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Abstract
Background  Plants are known to be infected by a wide range of pathogenic microbes. To study plant diseases 
caused by microbes, it is imperative to be able to monitor disease symptoms and microbial colonization in a 
quantitative and objective manner. In contrast to more traditional measures that use manual assignments of disease 
categories, image processing provides a more accurate and objective quantification of plant disease symptoms. 
Besides monitoring disease symptoms, computational image processing provides additional information on the 
spatial localization of pathogenic microbes in different plant tissues.

Results  Here we report on an image analysis tool called ScAnalyzer to monitor disease symptoms and bacterial 
spread in Arabidopsis thaliana leaves. Thereto, detached leaves are assembled in a grid and scanned, which enables 
automated separation of individual samples. A pixel color threshold is used to segment healthy (green) from 
chlorotic (yellow) leaf areas. The spread of luminescence-tagged bacteria is monitored via light-sensitive films, which 
are processed in a similar manner as the leaf scans. We show that this tool is able to capture previously identified 
differences in susceptibility of the model plant A. thaliana to the bacterial pathogen Xanthomonas campestris pv. 
campestris. Moreover, we show that the ScAnalyzer pipeline provides a more detailed assessment of bacterial spread 
within plant leaves than previously used methods. Finally, by combining the disease symptom values with bacterial 
spread values from the same leaves, we show that bacterial spread precedes visual disease symptoms.

Conclusion  Taken together, we present an automated script to monitor plant disease symptoms and microbial 
spread in A. thaliana leaves. The freely available software (https://github.com/MolPlantPathology/ScAnalyzer) has the 
potential to standardize the analysis of disease assays between different groups.
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Background
Plants can be colonized by a plethora of pathogenic 
microbes, both in nature and in an agricultural context. 
As a consequence, disease symptoms can become visible 
to the naked eye, such as chlorotic or necrotic lesions on 
leaves. Quantifying such disease symptoms as a measure 
for disease severity and susceptibility is imperative in 
order (i) to study plant diseases including the underlying 
mechanisms and (ii) to facilitate data-driven decisions in 
plant breeding programs [1].

Traditionally, and still widely applied, macroscopic dis-
ease symptoms have been categorized in ordinal scales 
(‘disease indices’) ranging from little or no disease to 
severe disease symptoms [1]. Assessing disease severity 
in the context of resistance/susceptibility of individual 
plants is often done by human evaluations and is there-
fore a subjective method not readily transferred between 
persons and it is time consuming. Clearly, there is a need 
for quantifying disease symptoms in an objective man-
ner, which is underlined by a growing number of scien-
tific reports that describe computational pipelines that 
use digital images of diseased plants to quantify disease 
severity [2–7].

A notable example of an image-based tool to assess 
disease severity is PIDIQ [8], a semi-automated method 
to detect diseased leaf tissue of the model plant Arabi-
dopsis thaliana (hereafter, Arabidopsis). PIDIQ has been 
used to detect differences in disease susceptibility of 
Arabidopsis accessions and mutants towards the bacte-
rial pathogen Pseudomonas syringae pv. tomato DC3000 
(Pst). The outcome of this Arabidopsis-Pst interaction 
is determined (i) by bacterial effectors that are delivered 
into the plant cytosol by the bacterial type III secretion 
system to manipulate plant processes facilitating infec-
tion, and (ii) by plant immune receptors that recognize 
pathogenic activity and confer resistance [8]. The pan-
effectorome of Pst composed of more than 500 effectors 
has been screened for recognition using a worldwide col-
lection of Arabidopsis accessions [9] using a miniaturized 
plant growth system based on 48-well microtiter plate 
with seedlings growing in the wells [10].

