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holds great promise for enhancing our understanding of 
complex biological systems, as extensively reviewed by 
us and other authors [2–5]. Another related technique, 
called quantitative trait loci sequencing (QTL-seq), has 
been proposed for the rapid mapping of QTLs in species 
with a sequenced genome and is accelerating the iden-
tification of genomic regions associated with traits of 
agricultural interest in many crops, often in combination 
with other experimental approaches, such as classical 
linkage and QTL mapping or the identification of differ-
entially expressed genes by RNA-seq [6–8].

In this article, we introduce MAPtools, a collection of 
command-line utilities designed to analyze data from 
MBS and QTL-seq experiments. A growing number of 

Introduction
Mapping-by-sequencing (MBS) is a powerful technique 
that combines high-throughput sequencing technologies 
and bulked segregant analysis to rapidly map mutations 
identified in mutagenesis screens. This approach was 
initially developed for model organism research [1] and 
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Abstract
Background Classical mutagenesis is a powerful tool that has allowed researchers to elucidate the molecular and 
genetic basis of a plethora of processes in many model species. The integration of these methods with modern 
massively parallel sequencing techniques, initially in model species but currently also in many crop species, is 
accelerating the identification of genes underlying a wide range of traits of agronomic interest.

Results We have developed MAPtools, an open-source Python3 application designed specifically for the analysis of 
genomic data from bulked segregant analysis experiments, including mapping-by-sequencing (MBS) and quantitative 
trait locus sequencing (QTL-seq) experiments. We have extensively tested MAPtools using datasets published in 
recent literature.

Conclusions MAPtools gives users the flexibility to customize their bioinformatics pipeline with various commands 
for calculating allele count-based statistics, generating plots to pinpoint candidate regions, and annotating the effects 
of SNP and indel mutations. While extensively tested with plants, the program is versatile and applicable to any 
species for which a mapping population can be generated and a sequenced genome is available.

Availability and implementation MAPtools is available under GPL v3.0 license and documented as a Python3 
package at https://github.com/hcandela/MAPtools.
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software tools and analysis pipelines for MBS and QTL-
seq data have been released in recent years [9–13], but 
many of them are limited in terms of the analyses they 
perform or the species they focus on. Other programs, 
such as CandiSNP, SIMPLE and Easymap, have priori-
tized ease of use by non-expert users [14–16]. MAPtools, 
by contrast, has been designed to be a versatile tool that 
can receive input data from a stream, giving the users 
maximum flexibility in their choice of read mappers and 
variant callers. The versatility of MAPtools is illustrated 
by its ability to analyze data from different segregat-
ing populations and crossing schemes. Using simulated 
reads, previous authors have extensively studied how the 
identification of mutated genes depends on the sequenc-
ing depth and bulk size, two important factors that users 
must also consider when designing MBS experiments 
[17, 18]. The syntax of MAPtools is straightforward and 
similar to that of other highly popular and widely used 
programs such as SAMtools or BCFtools, which should 
make it user-friendly for researchers who are already 
familiar with these programs. For this reason, the learn-
ing curve for the program is not expected to pose a sig-
nificant barrier to new users.

Implementation
The MAPtools application
MAPtools is a Python3 v. 3.8-based, standalone applica-
tion that is distributed under the GPL v3.0 license and 
freely available to users. Its dependencies are limited to 
several packages commonly used in scientific comput-
ing, including docopt (v. 0.6.2), NumPy (v. 1.24.2), SciPy 
(v. 1.10.1), pandas (v. 2.0.0), biopython (v. 1.81) and mat-
plotlib (v. 3.7.1), which can be easily installed with pip (v. 
20.0.2). The program has been tested with the latest ver-
sions of the libraries available at the time of submission. 
Its distribution through a GitHub repository (https://
github.com/hcandela/MAPtools) will facilitate the long-
term maintenance of the code. We developed and tested 
the program on a desktop computer equipped with two 
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz (16 cores, 
32 threads) processors and 125 Gi RAM, but the program 
has also been successfully tested on computers with less 
memory or fewer cores.

The ability to integrate MAPtools in workflows with 
other tools gives researchers maximum control over 
their analysis pipelines (Fig.  1). For example, users may 
choose to filter read pairs based on mapping quality or 
sequencing depth prior to using MAPtools, or they may 
want to include extra steps to mark or remove dupli-
cate read pairs that, if present, might bias the real allele 
frequencies. A typical QTL-seq or MBS analysis pipe-
line involves aligning reads from distinct samples to a 
well-annotated reference genome using software tools 
such as BWA [19] or Bowtie2 [20]. The resulting files in 

sequence alignment/map format (SAM) [21] are then 
converted to compressed binary format (BAM) and pro-
cessed using variant calling software, such as BCFtools 
[22, 23] or GATK [24, 25]. MAPtools can directly read 
input data in uncompressed Variant Call Format (VCF), 
provided that it includes allelic depth (AD) fields for each 
sample in separate columns. VCF data with AD fields is 
produced by BCFtools’ mpileup command when it is 
run with the ––annotate option, and also by GATK’s 
HaplotypeCaller if the BAM files contain different 
RG fields for each sample. We have tested the program 
with input files produced by BCFtools’ call command, 
which can also output data to a stream, and by GATK’s  
HaplotypeCaller command, but MAPtools should 
also work with any other software that outputs data in 
VCF format. Although the current version of MAPtools 
cannot directly read input data from compressed or 
uncompressed BCF files or from compressed VCF files, 
this can be easily achieved by including a conversion step 
in the workflow using BCFtools’ view command. The 
amount of RAM required by MAPtools is quite low, par-
ticularly when the input VCF file contains only the vari-
ant sites.

