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Abstract 

Background  Downy mildew is a plant disease that affects all cultivated European grapevine varieties. The disease 
is caused by the oomycete Plasmopara viticola. The current strategy to control this threat relies on repeated applica‑
tions of fungicides. The most eco-friendly and sustainable alternative solution would be to use bred-resistant varieties. 
During breeding programs, some wild Vitis species have been used as resistance sources to introduce resistance loci 
in Vitis vinifera varieties. To ensure the durability of resistance, resistant varieties are built on combinations of these loci, 
some of which are unfortunately already overcome by virulent pathogen strains. The development of a high-through‑
put machine learning phenotyping method is now essential for identifying new resistance loci.

Results  Images of grapevine leaf discs infected with P. viticola were annotated with OIV 452–1 values, a standard 
scale, traditionally used by experts to assess resistance visually. This descriptor takes two variables into account 
the complete phenotype of the symptom: sporulation and necrosis. This annotated dataset was used to train neu‑
ral networks. Various encoders were used to incorporate prior knowledge of the scale’s ordinality. The best results 
were obtained with the Swin transformer encoder which achieved an accuracy of 81.7%. Finally, from a biological 
point of view, the model described the studied trait and identified differences between genotypes in agreement 
with human observers, with an accuracy of 97% but at a high-throughput 650% faster than that of humans.

Conclusion  This work provides a fast, full pipeline for image processing, including machine learning, to describe 
the symptoms of grapevine leaf discs infected with P. viticola using the OIV 452–1, a two-symptom standard scale 
that considers sporulation and necrosis. If symptoms are frequently assessed by visual observation, which is time-con‑
suming, low-throughput, tedious, and expert dependent, the method developed sweeps away all these constraints. 
This method could be extended to other pathosystems studied on leaf discs where disease symptoms are scored 
with ordinal scales.
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Background
The European vine Vitis vinifera L. is one of the most 
economically important and widespread crops in the 
world. In 2020, vineyards spanning an estimated 7.3 mil-
lion hectares were dedicated to producing wine, juice, 
table grapes and dry grapes [1]. Grapevines are affected 
by a variety of diseases [2], with one of the most dam-
aging being downy mildew, caused by the oomycete 
Plasmopara viticola [3–5].The pathogen is endemic to 
North America and was first identified in Europe in the 
1870s. Following this introduction, European popu-
lations spread to vineyards worldwide, significantly 
impacting viticulture [6]. Downy mildew is now a major 
disease in regions characterized by warm and wet con-
ditions during the vegetative period. Globally, viticulture 
relies predominantly on grape varieties derived from the 
Eurasian species Vitis vinifera due to the high quality of 
its fruit. However, almost all V. vinifera varieties exhibit 
varying degrees of susceptibility to the pathogen [7–10]. 
The pathogen attacks all green parts of the vine, espe-
cially leaves, petioles, inflorescences, and bunches. In 
vineyards, symptoms appear on leaves as shiny and oily 
lesions with sporulation on their lower surface. Severely 
infected leaves can become necrotic, leading to defo-
liation. Currently, the main strategy for controlling this 
disease involves repeated fungicide applications, which 
occasionally result in the emergence of resistant strains 
[11]. A more environmentally friendly and sustainable 
approach is to cultivate new bred grape varieties with 
improved genetic resistance.

Long-lasting breeding programs have been conducted 
to introgress resistance from wild Vitis species into elite 
Vitis vinifera varieties [12, 13]. The resistance trait in wild 
species, hybrids, and varieties is determined by genetic 
loci named Rpv for “Resistance to Plasmopara viticola”. 
More than 30 Rpv genes have been identified (maul_ 
2021). Some major Rpv loci introduced in breeding pro-
grams have already been disrupted by virulent P. viti-
cola strains [14–16]. Consequently, breeders frequently 
employ the strategy of pyramiding multiple resistance 
loci within the same variety. This approach aims to 
enhance resistance levels, increase effectiveness against 
diverse strains, and ensure long-term durability. In this 
regard, an extended and accurate high-throughput phe-
notyping strategy is essential for identifying new Rpv loci.