Besides using macroscopic disease symptoms to assess 
disease severity, another layer of information can be 
obtained by monitoring plant colonization by pathogens 
in a spatio-temporal manner. To visualize their presence 
inside plant tissue, pathogenic microbes can be geneti-
cally engineered to express reporter constructs encod-
ing fluorescent proteins or enzymatic pathways yielding 
bioluminescence. For the latter, the lux operon from Pho-
torhabdus luminescens [11] or Vibrio fisceri [12] is often 
used, as these bacterial operons encode all components 
for light emission without the need of adding an exog-
enous source of a substrate for the luciferase enzyme. 
This reporter strategy has been used in different bacterial 

genera that infect a wide range of plant species. As early 
as the 1980s, the colonization of Brassica oleracea leaves 
by Xanthomonas campestris pv. campestris (Xcc) was 
monitored using the first bioluminescent reporter strain 
[13], followed by another study on the interactions 
between Xcc and B. oleracea [14], Erwinia amylovora 
and apple [15], and X. oryzae pv. oryzae and rice [16]. At 
present, bioluminescent reporters are popular for stud-
ies on Xcc, either in combination with B. oleracea or with 
Arabidopsis [17–20] and have proven of value in studies 
on other bacterial pathosystems such as X. axonopodis 
pv. manihotis and cassava [21], X. euvesicitoria and pep-
per [21], X. hortorum pv. gardneri and tomato [22], Cla-
vibacter michiganensis and tomato [23], Agrobacterium 
tumefaciens (a.k.a. Rhizobium radiobacter) and Nicotiana 
benthamiana [24], Pseudomonas syringae pv. phaseoli-
cola and bean [25] and Pst and Arabidopsis [26–28].

In general, these studies use bacterial bioluminescence 
to monitor plant colonization at a macroscopic level, i.e. 
at the whole plant or whole leaf level. This has revealed 
highly asymmetric colonization patterns for certain 
pathogenic bacteria such as the vascular pathogen Xcc 
[18, 20]. Xcc enters plant leaves via hydathodes, which 
are organs at the leaf margin involved in the guttation 
process when root pressure exceeds leaf evaporation. 
From these hydathodes, Xcc spreads systemically via the 
connected xylem tissue across the leaf and rosette [18, 
20]. Only at a late stage, the leaf mesophyll becomes colo-
nized by Xcc. In contrast, the stomata-invading pathogen 
Pst has direct access to the entire leaf mesophyll early 
during the infection. Yet, even for this pathogen, biolumi-
nescence imaging revealed heterogenous patterns of Pst 
spread in the apoplastic space of Arabidopsis leaves [27]. 
Notwithstanding the importance of these observations, 
they are qualitative and thus perform less well when 
interpreting subtle differences in disease severity (and 
connected disease susceptibility) using statistics.

Attempts to quantify the bacterial luminescence signal 
have relied on using luminometers to measure photon 
emission by bacteria that colonize a single leaf or plant 
[22]. In some cases, the image processing software ImageJ 
is used to obtain numerical data from images obtained 
with ultra-sensitive CCD cameras [21, 28]. The through-
put of the former approach is low and the ImageJ mac-
ros used are often not well documented [21, 24]. Hence, 
reproducibility is poor and/or still requires manual 
preparation of the individual sample images [8]. Clearly, 
there is a need for a reproducible and objective image 
analysis tool to monitor microbial spread in mature Ara-
bidopsis leaves. Recently, we have established a proce-
dure to detect bacterial luminescence in planta for 126 
individual Arabidopsis leaves at once using 40 × 30  cm 
light-sensitive films [19]. We successfully applied this 
system to detect differences in disease susceptibility 
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between Arabidopsis accessions and mutants [20]. While 
this method is more suitable to quantify leaf coloniza-
tion by the vasculature-infecting Xcc than methods that 
use counting of colony forming units per leaf area, this 
method still uses an ordinal qualitive scale based on 
a luminescence index score that typifies the bacterial 
spread of the luminescent Xcc in the Arabidopsis leaves 
in time [19]. The luminescence scores are similar to a 
disease index scores with their limitations as described. 
Here, we present an automated luminescence scoring 
pipeline called ScAnalyzer, which provides an unbiased 
assessment of leaf chlorosis as a disease symptom and the 
spread of pathogenic bacteria across the leaf. ScAnalyzer 
(i) avoids assessments by individual researchers, (ii) pro-
vides numerical continuous measure for bacterial spread, 
and (iii) automates the sample assessment using a Python 
script to obtain reproducible data.