The initial release of MAPtools (v. 1.0) includes six 
commands that support the analysis of MBS and QTL-
seq data. Specifically, two commands, namely mbs and 
qtl, enable the analysis of data from MBS or QTL-seq 
experiments and calculate different statistics depending 
on the type of experiment and the available input data-
set. The plot command plots the results and creates 
publication-quality figures with their captions. Addition-
ally, the merge command can integrate the allele counts 
from all markers within a window, allowing the output to 
refer to haplotypes rather than individual markers. The 
annotate command allows users to assess the effect of 
all candidate mutations within a user-selected interval. 
Lastly, the citation command provides information 
on the version of the program in use. The mbs, qtl and 
merge commands produce output in a VCF-like for-
mat, which can be read by the merge and plot com-
mands. This output consists of a header similar to that of 
the VCF files, containing information about the program, 
the options used, as well as the headings and a descrip-
tion of the contents of each column. The header cumula-
tively records each step performed, which should help to 
improve its reproducibility.

MAPtools commands
Analysis of MBS data
The mbs command processes the VCF input to tabu-
late the allele counts and calculate different parameters 
that facilitate identifying a mutation of interest through 
MBS. The user must designate each available sample 
using option -d (--data) as one of the following: R 

https://github.com/hcandela/MAPtools
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(the required bulk of phenotypically recessive individu-
als from the mapping population), D (an optional bulk 
of phenotypically dominant individuals from the map-
ping population), Pr (the phenotypically recessive parent 
of the mapping population) and Pd (the phenotypically 
dominant parent of the mapping population). Depend-
ing on the available samples, the calculated parameters 
might include the SNP-index (defined as the frequency 
of alleles inherited from the phenotypically recessive pro-
genitor), the ∆(SNP-index) (defined as the difference of 

the SNP-indices in the D and R bulks), the exact prob-
abilities and p-values of Fisher’s exact tests, the Euclidean 
distances calculated for individual markers (EDm) and 
the G statistic, all of which have previously been used in 
BSA-seq experiments [26]. When the reference genome 
sequence matches that of one parent of the mapping pop-
ulation, or if one or both parents of the mapping popula-
tion have been resequenced, the mbs command uses this 
information to classify the alleles based on their parental 

Fig. 1 MBS and QTL-seq workflows using MAPtools. MAPtools requires data in uncompressed VCF format, which can be read from disk or from a stream. 
Data in this format can be produced either by BCFtools or by GATK, and serves as input for MAPtools’ qtl and mbs commands. Data in other formats 
can be converted to uncompressed VCF by BCFtools’ view command. This command can also be used to apply additional quality or sequencing depth 
filters to the uncompressed VCF data. The output of qtl and mbs can serve as input for other MAPtool’s commands, like merge, plot and annotate
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origin: The program can handle the following experimen-
tal situations:

(i) With genomic DNA from the R bulk. The user can 
specify if the alleles in the reference sequence match 
those of the dominant or the recessive parent, 
enabling the calculation of allele frequencies (AFs, 
also known as SNP-indices) for the alleles inherited 
from the phenotypically recessive parent. If such 
information is unavailable, the program will instead 
calculate the AF for the most abundant allele, 
regardless of its parental origin, yielding values equal 
to or greater than 0.5.

(ii) With genomic DNA from the R and D bulks. If the 
reference genome sequence matches the dominant 
or the recessive parent, the program will additionally 
report other parameters useful for comparing the 
allele counts in the two bulks. Like in the previous 
case, the command reports the AF for the most 
abundant allele in the recessive bulk when the 
parental origin of alleles is unknown.

(iii) With genomic DNA from the R bulk plus one 
parent (Pd or Pr). In this scenario, the sequence 
of the parent allows determining the parental 
origin of the alleles, enabling the calculation of 
the AF for alleles inherited from the recessive 
parent. Resequencing of at least one of the parents 
is particularly recommended when the reference 
genome does not match any of the parents of the 
mapping population.

(iv) With genomic DNA from the R and D bulks plus 
one parent (Pd or Pr). Similar to case (ii), this setup 
enables the calculation of the AF for alleles from the 
recessive parent, as well as other parameters that 
require two bulks from the mapping population.

(v) With genomic DNA from the R bulk plus the two 
parents (Pd and Pr). This case differs from case 
(iii) in that the resequencing of the two parents is 
supplied as input. In this situation, the program will 
focus on the polymorphisms detected between the 
two parents and proceed as usual.

(vi) With genomic DNA from the R and D bulks plus 
the two parents (Pd and Pr). Similar to case (v), this 
case differs from case (iv) in that the resequencing of 
the two parents is supplied as input. In this situation, 
the program will first focus on the polymorphisms 
detected between the two parents and proceed as 
usual.

In addition to the R, D, Pr and Pd samples, the program 
supports the inclusion of an additional wild-type sample, 
designated Wd or Wr, corresponding to an isogenic line 
or the non-mutagenized parents of a dominant mutant or 
a recessive mutant, respectively. The Wd and Wr samples 

are then used to discard any alleles that were already 
present prior to mutagenesis. The difference between P 
samples and W samples is that the former are used for 
determining the parental origin of alleles, whereas the 
latter are only used for discarding shared alleles.