Grapevine resistance is usually scored by visual rat-
ings of macroscopic symptoms developed on leaves by 
using several variables, such as severity, incidence, and 
spore count or by using the OIV 452 descriptor [17]. 
The “Office International de la Vigne et du Vin” (OIV) 
proposes standardizing the assessment of numerous 
grapevine traits by using descriptors based on discrete 
scales ranging from 1 to 9. The OIV 452 descriptor has 

been frequently used to assess resistance on whole plants 
vineyards or under controlled laboratory conditions 
on leaf discs. The OIV 452 descriptor assesses resist-
ance by considering both pathogen sporulation and the 
visible phenotypes of the plant’s response. The macro-
scopic response is visually characterized by necrosis, 
also known as the hypersensitive response (HR) or plant 
cell death (PCD). In leaves, most Rpv loci provide partial 
resistance, which is defined by varying degrees of sporu-
lation and necrosis [16, 18–21]. Visual scoring requires 
trained experts but it is often time-consuming and tedi-
ous. Nevertheless, it remains the most widely used strat-
egy for assessing downy mildew infection and grapevine 
resistance.

A fast and precise phenotyping scoring method, 
aligned with the OIV 452 standard (evaluating both P. vit-
icola sporulation and host necrosis) yet tailored for high-
throughput phenotyping, should be adopted to meet 
phenotyping requirements. In this work, as depicted in 
Fig. 1, we propose an automated method involving image 
acquisition and a deep learning pipeline based on anno-
tated images of downy mildew symptoms on grapevine 
leaf discs. 

Deep learning, a subset of machine learning, employs 
artificial neural networks with multiple hidden layers. 
One of its significant advantages lies in its ability to dis-
cern complex patterns in images. In theory, deep neural 
networks can match the performance of human experts, 
providing unbiased and consistent results.

To validate the model, we used a panel of genotypes 
known to display diverse phenotypes. The model’s image-
based predictions were assessed by comparing them to 
data derived from human stereo-microscope observa-
tions, obtained using the OIV 452–1 scale, an extension 
of OIV 452 dedicated to leaf disc analysis.

Related work
To the best of our knowledge, automatic phenotyping 
of the interaction between downy mildew and grape-
vine leaf discs has been described in only two articles 
[22, 23]. In the first study [22], the researchers sliced 
leaf discs into 506 segments. Then, they applied a shal-
low convolutional neural network to each segment 
to predict the presence or absence of sporangia. This 
analysis provided a comprehensive count of sporan-
gia per leaf disc. In the second study [23], the authors 
applied fuzzy logic to isolate pixels showing sporula-
tion in leaf disc images and used these data to compute 
a downy mildew severity score. Based on this score, the 
leaf discs were classified into three groups according to 
the severity of downy mildew sporulation: low (0–25% 
leaf disc coverage), medium (26 to 50% coverage) and 
high (more than 50% coverage). However, both articles 
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assessed the interaction exclusively based on the sporu-
lation variable, without considering a scale that also 
accounts for necrosis.

The authors of [24] used deep learning to detect 
the presence of Erysiphe necator hyphae on leaf discs. 
However, this study did not consider plant response to 
the pathogen. As more related work, the authors of [25] 
automatically classified the interaction between melon 
leaf discs and powdery mildew using deep learning. 
They combined images captured under both front and 
back lighting, using the data to classify the leaf discs 

into three classes—resistant, moderate, and suscepti-
ble—based on the severity of the infection.

In our approach, rather than just predicting a percent-
age of the sporulation surface, we used a neural network 
to predict a score in the OIV 452–1 [26] scale that takes 
into account both sporulation and different types of 
necrosis [27]. The OIV 452–1 is an ordinal scale used 
to assess the resistance of grapevines to downy mildew 
using leaf discs under controlled conditions. The scale 
has only odd values ranging from 1 (very susceptible) to 9 
(totally resistant), with intermediate scores of 3 (less sus-
ceptible), 5 (partially resistant), and 7 (highly resistant). 
A description of the scale levels can be found in Fig. 2. A 
scale that considers both pathogen aggressiveness (spor-
ulation) and the plant’s response (necrosis) provides a 
more accurate depiction of the interaction between the 
plant and the pathogen.

Compared to the meticulous task of directly annotat-
ing sporulation on leaf discs, the OIV 452–1 scale offers 
a more efficient and expedient method. Using a five-level 
scale with clearly defined categories, the OIV 452–1 
simplifies the annotation process. The availability of this 
scoring scale has enabled experts to develop a substan-
tial dataset containing thousands of annotated images, 
a considerable increase from the mere tens or hundreds 
typically used in previous studies. This wealth of data will 
allow the training of more sophisticated machine learn-
ing models, reducing the risk of overfitting. 

Methods
The four main steps of the proposed method are as fol-
lows: (i) Grapevine leaf discs were infected with P. viti-
cola and placed in 12-well plates. (ii) An imaging system 
is used to capture images of the plates. (iii) The plate 
images form the basis of an OIV 452–1 scoring dataset. 
(iv) The dataset undergoes a preprocessing stage. (v) Var-
ious methodologies including convolutional neural net-
works and transformers have been explored for accurate 
analysis of the interactions between the plants pathogens.

