angles are 
recorded as values between 0° and 180°, which are rela-
tive to the image’s perspective, each recorded branch 
angle (α) was rescaled (α′) between 0° and 90°.

Splay was then calculated as the maximum of α′ for 
each plant on any day.

Angle-difference is the difference between the smallest 
branch angle (min(α)) and largest branch angle (max(α)) 
where 0° ≤ α < 180° on the same day. This metric was 
designed to account for occasional lop-sidedness.

Salt tolerance classifications
Each lentil plant in Experiment 2 was given a score 
for salt tolerance (based on a physical inspection) as 

α′ =
∣

∣

∣

∣

−90+
(α −min (α))(−90− 90)

(max (α)−min (α))

∣

∣

∣

∣

determined from a previous study [12]. Each plant was 
scored from 1 (healthy) to 10 (dead) [17]. In the present 
study, this data was reanalysed so that a median score 
for each cultivar was calculated and then classified as 
belonging to one of five broad salt-tolerance categories; 
(a) Highly Tolerant; (b) Tolerant; (c) Moderately Intoler-
ant; (d) Intolerant or (e) Highly Intolerant.

Results
Experiment 1
Number of branches
The Lentil Branching algorithm exhibited promising per-
formance in the detection of the number of branches 
in young plants grown on the LemnaTec Scanalyser 3D 
phenomics platform. However, as the plants reached 
maturity, the accuracy declined and the spread of errors, 
detected as an under- or over-estimation of branch 
counts when compared to a manual count, increased. 
Absolute accuracy, which allowed no deviation from the 
manual branch count, was 77.9% for plants at 22  days 
after sowing (DAS), 57.9% at 29 DAS and 51.9% at 36 
DAS. With a deviation of ± 1 branch from the manual 

Fig. 8  Box plots showing the distribution of branch splay counted by the branching algorithm in Experiment 1 for each lentil cultivar. The mean 
value is indicated with an orange cross. This figure shows the variability of branching architecture phenotypes between cultivars
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count, the associated accuracies were 97.6%, 90.8% and 
79.2% respectively. Details of the spread of under- and 
overestimations in branch counts are detailed in Table 1.

Across the entire experiment, the mean number of 
branches measured for all genotypes increased between 
5 to 35 DAS (Fig.  5). When the genotypes were classi-
fied into four branching habit classification groups based 
on their previously-documented phenotype for branch-
ing habit (refer to the “branching number” data in SI01, 
Fig.  6), DAS and branching habit classification were 
highly significant factors (p < 0.001). A pairwise t-test 
comparison of branching habit classifications found no 
significant difference between the Medium–High and 
High groups (p = 0.584, see blue and green lines in Fig. 6) 
but all other comparisons between the branching habit 
groups were significant.

As expected, genotype and DAS were found to have 
a significant effect on the mean number of branches 
(p < 0.01). After the experiment (35 DAS), cultivar ‘Dig-
ger’ had the greatest mean number of branches (3.75), 
followed by ‘PBA Jumbo2’ (3.488), ‘Commondo’ (3.40) 

Fig. 9  Box plots showing the distribution of angle difference counted by the lentil branching algorithm in Experiment 1 for each lentil cultivar. The 
mean value is indicated with an orange cross

Fig. 10  Bar chart showing the distribution of branch counts 
calculated by the lentil branching algorithm in Experiment 2 for each 
treatment group on days 14, 18, 25, 28 and 35. Error bars show 95% 
confidence interval
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and ‘Aldinger’ (3.376), however, there was no signifi-
cant difference between the mean number of branches 
for ‘Digger’ as compared to the other aforementioned 
genotypes. In contrast, the genotype with the small-
est mean branch count at 35 DAS was ‘ILL7537’ with a 
mean of 2.250 (Table 2).

Branch lengths
The amount of variance explained by the linear mixed-
effects models was 82% for geodesic branch lengths and 
87% for Euclidean branch lengths. Within these mod-
els, both the mean geodesic (Fig. 7) and Euclidean dis-
tance (refer to SI03) measurements of branches were 
found to be significantly affected by genotype, DAS and 
their interaction (p < 0.001, Table 2).