Analysis of QTL-seq data
In a similar way, the qtl command processes the VCF 
input data and calculates the necessary parameters for 
the mapping of QTLs using a QTL-seq strategy. At a min-
imum, it requires sequence data from two sets of indi-
viduals with extreme phenotypes, denoted H (‘high’) and 
L (‘low’), to calculate several parameters, including the 
∆SNP index, p-values from Fisher’s exact tests, Euclidean 
distances for individual markers (EDm), and G statistics, 
which are commonly used in BSA-seq experiments [26]. 
This command supports the following scenarios:

(i) Genomic DNA sequenced from the H and L bulks. 
The AFs in the high and low bulks are used to 
calculate the ∆SNP index when the alleles can 
be classified based on their parental origin ( i.e., 
when the reference genome corresponds to one of 
the parents of the segregating population). If the 
parental origin of the alleles cannot be determined, 
the command reports the absolute value of the 
∆SNP index (|∆SNP index|) in addition to the above 
statistics for each polymorphic site found.

(ii) Genomic DNA isolated from the H and L bulks plus 
the resequencing of one parent (P). In this case, the 
alleles can be assigned to haplotypes based on the 
sequence of the parent, allowing the calculation of 
∆SNP indices and other parameters.

Because the qtl and mbs commands can receive input 
line-by-line from a Unix pipe, calculations that require 
data from multiple adjacent SNP markers are deferred to 
a later step, when they are performed by the merge and 
plot commands. This is the case for the calculation of 
ED1004 values (which are calculated as the fourth power 
of the sum of the Euclidean distances of 100 consecu-
tive SNPs, and are plotted only for those chromosomes 
that contain enough markers), the calculation of moving 
averages of other parameters, or calculations that require 
knowing the number of statistical tests performed (e.g. 
significance thresholds corrected for multiple testing 
using the Bonferroni method).

Binning of MBS and QTL-seq data
The merge command can be used to post-process 
the results generated by the mbs and qtl commands 
when the parental origin of each allele is known. This 
command should be particularly useful when the 
number of polymorphic sites is high (e.g. when using 
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populations involving different genetic backgrounds) but 
the sequencing depth at each individual site is low, which 
might yield non-significant results at individual markers. 
In this case, we reasoned that binning the allele counts of 
adjacent markers can help to identify regions (rather than 
individual markers) linked to the trait of interest. Bins 
can be defined in two alternative ways: (a) as overlapping 
sets of n consecutive markers, or (b) as sets of all mark-
ers contained within non-overlapping windows of user-
defined length. The read counts of all markers within a 
bin are aggregated and then used to calculate bin-level 
haplotype frequencies and other parameters relevant 
to MBS and QTL-seq experiments. When thousands of 
polymorphisms segregate in the mapping population and 
their linkage phase is known, we reasoned that increas-
ing the number of observations would improve the abil-
ity of Fisher’s exact tests to detect a significant difference 
between treatments, since a larger sample size provides 
more information, reduces the impact of random vari-
ability, and increases the chances of detecting a true 
difference if it exists. An example of how the merge 
command affects the results of the analysis is shown 
below for Case Study 6.

Plotting the results of MBS and QTL-seq experiments
The plot command is intended to generate publica-
tion-quality figures and to facilitate interpretation of 
the output of the mbs, qtl and merge commands. The 
set of plots produced can be customized by the user or 
automatically selected based on the fields present in the 
header of the output files produced by each command. 
These plots can be drawn for individual chromosomes 
or integrated into multi-panel figures: the user can select 
specific chromosomes and parameters to plot, and can 
choose to create figures that integrate different param-
eters for a given chromosome, or figures that display a 
given parameter for a user-selected set of chromosomes. 
p-values and other parameters can also be presented as 
Manhattan-like plots. Additional features of this com-
mand include the ability to plot moving averages of the 
allele frequencies (calculated either using all markers 
within overlapping windows containing a user-defined 
number of adjacent markers or using all markers within 
non-overlapping intervals of user-defined length) and 
‘boost’ values (calculated as described for SHOREmap), 
the ability to overlay the moving average of the AF for 
the alternative pool, the automatic generation of figure 
legends, and the availability of different color palettes. 
As a proxy for a confidence interval for the ∆SNP-index 
plots, we average the limits of the confidence intervals 
calculated for individual markers. These limits are cal-
culated based on the formulas for a difference of two 
proportions, applying the Bonferroni correction to the 
significance level used (𝛼=0.05), taking into account the 

number of markers. Similarly, the p-value plots incor-
porate a significance threshold level that is calculated 
using the Bonferroni correction. The user can custom-
ize the appearance of the plots by selecting appropriate 
options on the command line, including predefined color 
combinations (“palettes”), dot size and transparency, line 
width, resolution and output file format (EPS, JPG, PDF, 
PNG or SVG). The program allows users to customize 
additional aspects by editing a file in JavaScript Object 
Notation (JSON) format that MAPtools reads from disk. 
Parameters that can be customized include color pal-
ettes, some display attributes, and chromosome aliases. 
Although the program comes with a default color pal-
ette and a color palette optimized for individuals with 
color blindness, the JSON file also allows users to define 
their own custom palettes and adjust the size and other 
display attributes of the plots generated by MAPtools. 
By default, chromosomes are labeled as they appear in 
the reference genome’s FASTA file, typically using their 
GenBank accession numbers, but the JSON file allows 
users to assign a shorter, alternative display name to each 
chromosome (e.g., ‘Chr1’). The ability to generate files in 
vector graphics formats, such as the EPS (Encapsulated 
PostScript) and SVG (Scalable Vector Graphics) formats, 
provides an additional level of customization, allowing 
users to easily edit elements such as caption sizes and 
axis labels while ensuring that images are displayed at the 
maximum resolution.