Leaf discs
Plant material
Between 2020 and 2023, multiple experiments were con-
ducted to evaluate the resistance of various genotypes 
from different Vitis species, as well as breeding popula-
tions segregating for different Rpv loci, against P. viticola. 
Briefly, grafted plants were grown in 4 L pots in a green-
house on a substrate composed of 1/3 perlite and 2/3 
sand. Plants were watered daily with a complete nutritive 
solution (5% Plant Prod 17-10-20, Fertil SAS, France; 5% 
Plant Prod 20–20-20, Fertil SAS, France; 1.3% Yara Tera 
R, KRISTA MAG, Yara, France; and 0.005% PlantainFer, 
Plantin SARL, France).

Fig. 1  Global view of the proposed pipeline. The numbers 
in the figure and the caption refer to the subsections 
of the manuscript. Leaf discs infected with P. viticola between 2020 
and 2022 (3.1) were imaged to create a dataset of plate images (3.2), 
which were preprocessed to extract leaf patches (3.3). A subset 
of these leaf patches was annotated with an OIV 452–1 score (3.4) 
and used to explore deep learning methods (3.5). Then, in 2023, 
leaf discs infected with P. viticola obtained following the same 
protocol were manually annotated with an OIV 452–1 score 
under a stereo-microscope (3.6), in parallel; OIV 452–1 scores were 
predicted using the model created in 3.5. The results of the manual 
annotation and model predictions were compared in 3.6
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Leaf disc infection
A strain of P. viticola collected from V. vinifera variety 
Chardonnay in an experimental vineyard at INRAE-
Colmar (France) in 2006 was maintained and propagated 
through spray inoculations on 6-week-old V. vinifera  
variety Muscat Ottonel, seedlings, which were subse-
quently placed in an open cardboard box covered with a 
plastic bag. For each bioassay, P. viticola sporangia were 
recovered from infected seedlings after 6 days of incu-
bation in a growth chamber (21◦ C, high relative humid-
ity, 50 µmol/m2/s light intensity) by leaf immersion in 
water and gentle shaking. For each plant growing in the 
greenhouse, at least three leaf discs (2 cm diameter) were 
sampled from the fourth and fifth fully expanded leaves 
from the grape shoot apex at the 10-leaf stage. The discs 
were placed on 12-well plates, on wet paper discs on agar 
solution (10  g/L), abaxial side up, and then artificially 
inoculated by spraying the P. viticola suspension (5x104 
sporangia/ml). The plates were then sealed and incubated 
in a growth chamber at 21◦ C with a photoperiod of 14 h 
of light. After 24 h the innoculated droplets had disap-
peared. Inoculated leaf discs were evaluated between 3 
and 6 days postinoculation using a stereo-microscope, 
with scores assigned according to the ordinal OIV 452–1 
scale, according to [27] and described in Fig.  2. At the 
same time, leaf discs were also photographed using the 
setup shown in Fig. 3 and described below. Images, OIV 
452–1 scores, and metadata for each leaf disc were stored 
in an Excel file database. 

Dataset created
The imaging system depicted in Fig. 3, features a fixed 
top-view RGB camera mounted on a copy stand. Two 
LCD lamps, on either side of the camera provide a 
homogeneous illumination. The RGB camera was 
a Nikon D5600, an APS-C 24.2 Mpx camera with a 

Nikkor 50 mm f1.4 lens, 75 mm equivalent to a 35 mm 

format. The camera was configured to capture images 
at a 6 Mpx resolution in JPEG format. Using this sys-
tem, we generated 5193 plate images, encompassing 
57,836 leaf discs. These discs must first be individu-
ally extracted from the images before they are analyzed 
for sporulation and necrosis. The subsequent sections 
explain this process in detail.

Fig. 2  Grapevine leaf discs infected with Plasmopara viticola scored according to the OIV 452–1 scale. Score levels increase with resistance 
to the pathogen from 1 (very susceptible) to 9 (totally resistant). Level 1 (a) shows abundant sporulation densely covering the whole disc area, level 
3 (b) shows abundant sporulation present in large patches, absence of plant necrosis, level 5 (c) shows limited sporulation present in intercostal 
patches, necrotic flecks, level 7 (d) shows sparse sporulation, necrotic spots and level 9 (e) shows no sporulation, possible presence of necrotic spots

Fig. 3  Imaging system used to produce the original plate images
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Plate image preprocessing
Starting from the original plate images, which contained 
up to 12 leaf discs, a preprocessing pipeline was devel-
oped to automatically extract and index individual leaf 
patches from each plate image, as illustrated in Fig.  4. 
Indexing was essential for associating the extracted leaf 
patches with the experimental data and metadata. 