Results
Development of ScAnalyzer, the automated image analysis 
pipeline to quantify bacterial spread in Arabidopsis leaves
Plant colonization by Xcc was thus far quantified using 
a method based on defined ordinal luminescence index 
categories, for which samples were manually evaluated 
by the researcher [19, 20]. To develop an unbiased and 
a more automated manner of scoring bacterial spread 
in Arabidopsis leaves, we developed a streamlined 
method for leaf sampling and subsequent image analysis 
(Fig. 1A). After infecting Arabidopsis plants with bacteria 
tagged with a bioluminescence reporter cassette, we sam-
pled individual leaves from infected plants and organized 
them in an 18 × 7 grid printed on a 40 × 30 cm (approxi-
mately A3) paper sheet. In this way, a total of 126 Ara-
bidopsis leaves can be processed in parallel. The sheets 
were scanned using a A3 flatbed scanner to standardize 
the imaging conditions of the leaves between different 
sampling sheets and experiments. The grid layout of the 
sampling sheet allowed easy and automated cropping of 
individual samples using a Python script to analyze each 
sample individually.

To determine the total and chlorotic leaf area, we 
defined thresholds in Hue Saturation Value (HSV) color 
space to first select leaf pixels while removing white 
background, and potential other objects such as soil par-
ticles (Fig. 1B, section a). Another set of thresholds then 
separate chlorotic (yellow) from healthy (green) leaf 
area (Fig.  1B, section b). The smallest chlorotic lesions 
that could be detected in our benchmarking assays were 
approximately 1.5% of the total leaf area. To quantify the 
spread of the bacteria using the bioluminescence reporter 
system, we positioned light-sensitive films (40 × 30  cm 
sized) on top of the leaf sample sheets and placed them 
in light-tight cassettes. After overnight exposure, the 
films were developed and scanned with the same flatbed 

scanner. Combining the two image files of the leaves and 
of the bacterial luminescence signal, ScAnalyzer then 
crops individual leaf samples, and overlays the bacte-
rial luminescence signal on the corresponding leaf scan 
image. This enabled us to extract the total leaf area col-
onized by the bacteria for each individual leaf (Fig.  1B, 
section c), which can be either expressed as total num-
ber of pixels colonized per leaf, or corrected for leaf size. 
To verify image segmentation results, a copy of the image 
file is saved that highlights the segmented areas on the 
original images.

The ScAnalyzer pipeline connects each observation 
to sample metadata (e.g. plant genotype, Xcc geno-
type) via a pre-defined sample list. ScAnalyzer saves 
each observation in a comma separated values (csv) file 
directly compatible with statistical analysis software, 
such as R Tidyverse [29]. After processing all leaves from 
a single experiment, an R script is invoked to automati-
cally plot the data (including a standard statistical test). 
The R script automatically detects which grouping vari-
ables have multiple levels in the current experiment, 
and selects the x-axis and faceting variables accordingly. 
However, manual adaptations to the plot may be neces-
sary depending on the experimental design. An example 
of an automatically generated plot is shown in Fig S1. 
All adaptations of the current protocol compared to van 
Hulten et al. (2019) are shown in Table S1. The pipeline 
is available from GitHub (https://github.com/MolPlant-
Pathology/ScAnalyzer) as a command-line Python script 
with installation instructions and a brief user manual.

ScAnalyzer allows unbiased quantification of disease 
resistance levels in different Arabidopsis genotypes
To benchmark ScAnalyzer, we performed a Xcc disease 
assay with four Arabidopsis genotypes and accessions 
known to have different levels of disease resistance to 
Xcc [20]. Ten and fourteen days post spray inocula-
tion with Xcc, we evaluated leaves of infected Arabi-
dopsis plants using ScAnalyzer. In parallel, we applied 
the method of van Hulten et al., (2019) and manually 
assigned an ordinal luminescence index to each indi-
vidual sampled leaf. Disease scoring based on the lumi-
nescence index showed that the immunocompromised 
mutants sobir1-12, bak1-5;bkk1-1 (both in the Col-0 
background) and the hypersusceptible accession Oy-0 
showed significantly increased bacterial spread compared 
to the accession Col-0 at 10 and 14 days post inocula-
tion (dpi) (Fig.  2A, Pairwise Wilcoxon tests, p < 0.05), 
as expected. The same samples were analyzed with the 
ScAnalyzer pipeline, which gives a continuous score for 
the bacterial spread per leaf. With ScAnalyzer, the same 
Arabidopsis lines showed a higher bacterial spread score 
compared to the control line, Col-0 (Fig.  2B, Pairwise 
Wilcoxon tests, p < 0.05). Both scoring methods showed 