Functional annotation of identified variants
The annotate command assesses the functional impact 
of nucleotide substitutions, insertions, and deletions 
within a user-specified interval. Certain variants are typi-
cally excluded based on predefined criteria [27]: (a) the 
mutant allele matches the reference genome allele, which 
is assumed to be functional, (b) the substitution is not a 
G/C-to-A/T transition mutation (the most common type 
of mutation caused by ethyl methanesulfonate, EMS), or 
(c) the mutant allele is present in the non-mutagenized 
parent or other related lines, indicating that it does not 
cause the observed phenotype. We have implemented 
these filters in the mbs command, allowing the user to 
generate filtered or unfiltered input for annotate at 
will. The command then quickly evaluates the effect of 
all candidate mutations passing these filters against the 
genome annotation provided as a GFF3 file using a binary 
search algorithm.

This command identifies whether mutations reside 
in genic or intergenic regions. For intergenic muta-
tions, it reports the identity of and the distance to the 
nearest adjacent genes. In protein-coding genes, the 
program determines whether the mutation is located 
in the 5’ untranslated region (5’-UTR), the coding 
sequence (CDS), or the 3’ untranslated region (3’-UTR). 
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Substitutions in the CDS are classified as synonymous 
or non-synonymous (with the latter further classified 
as missense or nonsense) based on their effect on the 
amino acid sequence. Indels are checked for frameshift 

generation. For mutations located in introns, the pro-
gram reports the distance to the nearest adjacent exons 
in each transcript isoform. Mutations near donor or 
acceptor splice sites that could cause missplicing are also 
reported. Mutations in the 5’-UTR are checked for pre-
mature ATG codon creation and their distance to the 
translation initiation site is reported. Nonstop mutations 
that replace a stop codon, resulting in continued mRNA 
translation into the 3’-UTR, are also reported. The pro-
gram also assesses whether deletions partially or com-
pletely disrupt one or more genes.

Validation
We have tested MAPtools under a variety of experimen-
tal situations, using our own MBS data [28], simulated 
MBS data, and publicly available MBS and QTL-seq data-
sets reported in the literature for plant species as diverse 
as Chinese cabbage (Brassica rapa L. ssp. pekinensis) 
[29, 30], rice (Oryza sativa L.) [6, 31, 32], tomato (Sola-
num lycopersicum L.) [33], strawberry (Fragaria vesca 
L.) [34, 35], and Arabis alpina [36]. As shown below, our 
results demonstrate the ability of MAPtools to analyze 
data across different experimental designs and species, as 
we were able to detect the same QTL and find the same 
causal mutations as reported in the published studies 
(Supplemental File 1). Table 1 and Supplemental Table 1 
summarize the datasets that have been analyzed and the 
options used to run the MAPtools’ commands mbs and 
qtl.

Case study 1: The lcd1 mutant of rice
The recessive lcd1 (low Cd accumulation 1) mutant was 
induced by EMS mutagenesis from 9311, an indica rice 
strain for which a reference genome sequence is available 
[31]. To map the gene, the authors used an F2 popula-
tion derived from a backcross between lcd1 and its wild-
type progenitor, 9311, and used the Illumina platform to 
sequence four samples: the lcd1 and 9311 parents of the 
cross, a bulk comprising the 31 F2 plants with the lowest 
Cd levels (presumably lcd1 mutants), and another bulk 
comprising the 31 F2 plants with the highest levels. The 
known effects of EMS and the fact that both parents of 
the cross have been sequenced, allowing the alleles to be 
classified according to their parental origin, make this an 
ideal case study for testing MAPtools. We run the MAP-
tools mbs command with the -d R,D,Pr,Pd option, 
which instructs the program to use the sequence data 
from the parental samples (Pr and Pd) to select the vari-
ants that will be analyzed in the bulks of phenotypically 
dominant (D) and recessive (R) plants. An advantage 
of resequencing of the parents (Pr and Pd) is that each 
allele can be assigned to its parental haplotype. Alterna-
tively, this assignment could have been made by selecting 
the -r D option, since the reference genome sequence 

Table 1 Case studies used for testing MAPtools
Species Trait or 

mutation
BioProject (samples) Refer-

ence
O. sativa lcd1 PRJNA525315 (D: 

SRR8695238;
R: SRR8695239; Pr: 
SRR8695240; Pd: 
SRR8695241)

Cao et 
al., 2019

O. sativa Suppresor of
xantha

PRJCA007389 (D: 
CRR344193;
R: CRR344195; Pd: 
CRR344192;
Pr: CRR344194)

Jiang et 
al., 2022

O. sativa Resistance to
rice blast 
disease

PRJDB2455 (H: DRR003237; 
L: DRR003238)