Leaf disc detection dataset
To train the leaf disc detector model, the initial step of our 
preprocessing pipeline, we created a leaf disc detection 

dataset. Instead of manually annotating all available 
plate images, we sampled 1932 plate images from the 
5193 available images, ensuring that each experiment 
from every year was represented. This dataset ultimately 
included bounding boxes for 22,122 leaf discs (fewer than 
the anticipated 23,184, due to some plates having fewer 
than 12 leaf discs), which were used as training, valida-
tion and test datasets. The plate images were split using 
stratification [28] on the year of the experiment, ensuring 
that images under each lighting condition were propor-
tionally represented in the datasets. Among the leaf disc 
images, 15,530 were used for training, 3309 were used for 
validation, and the remaining 3273 were used for testing. 
This balanced dataset was used to train the object detec-
tor model.

Leaf disc detection model
We selected a Fast R-CNN model [29], from the PyTorch 
library [30], that was pretrained on COCO V1 [31]. We 
then selected a batch size of 20, the minimization was 
carried out using the ADAM optimizer [32] with a learn-
ing rate of 7× 10−5 . We performed 15 training sessions 
with a fixed learning rate and 15 more with learning rate 
decay using StepLR with a step size of 10 and a gamma 
of 0.8. Data augmentation was performed with the albu-
mentations library [33] to increase data variability by 
changing the exposure with a random gamma transfor-
mation with a lower bound of 0.6 and an upper bound 
of 1.8 and using horizontal, vertical flipping and rotation. 
The best results were obtained with the model trained 
with StepLR, which had a mean loss of 0.016 and a stand-
ard deviation of 0.003, and the best model had a loss of 
0.012.

Leaf disc detection
The best leaf disc detection model trained in the previous 
section was then used to detect the leaf discs in all 5193 
available plate images and detect 57,836 leaf discs.

Leaf disc indexation
Since some plates might have missing columns of leaf 
discs, the algorithm could mistakenly interpret the 
empty space caused by the plate being positioned on the 
right side of the image as a missing column. To mitigate 
this, the first step of indexing the leaf discs was using a 
Hough line detector [34] to identify the left boundary of 
the plate. Two mean shift clustering [35] steps were then 
applied: one to assign the columns and the other to assign 
the rows. Finally, gaps between columns were analyzed to 
detect accurately any missing columns.

Fig. 4  Preprocessing pipeline. The numbers in the figure 
and the caption correspond to the subsections of the manuscript. 
A total of 5193 plate images were produced (3.2). A subset of 1932 
of these images was annotated to create a dataset with the position 
and size of leaf discs (3.3.1), which was then used to train a model 
to detect leaf discs (3.3.2). This model allowed the detection of leaf 
discs on all the available images (3.3.3). The leaf discs were indexed 
(3.3.4), and finally, the leaf patches were extracted (3.3.5)
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Leaf patch extraction
In [36], neural networks were used to automatically 
detect plant disease symptoms on detached leaves. 
The authors used an attention map visualization tech-
nique [37] to examine the residual errors, revealing 
that the neural networks could be sensitive to the back-
ground when making predictions. To avoid this issue, 
we extracted the largest square possible within the leaf 
disc, covering approximately 78% of its total area. These 
square images, henceforth referred to as “leaf patches” 
allow for a more focused analysis without background 
interference. One may wonder about the impact of 
this cropping. The border of leaf discs is considered a 
wound tissue offering artificial entrance for P. viticola 
zoospores (normal entrance takes place through sto-
mata). It is known that defense mechanisms are weaker 
in the wounded border than in the rest of the leaf discs, 
allowing possible sporulation. The phenotype at the 
border is rarely from what is observed on the rest of 
the leaf disc: sporulation on the border versus absence 
of sporulation elsewhere. However, from a pure image 
processing point of view, if one were interested in the 
full leaf disc, it would be possible to transform the disc 
into a square via a cylinder to Cartesian representation. 
Our proposed approach could then be applied to these 
transformed images.

OIV 452–1 scoring dataset
A flowchart of the pipeline used to create the OIV 
452–1 scoring dataset is shown in Fig. 5. To create this 
dataset, we used the leaf patches created in section 
"Plate image preprocessing" that we sampled using two 
methods. First, we sampled images with low brightness 
and low hue values to improve the chances of selecting 
leaf patches containing various types of necrosis. Then, 
we used the existing database to sample images scored 
with all 5 levels of OIV 452–1 values. Two experts 
scored each leaf patch with the OIV 452–1 scoring 
scale using a computer interface specifically designed 
for this task A. Some images displayed artifacts such as 
low reflectance, resulting in dark images, or the pres-
ence of water droplets, as illustrated in Fig. 6. Given the 
prevalence of these issues, the model was designed to 
handle them effectively. The quality of the leaf patch 
images was systematically annotated, as detailed in 
Table 1. 