https://github.com/MolPlantPathology/ScAnalyzer
https://github.com/MolPlantPathology/ScAnalyzer
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Fig. 1  ScAnalyzer: an image analysis pipeline to quantify both chlorosis as proxy for disease symptom severity and bacterial spread. (A). Overview of the 
experimental workflow. Steps are separated by location: greenhouse (green, steps 1 and 2), laboratory (red, steps 3 and 4), and in silico (grey, steps 5–7). 
The greenhouse and laboratory parts are similar to van Hulten et al., (2019) with minor modifications (Table S1). The in silico part includes ScAnalyzer and 
represents a major adaptation of the protocol of van Hulten et al. (2019). (B) Example of an infected leaf analyzed with ScAnalyzer pipeline: automated 
overlay of leaf and detected bacterial luminescence. Based on the thresholds that segment the images, ScAnalyzer extracts the (a) total leaf surface area, 
while excluding contaminating objects such as soil particles, (b) chlorotic leaf area, and (c) the bacterial spread area, within the leaf boundaries. This ex-
ample is from a clip-inoculated leaf. The grey dots on the paper are the result of glue roller used to attach the individual leaves on paper

 



Page 5 of 11Paauw et al. Plant Methods           (2024) 20:80 

Fig. 2  Benchmarking ScAnalyzer against the previous method for assessing disease severity. (A) Luminescence index distribution of Xcc ΔxopAC Tn7:lux: 
mTq2 colonization in Arabidopsis lines. Data from two independent experiments were combined, resulting in a total sample size of n = 30 leaves for each 
treatment. The multiple-testing corrected p-value of pairwise Wilcoxon tests between the mutants and control group Col-0 are reported above the bars. 
(B) Quantification of the bacterial spread using the ScAnalyzer script, of the same leaves displayed in (A). (C) Correlation between the luminescence index 
scores and proportion of colonized leaf detected by ScAnalyzer. The number of samples (n) in each luminescence index is indicated above the x-axis. 
Spearman’s Rho and p-value of the correlation between luminescence index and bacterial colonization is shown in the panel. (D) Xcc-infected Arabi-
dopsis leaves with luminescence index 3 (indicated above pictures) and bacterial spread ranging from 13–47% of the leaf area (indicated below pictures) 
reveals subtle differences in bacterial colonization of leaves within luminescence index 3
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a strong correlation at 10 and 14 dpi (Fig. 2C, Spearman’s 
rho = 0.95, p < 0.0001). Samples with different lumines-
cence indices (especially in samples with higher lumi-
nescence indices 3 or 4) proved to be more accurately 
scored with ScAnalyzer. For example, several samples 
with luminescence index 3 show bacterial spread ranging 
from 13 to 47% of the leaf area (Fig. 2D). In fact, samples 
with ~ 13% leaf area colonization have also been manu-
ally scores to have a luminescence index of 2, and sam-
ples with ~ 47% leaf area colonization have been reported 
to have a luminescence index of 4. Hence, ScAnalyzer 
strongly improves the resolution and provides a more 
objective quantification of the degree of bacterial spread 
when analyzing Arabidopsis plants infected with patho-
genic microbes expressing a bioluminescence reporter 
cassette.

Bacterial spread precedes the development of leaf 
chlorosis
Besides calculating per leaf the area colonized by bacte-
ria, ScAnalyzer simultaneously determines the chlorotic 
leaf area. Comparison of these two parameters revealed 
that for all tested leaves the leaf area colonized by the 
bacteria was larger than the chlorotic leaf area (Fig.  3). 
This is substantiated by the slope values of the linear 
regression lines fitted through the data points, which are 
less than one (slope = 0.27 and 0.35 at 10 dpi and 14 dpi, 
respectively). This confirms previously reported obser-
vations [13, 20] and indicates that bacterial coloniza-
tion precedes the development of the typical chlorotic 

V-shaped lesions associated with black rot disease. How-
ever, it is still unclear whether chlorosis is caused by bac-
teria in situ, or whether chlorosis can occur in distant leaf 
area without a direct colonization of that same tissue by 
bacteria.