Takagi et 
al., 2013

S. lycopersicum Ascorbate-
enriched
fruits (AsA+)

Bourn-
onville et 
al., 2023

B. rapa nhm3 PRJNA761522 (R: 
SRR15829494; Pd: 
SRR15803269; Pr: 
SRR15828094)

Huang 
et al., 
2022

B. rapa Cuticular wax 
biosynthesis

PRJNA751715 (D: 
SRR15371666, R: 
SRR15371667)

Yang et 
al., 2022

A. alpina eop002 PRJNA756904 (R: 
SRR15564670) and 
PRJNA608065 (Pd: 
SRR11140832-
SRR11140833)

Viñegra 
de la 
Torre et 
al., 2022

eop085 PRJNA756904 (R: 
SRR15564669) and 
PRJNA608065 (Pd: 
SRR11140832-
SRR11140833)

eop091 PRJNA756904 (R: 
SRR15564668) and 
PRJNA608065 (Pd: 
SRR11140832-
SRR11140833)

A. thaliana emb1956-3 PRJNA9349:07 (D 
SRR23456103; R: 
SRR23456104) and 
PRJNA751183 (Wr: 
SRR15322352)

Rodrí-
guez-
Alcocer 
et al., 
2023

F. vesca Petiole color PRJNA823731 (R: 
SRR18649835; D: 
SRR18649836)

Luo et 
al., 2023

F. vesca Fruit color PRJEB38128 (R: 
ERR4463155-
ERR4463156; D: 
ERR4463153-ERR4463154)

Castillejo 
et al., 
2020

Projects and samples with accession numbers are publicly available from the 
NCBI (http://ncbi.nlm.nih.gov) and Genome Sequence Archive BIG Data Center 
(https://bigd.big.ac.cn/gsa/) databases

http://ncbi.nlm.nih.gov
https://bigd.big.ac.cn/gsa/
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corresponds to one of the parents of the mapping popu-
lation (i.e. 9311). Our analysis of the original data allowed 
us to locate the gene on chromosome 7, as indicated by 
the significant p-values of Fisher’s exact tests (Fig.  2a) 
and all other parameters used to compare the distribu-
tion of alleles in the D and R bulks (Fig.  3 and Supple-
mental Fig. 1). By applying the annotate command to a 
5-Mb candidate interval on chromosome 7, we were able 

to detect the same C-to-T transition mutation in exon 7 
of the Os07g0257200 gene as previously described [31]. 
While these authors reported that the mutation substi-
tutes a Leu residue for Pro in the OsNRAMP5 protein, 
MAPtools additionally indicated that the lcd1 mutation 
damages a 5’ splice site and, therefore, it may disrupt 
the protein function to a greater extent than originally 
thought.

Fig. 2 Mapping-by-sequencing in different species using MAPtools. The dots in each Manhattan plot correspond to the -log(p-value) of two-tailed Fish-
er’s exact tests performed for individual biallelic markers segregating in the mapping population, as determined using data from the R and D bulks. The 
lines correspond to the weighted moving averages calculated for a sliding window containing n adjacent markers. The dashed line marks the significance 
threshold calculated using the Bonferroni correction. (a) Mapping of the lcd1 mutation of rice; n = 3. (b) Mapping of a suppressor of the xantha mutant of 
rice; n = 2. (c) Mapping of an ascorbate-enriched mutant of tomato; n = 20. (d) Mapping of the green petiole-1 mutant of strawberry; n = 20. (e) Mapping of 
a white fruit mutant of strawberry; n = 100. (f) Mapping of a glossy mutant of Chinese cabbage; n = 100. (g) Mapping QTL for a rice blast disease; n = 100
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Case study 2: a suppressor of a xantha mutant of rice
A similar approach was followed to characterize a muta-
tion that suppresses the effects of a xantha (yellow-leaf ) 
mutation in rice [32]. To generate a mapping population, 
the suppressor was backcrossed to the xantha mutant. 
Rather than focusing on the F2 generation, the authors 
bulked F3 plants from the generation that were known to 
be homozygous for either the mutant allele or the wild-
type allele. In addition to the parents of the cross, two 
bulks were sequenced, one consisting of 20 F2:3 plants 
exhibiting the xantha phenotype and another consist-
ing of 20 F2:3 plants with green leaves. Although MAP-
tools is not specifically designed to work with bulks of 
F3 plants, it allowed us to successfully locate the gene on 
chromosome 10 (Fig. 2b). The G-to-A transition reported 
in the article [32] was the only mutation detected by the 
annotate command within a 3  Mb candidate inter-
val. The command reported its effect on three isoforms 
of the Os10g0502400 (OsGluTR) gene. In one isoform, 
the mutation is predicted to reside in the 5’ untranslated 

region (5’ UTR) and its effect is uncertain. In the other 
isoforms, however, the mutation is located in the CDS 
and is predicted to substitute a Val residue for Ala in the 
corresponding protein products. Interestingly, this was 
the only position reported by the program for which the 
two bulks were homozygous, albeit for different alleles, as 
expected from experimental design (Supplemental Figs. 2 
and 3).