The genotypes with the greatest mean geodesic 
branch lengths at the conclusion of the experiment 
(35  DAS) were ‘ILL7537’ (532px), ‘PBA Hallmark XT’ 
(477px) and ‘Cumra’ (476px) whilst the lines with the 
smallest mean geodesic branch length were ‘Com-
mondo’ (274px), ‘Aldinga’ (304px) and ‘Cobber’ (313px). 
As would be expected, mean geodesic branch lengths 
exceeded Euclidean branch lengths across the experi-
ment. The correlation between geodesic and Euclidean 
distances was very strong (R2 = 0.9790902).

Splay and angle difference
The linear mixed-effects model in Eq.  1 was modi-
fied to predict splay and angle difference. The amount 
of variance explained by the model was 38% for splay 
and 50% for angle difference. These lower R2 values are 
likely due to the inherent difficulties in measuring these 

Fig. 11  A Mean Euclidean branch length, B mean geodesic branch length, C mean branch number and D mean splay (D) calculated 
by the branching algorithm in Experiment 2 for plants grouped into classifications based on their reported salt tolerance as being “highly tolerant”, 
“tolerant”, “moderately intolerant”, “intolerant” or “highly intolerant” on days 14, 18, 25, 28 and 35. Error bars show the standard error to a 95% 
confidence interval
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parameters. Within this model, the mean splay (Fig.  8) 
and angle difference (Fig.  9) measurements of branches 
were both found to be significantly affected by cultivar, 
DAS and their interaction (p < 0.001, Table 2).

The cultivars with the greatest mean splay at the con-
clusion of the experiment (35 DAS) were ‘PBA Hallmark 
XT’ (83.688°), ‘Digger’ (83.460°) and ‘Cobber’ (83.122°) 
whilst the smallest splay measurements were observed 
in ‘ILL7537’ (54.238°), ‘ILL2024’ (56.632°) and ‘SP1333’ 
(60.828°). In many cultivars, splay measurements were 
observed to be relatively stable until after Day 20 where 
they tended to increase as the lentil plants grew and 
developed (Fig. 8).

The greatest Angle Difference at 35 DAS was observed 
in ‘Digger’ (157.346°), ‘Cobber’ (151.649°) and ‘Com-
mondo’ (149.900°) whilst the smallest Angle Difference 
was observed in ‘ILL7537’ (86.358°), ‘ILL2024’ (86.577°) 
and ‘SP1333’ (102.492°). The correlation between Splay 
and Angle Distance was strong (R2 = 0.8914198).

Experiment 2
Number of branches
The branching algorithm was able to distinguish between 
salt-treated and untreated lentil lines based on differ-
ences in branch counts (Fig.  10). Between 14 and 35 
DAS, the mean branch number was greater in the control 
treatments compared to the salt-treated plants (refer to 
SI04). At Day 35, the mean branch count for salt-treated 
plants was 2.24 compared to control plants with a mean 
branch count of 2.92.

When the genotypes were classified into five groups 
based on their salt tolerance (as per the method 

described in [12], Fig. 11C, based on the “salt tolerance” 
data in SI02), DAS and salt tolerance classification were 
highly significant factors (p < 0.001). A pairwise t-test 
comparison of salt tolerance classifications at the con-
clusion of the experiment found no significant differ-
ence between the Moderately-Intolerant and Intolerant 
groups (p = 0.560, see Fig.  11C), and Highly-Intolerant 
and Tolerant groups (p = 0.057) but all other compari-
sons between the salt tolerance classification groups were 
significant.

Branch lengths
The amount of variance explained by the mixed-effects 
model was 57.8% for geodesic branch lengths and 46.5% 
for Euclidean branch lengths. Within this model, the 
mean geodesic and Euclidean distance (refer to SI04) 
measurements of branches were both found to be signifi-
cantly affected by cultivar, DAS and treatment (p < 0.001, 
Table 3).