ScAnalyzer captures disease symptoms and leaf 
colonization of stomatal pathogens
To examine whether ScAnalyzer is able to capture the 
development of chlorotic disease symptoms and leaf 
colonization by other bacterial pathogens, we performed 
disease assays with the stomatal pathogen Pst [30] and 
X. campestris pv. raphani [31]. Using spray inoculation 
of a non-luminescent Pst strain, ScAnalyzer was able 
to detect chlorotic (yellow) and necrotic (white) lesions 
on Arabidopsis leaves (Fig.  4A). However, dark green 
lesions were not detected by ScAnalyzer (Fig. 4A, arrow). 
In addition, compared to the wildtype Col-0 accession, 
we found a significant increase in the symptomatic leaf 
area in two hypersusceptible Arabidopsis lines, i.e. in the 
NahG line that does not accumulate the defense hormone 
salicylic acid [32], and in the immune signaling mutant 
eds1-2 [33] (Fig.  4B). In addition, we generated lumi-
nescent reporter strains for both Pst and Xcr 756c, and 
performed spray inoculations. Using these very different 
bacterial pathogens, the ScAnalyzer pipeline detected 
spotted patterns of bacterial luminescence across the 
leaf, reminiscent of stomatal colonization by the bacte-
ria (Fig.  4C). While ScAnalyzer was not able to capture 

Fig. 3  Bacterial spread precedes leaf chlorosis. Correlation between bacterial spread values and chlorotic leaf area reveals that all tested leaves show a 
higher bacterial spread than chlorotic leaf area, in % of total leaf area. Shaded areas indicate whether the chlorotic area is greater than the area colonized 
by bacteria (yellow highlight) or vice versa (grey area). The solid black line follows y = x, or, bacterial spread = chlorosis. The dashed black line follows the 
regression line of the samples, and the inset shows the slope and p value of this line
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the mild chlorosis in this Pst assay, necrotic and chlorotic 
lesions caused by Xcr were readily detected (Fig. 4C).

Discussion
Here, we present the development and benchmarking 
of a new tool called ScAnalyzer to monitor Xcc disease 
progression in up to 126 Arabidopsis leaves in paral-
lel. We showed that a simple method based on segmen-
tation of a color image of leaves can detect Xcc disease 
symptoms. Additionally, we coupled the leaf image to a 
scan of a film that monitors the presence of the patho-
genic bacterium via the signal of a bioluminescence 
reporter cassette, integrated into the bacterial genome. 
As a result, ScAnalyzer can quantify both the extent of 
the disease symptom chlorosis caused by bacterial patho-
gens and the actual spread of pathogenic bacteria across 
Arabidopsis leaves. Compared to our previous method to 
score disease severity and susceptibility in Arabidopsis 
leaves infected with Xcc [19], ScAnalyzer represents an 
automated and unbiased method that allows for a more 
detailed assessment of bacterial spread. While other 
methods exist to automatically quantify leaf parameters 
such as shape, colour, and disease symptoms [3–5, 9, 
34–37], ScAnalyzer offers the seamless integration of the 
quantification of microbial luminescence signal in the 
inspected leaf samples.

ScAnalyzer applies relatively simple image analysis 
techniques (using pixel color thresholds) to segment the 
leaf image into healthy and diseased leaf tissue. Impor-
tantly, applying color thresholds requires highly stan-
dardized imaging conditions of plant material (see Table 
S1 for optimization steps). Machine learning algorithms, 
which do not rely on manual threshold selection, have 
become a popular method for similar tasks, especially in 
field conditions with less optimized imaging conditions 
[38, 39]. However, such algorithms require large training 
sets of data and a certain level of computer science exper-
tise, which are not always readily available.