Case study 3: an ascorbate-enriched mutant of tomato
We also analyzed raw data corresponding to a recessive 
mutant with ascorbate-enriched fruits that had been 
isolated from the tomato cultivar Micro-Tom after EMS 
mutagenesis [33]. The data from this study allowed us to 
test MAPtools when the genome of one parent has been 
resequenced (i.e. Micro-Tom) in addition to the D and R 
bulks. Running the mbs command with the -d D,R,Pd 
option allowed us to place the gene on chromosome 
5 (Fig.  2c and Supplemental Figs.  4 and 5). Using the  
annotate command, we found a C-to-T transition 
mutation in the gene Solyc05g007020, which encodes 
a member of the PAS/LOV protein (PLP) class of pho-
toreceptors. The authors correctly reported that this 
mutation creates a premature stop codon [33], but the 
annotate command additionally reported that it dam-
ages a 5’ splice site and is therefore likely to alter the 
splicing of its transcripts.

Case study 4: the nhm3-1 mutant of Chinese cabbage
A different approach was followed to characterize a 
recessive non-heading mutant (nhm3-1), which had been 
induced by EMS from FT, a wild-type strain of Chinese 
cabbage (Brassica rapa ssp. pekinensis) [30]. The authors 
prepared an F2 mapping population, but they chose to 
sequence only the bulk of F2 mutant plants (R bulk) and 
the two parents of the population (FT and the nhm3-
1 mutant). To handle this situation, we run MAPtools 
mbs with the -d R,Pd,Pr option. In the absence of a 
D bulk, we rely entirely on the allele frequencies to map 
and identify the mutation, as MAPtools cannot perform 
any calculations that require the two bulks (e.g. Fisher’s 
exact tests, G statistics or Euclidean distances). The allele 
frequencies in the R bulk indicate that the nhm3-1 muta-
tion is most likely located on chromosome 5 (Fig. 4). We 
used the annotate command to evaluate the effect of 
the 20 EMS-type nucleotide substitutions detected in a 
wide candidate interval (between megabases 3 and 10) 
on this chromosome. Interestingly, all the substitutions 
were of the same type (G-to-A transitions, with no C-to-
T transitions detected in the interval), a bias that is a 
known consequence of the mutagenic action of EMS on 
the same DNA strand [37]. One of the transition muta-
tions found by the annotate command is predicted to 
cause a Gly-to-Glu substitution in the protein encoded 

Fig. 3 Mapping-by-sequencing of the lcd1 mutant of rice. Several sta-
tistics have been evaluated across all chromosomes, and the results are 
presented as Manhattan plots. Each dot corresponds to an individual bi-
allelic marker segregating in the population. Weighted moving averages 
(continuous lines) have been calculated for each statistic using a sliding 
window containing 3 adjacent markers. (a) SNP-index (allele frequency) 
in the D bulk. (b) SNP-index in the R bulk. (c) Δ(SNP-index), calculated as 
the difference between the SNP-index of the D bulk and the SNP-index of 
the R bulk. The shaded area is delimited by the moving averages of the 
lower and upper bounds of 95% confidence intervals, using the Bonfer-
roni correction for multiple testing (with n = 151 tests). (d) Euclidean dis-
tance. (e) G-statistic, calculated as described by Magwene et al. (2011). (f) 
-log(p-value) of two-tailed Fisher’s exact tests. The dashed line marks the 
Bonferroni-corrected 5% significance threshold, calculated considering 
that n = 151 chromosomal locations have been tested

 



Page 9 of 13Martínez-Guardiola et al. Plant Methods          (2024) 20:107 

by the KAO2 (ent-kaurenoic acid oxidase 2) gene, also 
known as A05p015130.1_BraROA.1. This mutation 
was previously considered to be the most likely cause 
of the observed phenotype [30]. However, the candi-
date interval was found to contain a second nonsyn-
onymous mutation with an allele frequency of 1 in the 
A05p016250.1_BraROA.1 gene, which is predicted to 
cause a Gly-to-Asp substitution in the protein.

Case study 5: three eop mutants of Arabis alpina
Viñegra de la Torre et al. [36] followed a mapping-by-
sequencing strategy to characterize three EMS-induced 
alleles (eop002, eop085 and eop091) of the ENHANC-
ERS OF PEP1 (EOP) gene of Arabis alpina. The authors 
prepared mapping populations for the three mutants and 
sequenced one bulk of F2 mutant plants for each one, 
plus an additional sample of the pep1-1 parent of the 
three populations. All four samples were sequenced using 
Illumina technology, and the reads were mapped to the 
A. alpina reference genome. We used the MAPtools mbs 
command with the -d R,Pd option to map the three 

allelic mutations separately. The allele frequencies in 
the R bulk of each mapping population clearly indicated 
that the mutations reside on chromosome 8 (Fig.  5 and 
Supplemental Fig. 6). Using annotate, we were able to 
identify three nonsynonymous mutations affecting the 
same gene (Aa_G106560) on this chromosome, as had 
been previously reported.