The images were divided using stratification [28] on 
the experiment. The resulting dataset, summarized in 

Fig. 5  Setup of the OIV 452–1 scoring dataset. Plate images (3) 
were preprocessed to extract leaf patches (5), and the available leaf 
patches (6) were sampled to obtain images with all the symptoms 
described in Fig. 2 (7a, b). Experts manually scored the resulting 
patches with OIV 542–1 values (8) to obtain the OIV 452–1 scoring 
dataset (9)
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Table 1, consists of 3449 images and was partitioned into 
training (2414 images), validation (517 images) and test-
ing (518 images) sets. Stratification was used to ensure 
that OIV 452–1 scores and experiments were propor-
tionally represented in each dataset.

Deep learning methods
The OIV 452–1 scale is an ordinal discrete scale. We 
trained three different neural networks, using two differ-
ent architectures, that could include this prior knowledge. 
We compared two competitive architectures: convolu-
tional neural networks, which have been considered the 
state-of-the-art since their introduction, and transformer 
architecture, which have recently gained prominence in 
image processing [38]. To take into account the ordinality 
property we used the rank-consistent ordinal regression 
framework [39] that bridges the gap between classifica-
tion and regression.

Rank‑consistent ordinal regression based on conditional 
probabilities
Here we used rank-consistent ordinal regression 
based on conditional probabilities [39] (CORN). Let 
D = {x[i], y[i]}Ni=1

 be a training set containing N samples 
where xi ∈ X denotes the inputs of the i−th training sam-
ple and yi is its corresponding rank yi ∈ Y = {r1, r2, ..., rk} , 
where the rank order is rk > rk−1 > ... > r1 . The objec-
tive of an ordinal regression model is to find a mapping 
h : X → Y  that minimizes a loss (h). When using the 
CORN method, the last layer of the neural network con-
tains K − 1 neurons, representing binary tasks, and the 
output of each one is

the conditional probability of sample x[i] being of rank 
higher than k. By applying the chain rule, we can calcu-
late unconditional probabilities such as

and since fj(x[i]) is a probability, ∀j, fj(x[i]) < 1 from this, 
we can deduce that

which proves that rank consistency is maintained. Finally, 
to calculate the value ŷi corresponding to xi , we predict 
the probabilities for each rank and sum the binary labels 
over a predefined threshold

(1)f (x[i]) = P̂(y[i] > rk |y
[i] > rk−1)

(2)P̂(y[i] > rk) =

k
∏

j=1

fj(x
[i])

(3)P̂(y[i] > r1) > P̂(y[i] > r2) > P̂(y[i] > rK−1)

(4)ŷi =

K−1
∑

j=1

�(P̂(y[i] > rj) > 0.5).

Fig. 6  Examples of different issues present in the source images. Image (a) shows an example of an image labeled as “good”, without visible defects. 
Images with low reflectance such as (b) are labeled as “dark image” and can be fixed with preprocessing. The last image, (c), is labeled as “water 
droplets” as it contains water droplets that can in some cases be mistaken for sporulation

Table 1  Distribution of image quality and OIV 452–1 scores

The samples of each type can be found in Fig. 6. “Dark” leaf patches come from 
underexposed images, “water droplets” are due to condensation and may look 
similar to sporulation, and “good” leaf patches correspond to well-exposed 
images without water droplets

OIV 452-1 Dark Good Water droplets Total

1 10 626 116 752

3 7 472 143 622

5 5 408 141 554

7 6 548 141 695

9 12 500 314 826



Page 8 of 14Macia et al. Plant Methods           (2024) 20:90 

Proposed network
We used a Swin transformer [40] pretrained on Ima-
geNet-1K [41] as the encoder. Figure  7 shows the full 
neural network. For the calculation to predict OIV 452–1 
from rank prediction, a modification of Eq. 4 is used

We also tested two convolutional neural network archi-
tectures, ResNet50 [42] and ConvNeXT [43] both also 
pretrained on ImageNet-1K. All pretrained backbones 
were selected from the Hugging Face’s [44] model hub. 