At Day 35, mean branch Euclidean distance was 271 
px for control plants and 212 px for salt-treated plants, 
whilst mean geodesic length of branches was 395 px 
for Control plants and 307 px for salt-treated plants. 
As would be expected, mean geodesic branch lengths 
exceeded Euclidean branch lengths across the experi-
ment. The correlation between geodesic and Euclidean 
distances was very strong (R2 = 0.9963578).

When the genotypes were classified into five groups 
based on their salt tolerance (as per the method 
described in [12], Fig. 11B, based on the “salt tolerance” 
data in SI02), DAS (p < 0.001) and salt tolerance classifi-
cation (p = 0.00118) were highly significant factors. Plants 

Table 3  Summary of analysis of variance (ANOVA, type II Wald chisquare test) results for Experiment 2

q-values are Holm [38] multiple test-corrected p-values

Response variable R2 Factor χ2 DF Pr(> χ2) q-value

Branch count 0.479 Cultivar 261.11 275 < 2.2e−16 3.3e−15

DAS 29,914.92 1 < 2.2e−16 3.3e−15

Treatment 513.06 1 < 2.2e−16 3.3e−15

Geodesic length 0.578 Cultivar 1144.5 275 < 2.2e−16 3.3e−15

DAS 22,952.6 1 < 2.2e−16 3.3e−15

Treatment 645.1 1 < 2.2e−16 3.3e−15

Euclidean length 0.465 Cultivar 1176.29 275 < 2.2e−16 3.3e−15

DAS 12,430.78 1 < 2.2e−16 3.3e−15

Treatment 579.74 1 < 2.2e−16 3.3e−15

Angle difference 0.530 Cultivar 844.721 275 < 2.2e−16 3.3e−15

DAS 3599.953 1 < 2.2e−16 3.3e−15

Treatment 29.048 1 7.061e−08 1.4122e−07

Splay 0.498 Cultivar 846.223 275 < 2.2e−16 3.3e−15

DAS 2771.252 1 < 2.2e−16 3.3e−15

Treatment 13.217 1 0.0002773 0.0002773
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classified as “highly tolerant” to salt exhibited reduced 
branching length in comparison to other classifications.

Splay
The amount of variance explained by the model was 
38%. The lower R2 value is likely due to the inherent dif-
ficulties in measuring this parameter. Within this model, 
the mean splay (Fig.  11D) was found to be significantly 
affected by cultivar, DAS and treatment (p < 0.001, 
Table 3). Splay increased throughout the experiment for 
both treatments, but was less in salt-treated plants in the 
later part of the experiment. At Day 35, mean Splay was 
34.0° for control plants and 32.6° for salt-treated plants.

When the genotypes were classified into five groups 
based on their salt tolerance (as per the method 
described in [12], Fig. 11D, based on the “salt tolerance” 
data in SI02), DAS (p < 0.001) and salt tolerance classifi-
cation (p < 0.001) were highly significant factors. Plants 
classified as “highly intolerant” to salt exhibited reduced 
mean branch angle compared to other classifications.

Discussion
This paper describes an algorithm that uses RGB imagery 
to reliably count the number of branches and measure 
their length and angle on glasshouse-grown lentil plants. 
This work is of importance because these are key traits-
of-interest for lentil breeders owing to the potential of 
these traits to influence yield and harvestability [18, 19]. 
In recent decades, breeding efforts have resulted in the 
release of lentil cultivars with increased height and a 
reduced number of branches [3] which aids in mechani-
cal harvesting and can lead to improved yield whilst 
reducing lodging [20]. However, the ability to screen 
diverse lentil lines and accurately phenotype their branch 
structures in a high-throughput quantitative manner has 
previously posed challenges, limiting the breeding of new 
cultivars that combine favourable architectural proper-
ties with other desirable traits to enhance productivity.