The ScAnalyzer workflow uses a grid-based sampling, 
scanning and automated cropping framework which 
has the potential to be adopted by other researchers in 
the field of plant pathology. Without much adaptation, 
it offers a rapid and standardized analysis of Arabidop-
sis leaves infected with luminescent reporter strains of 
the model apoplastic pathogen P. syringae (Fig. 4) Thus, 
ScAnalyzer represents an alternative to or complemen-
tary method to the more labour-intensive colony count 
experiments, as suggested by others [27, 40]. With an 
adjustment of the threshold parameters, the ScAnalyzer 
pipeline offers the possibility to automatically detect 
and quantify necrotic lesions caused by Botrytis cinerea, 
although this is not part of the current pipeline. A limita-
tion of the ScAnalyzer pipeline is that it is not designed 
to detect disease symptoms on plant tissues other than 

Fig. 4  ScAnalyzer captures disease symptoms and bacterial lumines-
cence caused by stomatal pathogens. (A) Representative images of Ara-
bidopsis leaves of accession Col-0 and eds1-2 mutant in Col-0 background 
infected by Pst DC3000 (carrying empty vector EDV5) at 7 dpi. Top row 
shows original samples, bottom row shows ScAnalyzer results. Red bor-
der: total leaf area. Light-blue border: chlorotic leaf area. Arrow highlights 
a dark green lesion not detected by ScAnalyzer. (B) Quantification of the 
symptomatic leaf area of leaves of three Arabidopsis lines infected by Pst 
DC3000 (carrying empty vector EDV5) at 7 dpi. (C) Examples of Arabidop-
sis accession Oy-0 leaves infected with luminescent reporter strains of Pst 
and Xcr. Top row shows original samples, bottom row shows the ScAna-
lyzer results. Red border: total leaf area. Light-blue border: chlorotic and 
necrotic leaf area
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leaves. However, even root-infecting pathogens such 
as Fusarium oxysporum eventually cause chlorotic dis-
ease symptoms in Arabidopsis leaves [41], which could 
be quantified by ScAnalyzer. Beyond the field of plant 
pathology, the pipeline could be adapted to facilitate 
the standardized analysis of additional parameters, e.g. 
leaf size, leaf chlorosis, or anthocyanin accumulation, in 
leaves of diverse plant species.

The destructive nature of sampling is a potential limita-
tion of the ScAnalyzer workflow, as the same leaves can-
not be followed over time. Alternative imaging systems 
can measure bacterial luminescence signal from whole 
intact plants or even whole trays of plants without dam-
aging the plants, but these digital phenotyping systems 
are costly and often not fitted to study plant pathogens 
in optimal conditions. Nevertheless, they can provide 
the advantage of tracking disease progression in a non-
invasive manner — from initial microbial invasion event 
to systemic spread across the plant. However, to achieve 
the resolution and sensitivity for the detection of spatially 
restricted signals in early infection stages, such as Xcc 
infections of hydathodes [19, 20] during live-imaging in 
planta in a non-invasive manner, expensive equipment is 
required (e.g. a light-tight cabinet and an ultra-sensitive 
CCD camera). Moreover, studying adult Arabidopsis 
plants over longer periods of time results in overlapping 
leaves (of the same individual rosettes and between 
neighboring plants), which hinders accurate scoring. In 
parallel to the development of such a bioluminescence 
live-imaging unit for entire plant trays of Arabidopsis 
[42], we highlight here the advantages for detailed and 
reliable low-tech imaging of bacterial spread and disease 
at the level of individual leaves using ScAnalyzer.

Conclusions
We developed and benchmarked ScAnalyzer, a new 
image processing tool to monitor disease symptoms and 
bacterial spread in Arabidopsis leaves.

Methods
Bacterial strains and culture conditions
The Xcc strain used in this study is a derivative of Xcc 
strain 8004 [43], carrying a xopAC gene deletion [44] and 
a targeted genomic insertion of a Tn7:luxCDABE: mTq2 
reporter cassette [20, 25], and is listed in Table S2. Xcc 
was cultured at 28  °C on KADO agar plates (10  g·L− 1 
sucrose, 8  g·L− 1 casamino acids, 4  g·L− 1 yeast extract, 
2.4  g·L− 1 K2HPO4·3H20, 0.3  g·L− 1 MgSO4·7H20, and 
15  g·L− 1 Daishin agar) containing appropriate antibiot-
ics (rifampicin 25 µg·mL− 1, gentamycin 10 µg·mL− 1). The 
Pst strains used in this study are derivatives of Pst strain 
DC3000 [30] and were cultured at 28 °C on Kings B (KB) 
agar plates (20 g·L− 1 proteose peptone, 10 g·L− 1 glycerol, 
1.966  g·L− 1 K2HPO4·3H20, 1.5  g·L− 1 MgSO4·7H20, and 