Case study 6: an albino mutant of Arabidopsis thaliana
To test MAPtools in the context of mapping populations 
derived from crosses involving widely divergent genetic 
backgrounds, we have also reanalyzed previously pub-
lished data from several articles, including our own. We 
recently described the cloning of an albino mutation in 
Arabidopsis thaliana using mapping by sequencing [28]. 
In this particular case, we had sequenced two bulks of 
plants from the F2 generation, one consisting of 170 
phenotypically wild-type plants and another consisting 
of 87 phenotypically mutant plants. To analyze the raw 
data from this experiment, we used the MAPtools mbs 
command with the -d D,R option, which allowed us 

Fig. 4 Allele frequencies place the nhm3-1 mutation on chromosome 5 of Chinese cabbage. Each dot indicates the allele frequency of a biallelic poly-
morphism segregating in the population, as determined for the R bulk. The light green line indicates the moving average of the allele frequencies at 3 
adjacent sites. (a) Chromosome A01. (b) Chromosome A02. (c) Chromosome A03. (d) Chromosome A04. (e) Chromosome A05. (f) Chromosome A06. (g) 
Chromosome A07. (h) Chromosome A08. (i) Chromosome A09. (j) Chromosome A10
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to locate the mutation on chromosome 2 (Fig.  6a and 
Supplemental Figs. 7 and 8). The resulting plots revealed 
that the genomes of the two parental strains consisted 
of regions that differed in the abundance of sequence 
polymorphisms. To exclude additional polymorphisms 
that were unlikely to cause the observed phenotype, 

we reran the command with the --EMS and -I flags, 
which discard substitutions that are unlikely to have 
been caused by EMS as well as all insertion-deletion 
mutations: This second analysis was performed with the  
-d D,R,Wr and --parental-filter options. To 
this end, we added sequencing data for wild-type plants 
of the Landsberg erecta background, which shares poly-
morphisms with the mutant parent of the mapping 
population. These filters greatly reduced the number of 
candidate mutations (Fig. 6b) and facilitated the identifi-
cation of the same causal mutation as previously reported 
[28]. To illustrate the effect of the merge command, we 
applied it to the unfiltered dataset, which resulted in a 
more pronounced peak in the Manhattan plots (Fig. 6c).

Case study 7: the green petioles-1 mutant of strawberry
In addition to our own data, we have also tested the 
program with data from outcrosses involving plant spe-
cies other than Arabidopsis thaliana. A recent study 
has characterized the green petioles-1 (gp-1) mutant of 
diploid strawberry (Fragaria vesca), which was isolated 
after N-ethyl-N-nitrosourea (ENU) mutagenesis of the 
Yellow Wonder 5AF7 (YW) accession [35]. The peti-
oles of wild-type plants are purple whereas those of gp-
1 mutants are green. An F2 population derived from an 
outcross between the gp-1 mutant and the Hawaii (H4) 
wild-type accession was used for mapping-by-sequenc-
ing. Two bulks were sequenced: one consisting of F2 
plants with green petioles, and another consisting of F2 
plants with purple petioles. Since the genome sequence 
of the H4 accession is available and was used as the refer-
ence for mapping the reads, MAPtools can easily assign 
the alleles to the two parents of the outcross. With the  
-d R,D -r D -m R options, the allele frequency and 

Fig. 6 Mapping-by-sequencing of an albino mutant of A. thaliana. Each 
dot in the Manhattan plots corresponds to the -log(p-value) of a two-tailed 
Fisher’s exact test performed for an individual biallelic marker segregating 
in the population (a and b) or for haplotypes integrating the allele counts 
of 20 adjacent markers (c), as determined using data from the R and D 
bulks. The panels illustrate the effect of running the mbs and merge 
commands of MAPtools on the same dataset with different options.  
(a) mbs -d D,R -m R -r D, with no filters applied. (b) mbs -d 
D,R,Wr -r D -m R --EMS -I --parental-filter, which 
excludes indels (-I), all mutations other than G/A-to-C/T transitions  
(--EMS), and all changes already present in the Wr sample  
(--parental-filter). (c) mbs -d D,R -m R -r D, followed 
by merge -w 20, which combines the allele counts in sets of 20 con-
secutive markers. The lines correspond to the weighted moving averages 
calculated for a sliding window containing 200 markers (a), 5 markers (b) 
and 10 haplotypes (c). The dashed lines mark the Bonferroni-corrected 
5% significance thresholds, assuming that n = 291,824 (a), n = 861 (b) and 
n = 14,595 tests have been performed

 

Fig. 5 Mapping-by-sequencing of three recessive eop mutants of Arabis alpina. Each dot corresponds to an individual biallelic marker segregating in the 
population. (a) eop002 mutant. (b) eop085 mutant. (c) eop091 mutant
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p-value plots generated by MAPtools suggested that the 
mutation resides on chromosome 1 (Fig. 2d and Supple-
mental Figs. 9 and 10). Using the annotate command, 
we identified the same C-to-T substitution on chromo-
some 1 as previously described [35]. Based on the anno-
tation provided in the GFF file, MAPtools determined 
that it is located one nucleotide away from a 3’ splice 
site within one of the introns of the FveMYB10L gene 
(FvH4_1g22040.1). Luo et al. [35], however, corrected the 
annotation of this gene so that the mutation is located in 
exon 3, resulting in the substitution of a lysine reside for 
an arginine in the protein.