Training
Leaf patch preprocessing was performed before the 
images were sent to the neural network. First a linear 
transformation was applied to fix underexposed images 
to diminish lightning heterogeneity. Afterward, image 
augmentation was performed using the albumentations 
[33] library to increase the number of available samples. 
The selected random augmentations were rotations, 
vertical and horizontal symmetries, brightness and con-
trast modifications with brightness and contrast limits 
of 0.15 and 0.25, respectively, and random gamma with 
upper and lower bounds of 0.6 and 1.2, respectively. We 
selected a batch size of 771 to fill 80% of the GPU, an 
NVIDIA A100 80 G, and a learning rate of 3625× 10−4 . 
The models were trained for a maximum of 200 epochs 
with an early stopping monitoring mean average error 
and a waiting time of 15 epochs. Each model was trained 
15 times.

(5)

OIV 452− 1 =





K−1
�

j=1

�(P̂(y[i] > rj) > 0.5)



 ∗ 2+ 1.

Model metrics
We compared the performances of three encoders—Swin 
transformer, ResNet50 and ConvNeXT—using three dif-
ferent metrics. The mean absolute error (MAE)

that calculates the average distance between the ground 
truth and the prediction. The mean square error (MSE)

which also calculates the distance between the ground 
truth and prediction, but in this case, it inflicts a penalty 
that increases with the difference between the ground 
truth and the prediction and accuracy

a ratio of the correct predictions over the sum of predic-
tions. TP, TN, FP and FN represent true positives, true 
negatives, false positives, and false negatives, respec-
tively. The mean absolute error and mean square error 
best values are close to 0. The best accuracy values are 
those close to 1. Finally, we use

to analyze the model’s performance on each separate 
label.

(6)MAE =

∑N
i=1 |yi − ŷi|

N
∈ [0, 1],

(7)MSE =

∑N
i=1(yi − ŷi)

2

N
∈ [0, 1]

(8)accuracy =
TP + TN

TP + TN + FP + FN
∈ [0, 1],

(9)F1− score =
2 ∗ TP

2 ∗ TP + FP + FN
∈ [0, 1]

Fig. 7  Rank-consistent ordinal regression (CORN) with a transformer encoder, shown example predicts an OIV 452–1 value of 5. After the encoder 
four neurons are responsible for predicting if the sample is of a rank higher than their index, for example, the neuron z1 predicts that a sample 
is of rank higher than 0 if its value is higher than the threshold 0.5. The rank of the sample corresponds to the sum of neurons with a value higher 
than the threshold. In this example, the sample has a rank of 2 (the rank 0 of the OIV 452–1 scale is 1 and the fourth rank is 9) that corresponds 
to an OIV 452–1 level 5
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Differentiation of genotypes with different levels 
of resistance
To evaluate the model’s ability to differentiate genotypes 
with varying resistance levels, we designed an experi-
ment using images of biological material not included in 
the training datasets.

To achieve this goal, we created a genotype differen-
tiation dataset. We selected nine genotypes from the 
progeny of a cross between two resistant parents, rep-
resenting varied resistance levels to P. viticola across the 
OIV 451–1 scale (see section  "Plant material" for plant 
material production). In 2023, three experiments were 
conducted using between 3 and 5 leaf discs per genotype, 
yielding 114 leaf discs. These discs were manually scored 
by an expert and photographed at 0, 3, 4, 5, and 6 days 
postinoculation (dpi). The resulting dataset contained 
570 observations, each containing the identifier, geno-
type, dpi, and OIV 452–1 score for each leaf disc.

To compare the model’s performance with human scor-
ing across the set of nine contrasting genotypes, we first 
predicted the OIV 452–1 values for all observations. An 
ANOVA test was then conducted, and we compared 
the F-scores. Additionally, a Tukey honest significant 
difference test was employed to evaluate the similarity 
between the results of both methods.

Results and discussion
OIV 452–1 prediction
First, we compared the performances of the three 
selected encoders: the Swin transformer, ResNet50 and 
ConvNeXT. We trained neural networks with the three 
encoders 15 times each and the results can be seen in 
Table  2. Swin transformers, slightly but systematically, 

outperformed convolutional neural network-based archi-
tectures in terms of all the metrics. For the remainder of 
the work, we retained the best network using the Swin 
transformer encoder. 

Next, we selected the best model among those that had 
a Swin transformer as the encoder, and we selected the 
model with the lowest MSE value, which was 0.203.