Our study presents results from two experiments. 
In the first, a diverse panel of 19 lentil genotypes were 
screened for innate differences in architectural traits. 
Our algorithm was able to discriminate between geno-
types based on differences in the numbers of branches as 
well as their angle and length. In the second experiment, 
results comparing the effect of a salt treatment upon 
190 diverse lentil genotypes, as a source of abiotic stress 
with the potential to affect plant architecture, was also 
reported to demonstrate an additional practical appli-
cation for this work. We demonstrated that in the early 
stages of growth, our algorithm was able to distinguish 
between salt-tolerant and salt-stressed genotypes based 
on significant differences in their architecture that arose 
from the treatments. Both experiments demonstrate the 

utility of our approach to plant breeders who can use 
early-stage branch architectural traits as part of a pre-
breeding programme. For instance, a high-throughput 
phenotyping screen utilising a glasshouse-based auto-
mated phenotyping platform could be conducted to 
identify and shortlist genotypes with desirable architec-
tural traits. This approach would lead to a substantial 
reduction in labour and time taken to get a result whilst 
improving the quality of phenotypic data collected.

One of the key challenges for isolating branch struc-
tures from lentil plants is occlusion caused by overlap-
ping branches and leaves. This is a well-documented 
problem with glasshouse- and field-based phenotyp-
ing systems, utilising 2D or 3D imagery [21, 22]. Our 
research utilised side-view images rather than overhead 
to better view branches, but as plants aged and their 
architecture became more complex, accuracy declined, as 
would be expected given the plant density of lentil plants. 
This was particularly evident after 35 DAS. Nevertheless, 
the methodology presented here can still be used for trait 
estimation in early growth stages. A positive correlation 
between plant growth and estimated branch number 
has been demonstrated using our methodology. The use 
of image-based trait estimation has assisted with crop 
improvement in other species such as wheat [23] and 
maize [24] and could be validly employed here too, for 
example, in estimating early vigour based on positive cor-
relations in early growth stages.

Until now, there have been no reports of researchers 
extracting branching data from RGB images of plants 
grown on automated phenotyping platforms. Similar 
work has been focussed on unbranched monocotyledon-
ous species such as barley, where 2D images were used 
to develop a model of leaf architecture [7] and maize [25, 
26]. In dicotyledonous species, progress has been limited 
to the generation of 3D models of small seedlings in spe-
cies such as Arabidopsis [27] and tomato [28].

The approach discussed in this research makes use of 
the basic functionality of a LemnaTec Scanalyser high-
throughput automated phenomics platform and image 
analysis techniques utilising open-source software [13] 
in a Python coding environment, although the logic 
could be applied to other languages and applications. The 
methodology presented here is accessible to researchers 
because it avoids proprietary software and systems.

In terms of image analysis techniques, our research 
demonstrates an effective use of skeletonisation that is 
applied to visible-spectrum images generated by an auto-
mated glasshouse phenotyping platform. Whilst the use 
of skeletons to capture morphological characteristics 
of plants is widespread [29], this is more common with 
data generated from LiDAR laser scanners. For instance, 
skeletonisation has been successfully combined with 3D 
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point clouds to analyse silique morphology in oilseed 
rape [30], map the architecture of fruit trees [31], iden-
tify the structure of individual corn plants in a field [32] 
and phenotype forest trees [33]. However, the applica-
tion of skeletonisation as part of a morphological analysis 
pipeline using RGB images or images derived from visi-
ble-spectrum imagery is less common. Examples where 
this has been used include the phenotyping of roots [34], 
mapping of branching in edamame [35], the identifica-
tion of legumes based on leaf venation [30], identifica-
tion of the structure of maize tassels [36] and branches 
in roses for the purposes of training a robot to under-
take pruning [37]. Our work is the first example of using 
skeletonisation from RGB images to map branching in 
dicotyledonous species. It is anticipated that the use of 
our algorithm could be readily expanded to other dicoty-
ledonous species.

Conclusion
Our approach demonstrates the use of a queue- and 
distance-based approach to identifying and quantifying 
branching structures in glasshouse-grown lentil plants 
using a high-throughput phenomics strategy that utilises 
open-source software to interpret skeletonised binary 
images. The algorithm measures the number of branches, 
their Euclidean and geodesic lengths and their angle 
using RGB images. The ability to collect such valuable 
phenotypic data from lentil plants could be used to guide 
future breeding work to improve traits such as lodging 
and yield.
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