Case study 8: a white fruit mutant of strawberry
Castillejo et al. [34] mapped a mutation causing white 
fruits using two bulks from the F2 progeny of an outcross 
involving two lines of strawberry (Fragaria vesca), RV660 
(with red fruits) and WV596 (with white fruits). The 
bulks comprised 34 plants with red fruits and 32 plants 
with white fruits, respectively. The reads were aligned to 
the Hawaii-4 (H4) reference genome and, because the 
parents of the mapping population were not sequenced, 
their alleles cannot be uniquely assigned to either RV660 
or WV596. Using the ΔSNP index, the authors defined 
a candidate interval on chromosome 1, where they 
identified a transposon insertion in the FvMYB10 gene 
(FvH4_1g22020). Our analysis of the raw data using the 
MAPtools mbs command clearly showed that the muta-
tion responsible for the white color resides on chromo-
some 1, as evidenced by the low p-values of Fisher’s exact 
tests (Fig. 2e) and other parameters considered, such as 
the frequency of the most abundant allele (Supplemental 
Figs.  11 and 12). Although the annotate command is 
not designed to detect large insertions, like the transpo-
son reported by Castillejo et al. (2020), it identified other 
polymorphisms with highly skewed allele counts in the 
coding sequence of the same gene (i.e. a G-to-A transi-
tion mutation at position 13,950,746).

Case study 9: a glossy mutant of Chinese cabbage
In another study with Chinese cabbage [29], the genetic 
basis of the recessive glossy phenotype of a line was char-
acterized. To identify the responsible locus, a BSA-seq 
strategy was followed with an F2 mapping population 
derived from the cross between the glossy line (Y1211-1) 
and a double haploid line (R16-11). Two pools of F2 plants 
were sequenced: one consisting of 25 glossy plants (the G 
pool) and one consisting of 25 waxy plants (the W pool). 
The authors aligned the reads to the B. rapa v1.5 genome, 
which did not match either parent of the cross. By exam-
ining Δ(SNP index) values, they found a candidate gene, 
Bra032670, on chromosome A09, in a candidate interval 
between megabases 37.35 and 38.88. This study is based 
on an isogenic cross, but the parents are not available 

to sort the alleles (neither reference sequence nor addi-
tional sequenced pools). Using MAPtools, a maximum of 
allele frequencies and a minimum of p-value in the same 
chromosome as indicated by the authors of the paper are 
clearly detected (Fig.  2f and Supplemental Figs.  13 and 
14).

Case study 10: mapping QTL for rice blast disease
Takagi et al. [6] mapped QTL conferring partial resis-
tance to rice blast disease (Magnaporthe oryzae) using a 
population of recombinant inbred lines (RILs) established 
from a cross between the Nortai (partially resistant) and 
Hitomebore (highly susceptible) rice lines. The RILs were 
scored for resistance, and two bulks were made with 20 
lines highly resistant and 20 lines highly susceptible to 
rice blast. The reads were mapped to the Hitomebore 
reference genome, which allows the assignment of alleles 
to each parent. Using MAPtools, we mapped a QTL to a 
relatively narrow region on chromosome 6, at the same 
location reported by Takagi et al. (2013), as indicated by 
the significant p-values of Fisher’s exact tests (after Bon-
ferroni correction) and the shift in the value of the ΔSNP 
indices (Fig. 2g and Supplemental Figs. 15 and 16).

Conclusions
Here, we present MAPtools, a novel program with a 
number of useful features for the analysis and visualiza-
tion of mapping-by-sequencing and QTL-seq data. This 
command-line tool is implemented in the Python3 lan-
guage, making it easy to install and use. We developed 
MAPtools inspired by the SAMtools and BCFtools pack-
ages, two important applications that we emulated in fea-
tures such as the availability of distinct commands and 
the ability to receive input data through a command-line 
pipeline or properly formatted VCF files. The fact that 
MAPtools can process input received from the com-
mand line makes it a very versatile application that can 
be easily integrated into workflows with various state-
of-the-art variant callers, such as BCFtools or GATK. 
Although the mbs and qtl commands of MAPtools 
primarily function with VCF input data, this feature of 
the program effectively allows processing input data in 
BCF format by simply adding a conversion step (e.g. by 
using BCFtools’ view command) to the workflow. Once 
a VCF (BCF) file is ready, it can be quickly processed any 
number of times by running MAPtools mbs or qtl with 
user-selected parameters to facilitate the identification of 
the causal mutation, or by adding additional steps to the 
workflow. These may include steps to filter out sites with 
certain types of mutations (e.g. indels), too low sequenc-
ing depth, or based on the values of other fields present 
in the VCF file format.

One of the unique features of MAPtools is its ability to 
use multiple criteria to determine the position of QTLs 
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or genes of interest. In addition, our repertoire of com-
mands enables the automatic generation of publication-
quality figures and their captions, as well as the rapid 
assessment of the functional impact of identified genetic 
variants by using a genome annotation file in the GFF3 
standard format. We have tested our software using raw 
data from species with genome sizes ranging from 135 
Mbp (A. thaliana) to 828 Mbp (S. lycopersicum). MAP-
tools will work best for any species for which a high-
quality genome sequence is available, particularly if it 
has been annotated using the standard GFF3 file format. 
To this end, the Ensembl Plants database turned out 
to be an ideal resource [38], as it includes genomes for 
over 100 plant species, which opens the door to a wide 
range of potential uses for MAPtools. While in most 
cases we mapped the reads to genomes downloaded from 
Ensembl Plants, we also obtained satisfactory results with 
genomes from different sources (e.g. for F. vesca). Impor-
tantly, the Ensembl database also includes the genomes 
of many different organisms to which the MBS or QTL-
seq methodology could also be applied [39]. We plan to 
expand the repertoire of commands available in MAP-
tools to enable the analysis of data from other experi-
mental scenarios involving massively parallel sequencing, 
such as the construction of high-resolution linkage maps.
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