In addition to global metrics such as the MAE, MSE, 
and accuracy, we examined the confusion matrix, as 
shown in Table 3. Notably, the model never deviated by 
more than one rank on the OIV 452–1 scale. This indi-
cates that the model performs well, primarily struggling 
with ambiguities between consecutive classes. Upon 
further investigation of the residual errors, we observed 
that water droplets, such as those shown in Fig. 6c, were 
sometimes mistaken for sporangia by the model. Addi-
tionally, an abundance of water droplets hindered the 
detection of sporangia beneath them. The impact of these 
droplets varies across OIV 452–1 levels. At low resist-
ance levels, such as values of 1 and 3, the presence of arti-
facts resembling sporulation had minimal impact on the 
predictions. However, at higher levels of resistance such 
as 7 or 9, a single water droplet misidentified as sporangia 
can alter the classification of the leaf patch. 

To better understand the impact of water droplets on 
model performance, we divided the test dataset into two 
subsets: one containing clear images and the other con-
taining images with water droplets. The MSE values for 
the clear and the water-droplet images were 0.193 and 
0.236, respectively (data not shown), indicating a decline 
in performance when predicting leaf patches that contain 
water droplets.

Differentiation of genotypes with different levels 
of resistance
As an additional evaluation of our model, we conducted 
a statistical comparison between the model’s predictions 
on leaf patches and human assessments using a stereo-
microscope on whole leaf discs.

Figure 8 illustrates the progression of the disease over 
6 days across the 114 leaf discs from the genotype dif-
ferentiation dataset; cf. Figure  1. The left panel shows 

Table 2  OIV 452–1 ordinal regression performance per encoder 
with standard deviation

Encoder MAE (Eq. 6) MSE (Eq. 7) Accuracy (Eq. 8)

Swin Transformer 0.188±0.006 0.206±0.015 0.817±0.006

ConvNeXT 0.195±0.009 0.217±0.011 0.811±0.011

ResNet50 0.215±0.011 0.242±0.015 0.793±0.011

Table 3  Confusion matrix and F1-score of the test dataset after when using the best model

True OIV 452-1 Predicted OIV 452-1 F1-Score (Eq. 9)

1 3 5 7 9

1 109 4 0 0 0 1 0.93

3 13 68 12 0 0 3 0.76

5 0 15 63 5 0 5 0.75

7 0 0 9 76 19 7 0.73

9 0 0 0 28 96 9 0.77
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the human assessment, while the right panel shows the 
model’s predictions. The most significant discrepancy 
between the two annotations appeared at 3 dpi, when 
human scoring did not detect genotype differences, yet 
the model predictions did. This disparity is likely due 
to condensation-induced water droplets, which are the 
most prevalent on the leaf discs at this stage. As shown 
in Fig. 8, the sixth day after infection showed the greatest 
divergence between genotypes. 

To compare the model and the human annotations, 
we performed an ANOVA with data from the last day 
(6 dpi) for both human scoring and model predictions. 
This analysis aimed to determine to what extent the 
OIV 452–1 score could be explained by the genotype. 
Table 4a, b show the ANOVA results for human scoring 
and predicted values, respectively. These two tables show 
p values and F scores for both manual and automatic 
annotation for predicting the effect of genotypes on OIV 

Fig. 8  Disease evolution over time (during 6 days) of the disease scored by OIV 452–1 values by humans (left) and predicted by the model (right) 
of 9 genotypes with various levels of resistance with error bands. Colors represent genotypes, the symbols represent the average for each genotype 
at each time point

Table 4  ANOVA Tables for both scored (Table a) and predicted (Table b)

Sum of squares Degrees of freedom F p-value

(a) ANOVA for scored data.

Genotype 400.38 8 35.03 4.40e-24

Experiment 27.64 2 9.68 1.60e-04

Interaction 32.44 16 1.42 1.52e-01

Residual 124.27 87

Sum of squares Degrees of freedom F p-value

(b) ANOVA for predicted data.

Genotype 425.37 8 58.50 9.33e-32

Experiment 19.02 2 10.47 8.46e-05

Interaction 14.28 16 0.98 4.83e-01

Residual 79.07 87

Table 5  Average OIV 452–1 and standard deviation for each 
genotype in the genotype differentiation dataset as scored by 
humans and predicted by the model

Genotype OIV 452-1

Human scored Model predicted

1272s 3.90±2.07 3.36±1.50

1282s 7.30±1.10 7.30±0.75

1304s 3.30±1.79 3.15±1.51

1333s 3.15±0.98 3.15±0.98

1353s 7.61±0.96 7.30±0.75

1424s 6.07±1.55 6.69±0.75

1441s 8.66±0.77 8.16±1.02

1466s 6.69±0.75 7.30±0.75

1479s 6.69±1.37 6.84±0.98
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452–1 values. It is worth noting that the model exhibited 
a greater F value when distinguishing between genotypes. 
Both ANOVA analyses revealed no significant interac-
tion between genotypes and experiments, enabling us to 
use a Tukey honestly significant difference test to verify 
whether the model and manual scores yielded consistent 
results when comparing genotypes pairwise. 