15  g·L− 1 Daishin agar, pH 7.0). The Xcr strain used in 
this study is a derivative of Xcr 756c [45], and was grown 
on KADO agar plates like Xcc. The non-luminescent Pst 
strain used in Fig.  4A and B carried the plasmid EDV5 
without insert (empty vector, EV) [46].

Bacterial transformations
Bacterial transformations with the Tn7:lux: eYFP con-
struct was performed using quadruple parental mating as 
described [20, 25]. Briefly, recipient cells (Pst DC3000 or 
Xcr 756c) were co-incubated for 24 h with E. coli carry-
ing donor plasmid pRS-Tn7-pnptII::lux-pA1::eYFP [25], 
and two E. coli strains carrying helper plasmids pUX-
BF13 [25] and pRK2073. Transformants were selected 
on LB agarose plates supplemented with gentamycin 
10 µg·mL− 1 (to select for integration of the luminescence 
cassette) and nitrofurantoin 50 µg·mL− 1 (to eliminate E. 
coli donor and helper strains). To confirm biolumines-
cence of the transformants, plates with bacterial cultures 
were inspected using a ChemiDoc MP imager (Bio-Rad).

Plant cultivation
All A. thaliana lines used are listed in Table S2. A. thali-
ana plants were grown as described [19, 20]. Briefly, 
seeds were stratified in the dark at 4  °C on moist filter 
paper for 3 days and then sown in 40-pot trays in potting 
soil (3:17 parts perlite: compost soil, Hol80 zaaigrond 
Nr1, Jongkind Grond, The Netherlands). The trays were 
covered with a transparent dome for 5 days to increase 
the relative humidity and promote equal seed germina-
tion. Plants were grown at 22  °C, 70% relative humid-
ity with a short-day light regime (11  h of light, 13  h of 
darkness).

Bacterial disease assays
Xcc and Xcr disease assays were performed as described 
[19, 20]. Briefly, four-week-old plants were used for the 
disease assays. Xcc was grown from glycerol stock on 
KADO agar plates at 28 °C for 2 days. Inoculum was pre-
pared by scraping the bacteria from agar plates and dis-
solving them in 10 mM MgSO4. This bacterial solution 
was then washed by centrifugation (3,000  g, 10  min), 
decanting the supernatant, and resuspending the pellet 
in fresh 10 mM MgSO4. The inoculum was then diluted 
to approximately 1 × 108 colony forming units per mil-
liliter (corresponding to OD600 = 0.1) and supplemented 
with 0.0002% Silwett L-77. The inoculum was sprayed on 
Arabidopis rosettes in a flow cabinet using an airbrush 
spray-gun. Approximately 25 mL of inoculum was used 
per 40-pot-tray of plants. The trays were then placed in 
a growth cabinet (Microclima MC1000, Snijders Labs). 
To promote the formation of guttation droplets at hyda-
thodes. and thereby natural entry of Xcc, a specific tem-
perature/humidity cycle was used for Xcc disease assays 



Page 9 of 11Paauw et al. Plant Methods           (2024) 20:80 

[19]. The Pst disease assays were performed in the same 
way as the Xcc disease assays described above, except 
that the plants were covered with a transparent dome to 
keep the relative humidity above 90% for three days after 
the inoculation The Pst disease assay in Fig. 4A and B was 
performed with a bacterial inoculum of OD600 = 1.0 sup-
plemented with 0.04% Silwett L-77.