The Tukey honestly significant difference test resuklts 
are as follows: out of 36 possible pairwise comparisons, 
the model and manual scoring agree on 35, yielding an 
accuracy score of 0.97. In most cases, when both methods 
reject the null hypothesis, the model provides stronger 
p values. Only one genotype pair 1441s and 1466s, pro-
duced differing results between the two methods. As pre-
sented in Table 5 for genotype 1441s, the model’s mean 
prediction was 8.17 instead of 8.67, with three images 
predicted as OIV 452–1 score 7 instead of 9. Inspection 
of these three images revealed white artifacts that were 
indistinguishable from sporulation due to their low res-
olution. In contrast, genotype 1466s had a mean model 
prediction of 7.31 instead of 6.69, which was attributable 
to two factors. First, two leaf patches were predicted to 
have an OIV 452–1 score of 7 instead of 5, these patches 
were at the borderline between these two ranks. Sec-
ond, two leaf patches were predicted to have OIV 452–1 
scores of 9 instead of 7, although no sporulation was vis-
ible on either the leaf patches or the full leaf disc images. 
It is hypothesed that the low resolution of the leaf patch 
images obscured sporulation. 

These results can now be explored further in mul-
tiple directions. Improving the resolution of the plate 
images and reducing water droplets on the leaf discs 
during acquisitions could enhance the model’s perfor-
mance. This precise and efficient deep learning method 
could replace visual observation when assessing symp-
toms, opening up new avenues for investigations such as 
identifying new Rpvs and studying P.viticola strains/Rpv 
interactions. All leaf discs used in this work were main-
tained under controlled conditions without exposure 
to other pathogens. Sampling leaf discs from naturally 
infected grapevine plants grown in vineyards would be 
valuable for evaluating model performance under new 
conditions and determining whether other pathogens 
affect model performance. This approach could be a 
stepping stone toward noninvasive diagnosis in vine-
yards. Finally, the application of this pipeline could be 
expanded in two ways. First, a tool such as MANINI [45] 
could be employed to adapt the model for images from 
other platforms using the same pathosystem. Second, this 
approach could be extended to other plant—pathogen 
interactions, such as grapevine and powdery mildew or 
black rot, since both of these pathosystems have an asso-
ciated OIV scale.

Conclusions
Downy mildew caused by Plasmopara viticola is one 
of the most destructive diseases affecting grapevines. 
Breeding-resistant varieties require high-throughput 
and precise phenotyping methods to evaluate resistance. 
Grapevine resistance is primarily characterized by either 
the absence or reduction of sporulation, along with poten-
tial necrosis. The key challenge lies in developing a pheno-
typing tool capable of accurately analyzing both variables.

In this paper, we introduced a comprehensive image 
processing and machine learning pipeline to analyze the 
interaction between grapevine leaf patches and downy 
mildew using existing images. We employed the standard 
ordinal scale OIV452–1, which accounts for both sporu-
lation and necrosis, to score symptoms on leaf discs. The 
pipeline fully leverages existing images to characterize 
these two symptoms.

Various strategies were evaluated to incorporate the 
ordinal scale’s prior knowledge, which reflects the pro-
gression of sporulation and necrosis throughout the 
infection. The best ordinal regression performance was 
achieved using a Swin transformer as the encoder, with 
this neural network reaching an MSE of 0.203 on the 
test dataset and ensuring that the discrepancy between 
the predicted OIV 452–1 and the ground truth never 
exceeded one class. Additionally, the model demon-
strated a significant advantage. While a standard scor-
ing session typically takes 4 h for a human to assess up to 
2000 discs, the model only needed 22 s to score the same 
number using our setup.

This method successfully differentiates genotypes 
across a wide range of phenotypes. By comparing the 
model’s predictions on leaf patch images to human 
assessments on full leaf discs using a stereo-microscope, 
we achieved an accuracy of 0.97 using the Tukey honestly 
significant difference test with data from both sources. In 
conclusion, the model effectively captured the biologi-
cal information of the pathosystem with precision and 
aligned closely with human observations.

Appendix A Annotation user interface
To annotate leaf patches with OIV 452–1 scores and 
quality data, we created the user interface shown in Fig. 9. 
To enable the annotation process, the tool allows limited 
image manipulation. Upon acceptance of the manuscript, 
the tool will be available at https://​huggi​ngface.​co/​treizh/​
oiv_​ld_​pheno​typing.

https://huggingface.co/treizh/oiv_ld_phenotyping
https://huggingface.co/treizh/oiv_ld_phenotyping
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