In planta visualization of the bacterial luminescence
Bacterial colonization was monitored at 10 and 14 days 
post spray inoculation. From each plant, the three most 
diseased leaves (based on visual disease symptoms) were 
selected. In absence of disease symptoms, similar leaves 
were selected (i.e., leaves of the same developmental 
stage, which were present at the moment of spray inocu-
lation). The selected leaves were attached to a 40 × 30 cm 
paper sheet using a glue roller. The paper sheet includes 
a preprinted grid (https://github.com/MolPlantPathol-
ogy/ScAnalyzer/grid.pdf, actual grid cell dimensions on 
printed sheet are 22 × 40.5  mm). The grid also contains 
a predefined header to record experimental metadata 
(experiment ID, days post inoculation, pathogen ID, date, 
researcher name). The grid with leaves was then covered 
with transparent plastic sheets, and placed in a light-tight 
cassette (30 × 40  cm). A light-sensitive film (Fuji Super 
RX) was placed on top the sheet and was exposed to the 
in planta bacterial luminescence signal overnight (for 
approximately 18 h). To ensure proper alignment of the 
paper sheet with the attached leaves and the film, both 
were securely positioned using the bottom-left corner as 
our routine anchor point. The film was developed by sub-
merging it in development solution (AGFA developer/
replenisher G150) for 1.5 min, washed in water, and fixed 
in fixing solution (AGFA, Manual Fixing Bath G354) for 
2  min. The black signal of the film caused by bacterial 
luminescence is indicative of high bacterial densities [19]. 
To digitize the sheet with leaves and the film, both were 
scanned in a DIN A3 scanner (Epson A3 Scanner Expres-
sion 12000XL) to a JPEG file with the following set-
tings: 300 dpi, high scanning quality, 24-bit color depth, 
30 × 40 cm image size. Again, to ensure proper alignment 
between the sheet and film, the bottom-left corner was 
used as an anchor point for the scanning.

ScAnalyzer pipeline description
The ScAnalyzer script was written in Python and uses 
the OpenCV library for image handling and manipula-
tion [47]. The code is available on GitHub (https://github.
com/MolPlantPathology/ScAnalyzer). Briefly, the images 
of the sheet of leaves and the film are loaded. These 
images are then separated into 126 cropped image files of 
261 × 477 pixels in size based on image coordinates corre-
sponding to the paper grid. Each sub-image file captures a 
single leaf or the bacterial signal from that corresponding 

leaf. The image is then analyzed to detect the leaf and 
chlorotic area using a set of thresholds (in Hue Satura-
tion Value (HSV) color space) to select green and yellow 
pixels, respectively, followed by contour detection to find 
the largest shape in the sub-image. Because ScAnalyzer 
proceeds with only the largest shape in the sub-image, 
it ensures that other sections of the sub-image that con-
tain green or yellow pixels, such as a piece of soil or 
small portions neighboring leaves, are not included in 
the analysis of the current leaf. Within the leaf, chlorotic 
leaf tissue is separated from healthy leaf tissue detected 
by separating yellow from green pixels with another set 
of thresholds in HSV color space. These thresholds were 
initially determined once by picking HSV colour values 
of approximately 10 researcher-defined ‘chlorotic’ and 
‘healthy’ leaf regions. The corresponding sub-image that 
contains the bacterial luminescence signal of this leaf is 
then analyzed similarly to obtain the number of pixels 
that show bacterial signal above a threshold. Only lumi-
nescence signals within the leaf are considered, so any 
background luminescence signal or luminescence signal 
from bacteria colonizing the neighboring leaf is not erro-
neously detected. For each leaf, the following parameters 
are saved into an .csv file: the total leaf area, total chlo-
rotic area, total bacterial luminescence area. This data is 
automatically connected to a sample list with metadata 
provided by the user, which contains grouping informa-
tion for each sample (plant genotype, pathogen genotype, 
dpi). The resulting output table is directly compatible for 
plotting or further analysis in R (v4.2.0) using the pack-
ages ggplot2 (v3.4.4) and tidyverse (v2.0.0) [29].

Statistical analysis
All statistical calculations were performed in R 4.2.0. 
Details on statistical operations are described in the fig-
ure legends and in the results section. All boxplots shown 
are made with the ‘ggplot2::geom_boxplot()’ function 
where the middle line represents the median, the upper 
and lower hinge represent the 75th and 25th percentile 
respectively, and the upper and lower whisker extend 
until the largest or smallest value within 1.5 times the 
interquartile range above the respective hinge. In all box-
plots, the all individual data points are plotted as points.
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