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Abstract 

To date, only a limited number of studies have utilized remote sensing imagery to estimate aboveground biomass 
(AGB) in the Miombo ecoregion using wall-to-wall medium resolution optical satellite imagery (Sentinel-2 and Land-
sat), localized airborne light detection and ranging (lidar), or localized unmanned aerial systems (UAS) images. On 
the one hand, the optical satellite imagery is suitable for wall-to-wall coverage, but the AGB estimates based on such 
imagery lack precision for local or stand-level sustainable forest management and international reporting mecha-
nisms. On the other hand, the AGB estimates based on airborne lidar and UAS imagery have the precision required 
for sustainable forest management at a local level and international reporting requirements but lack capacity 
for wall-to-wall coverage. Therefore, the main aim of this study was to investigate the use of UAS-lidar as a sampling 
tool for satellite-based AGB estimation in the Miombo woodlands of Zambia. In order to bridge the spatial data gap, 
this study employed a two-phase sampling approach, utilizing Sentinel-2 imagery, partial-coverage UAS-lidar data, 
and field plot data to estimate AGB in the 8094-hectare Miengwe Forest, Miombo Woodlands, Zambia, where UAS-
lidar estimated AGB was used as reference data for estimating AGB using Sentinel-2 image metrics. The findings 
showed that utilizing UAS-lidar as reference data for predicting AGB using Sentinel-2 image metrics yielded superior 
results (Adj-R2 = 0.70, RMSE = 27.97) than using direct field estimated AGB and Sentinel-2 image metrics  (R2 = 0.55, 
RMSE = 38.10). The quality of AGB estimates obtained from this approach, coupled with the ongoing advancement 
and cost-cutting of UAS-lidar technology as well as the continuous availability of wall-to-wall optical imagery such 
as Sentinel-2, provides much-needed direction for future forest structural attribute estimation for efficient manage-
ment of the Miombo woodlands.
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Introduction
Sustainable management and carbon accounting of for-
ests require accurate up-to-date vegetation structural 
data, often covering extensive areas that are too huge to 
capture, process, and manage by manual methods [1–6]. 
Typically, above ground biomass (AGB) in the Miombo 
woodlands is determined using destructive harvesting 
procedures, for building allometric equations based on 
the observed data from these cut trees, such as diameter 
at breast height (DBH), tree height, and wood density 
[7–9]. Nevertheless, the application of these allomet-
ric equations on extensive forest regions can pose chal-
lenges in terms of time, cost, and feasibility due to the 
difficulty in obtaining field measurement input param-
eters in remote terrains. Consequently, the AGB for most 
of vegetation formations in many parts of the African 
savannas, Miombo woodlands inclusive remains poorly 
understood.

Remote sensing has made it possible to measure veg-
etation structure across vast areas in an efficient and 
repetitive manner [10, 11]. The application of remote 
sensing methods in estimating AGB in the Miombo 
woodlands [12–18] is becoming common. Most of these 
studies employ statistical models where field estimates of 
AGB are regressed against metrics generated from cor-
responding remote sensing data, followed by extrapola-
tion of resulting models to the entire study area. The 
studies that have employed remote sensing imagery for 
estimation of AGB in the Miombo ecoregion so far have 
done it at two levels of abstraction, namely: (i) wall-to-
wall estimation of AGB; and (ii) local or stand-level 
estimations. The wall-to-wall category includes, the use 
of atmospherically resistant vegetation indices (ARVI) 
and normalized difference vegetation indices (NDVI) 
derived from Landsat imagery to assess forest cover, 
stocking and above-ground tree biomass dynamics in the 
Miombo woodlands of Tanzania [14]. In another study, 
Halperin et  al. [12, 19] estimated AGB in Nyimba dis-
trict, Miombo woodlands, Zambia, using National Forest 
Inventory (NFI) data, estimated canopy cover, environ-
mental data, disturbance data, and Landsat 8 OLI satel-
lite imagery. The medium resolution imagery (Landsat) 
utilized in Kashindye et  al. [14] and Halperin et  al. [12, 
19] are suitable for wall-to-wall coverage, but the AGB 
estimates based on such imagery lack precision for local 
or stand-level sustainable forest management, as well as 
international reporting mechanisms [20] such as reduc-
ing emissions from Deforestation and Forest Degrada-
tion, plus forest conservation, sustainable management of 
forests and enhancement of carbon stocks (REDD +) and 
Monitoring, Reporting and Verification (MRV), which 
offers monetary rewards to developing countries for for-
est conservation, and the execution of ecologically sound 

forest management based on national carbon stocks 
reported to the United Nations Framework Convention 
on Climate Change, UNFCCC [2, 21].

At a local level, Mauya et  al. [16] employed airborne 
light detection and ranging (lidar) data to estimated 
AGB in the Miombo woodlands of Liwale district, Tan-
zania. Another study by Kachamba et  al. [13], utilized 
unmanned aerial systems (UAS) image-based point 
clouds to estimate AGB in the Miombo woodlands, Muy-
obe forest, and Mzimba District in northern Malawi. The 
AGB data estimates by Mauya et al. [16] and Kachamba 
et  al. [13] have the precision required for sustainable 
forest management at a local level and international 
reporting requirements but lack capacity for wall-to-wall 
coverage. Furthermore, apart from the limited area cov-
erage inherent in the UAS imagery approach employed 
in Kachamba et al. [13], the imagery requires huge stor-
age space and high processing speeds [22, 23] that are too 
demanding and still challenging for wall-to-wall estima-
tions of AGB over a large area. As a result, the two levels 
of abstraction must be linked in order to get wall-to-wall 
AGB estimates with the accuracy necessary for local sus-
tainable forest management and international carbon 
reporting requirements [2, 21].

With regard to bridging the spatial gap between wall-
to-wall satellite imagery and detailed airborne and UAS 
imagery, some studies have proposed a two-phase sam-
pling design where areas covered by UAS or airborne 
imagery are sampled via field plots and areas covered by 
wall-to-wall satellite images are sampled using UAS or 
airborne imagery, for example, lidar sampling [24–28] 
and UAS imagery sampling [29, 30]. These strategies have 
demonstrated tremendous potential to reduce field plot 
installation costs and improve wall-to-wall AGB esti-
mate accuracy, which could provide solutions for forest 
data collection in forest inventory-plagued regions such 
as the Miombo ecoregion. A study by Wulder et al. [31] 
presented a complete review of employing lidar sampling 
to allow large-area forest characterizations, in which lidar 
samples were utilized in a way comparable to field sam-
ples. However, their review focused on airborne, which 
are still expensive to acquire in the Miombo region. UAS 
provide a more flexible and affordable sampling platform 
for use in conjunction with wall-to-wall satellite imagery, 
as demonstrated in recent studies [28, 30, 32].

In a pioneering study for UAS-based sampling, Puliti 
et al. [30] used UAS photogrammetric point clouds as a 
sampling tool, together with a limited sample of field data 
and wall-to-wall Sentinel-2 images, to estimate growing 
stock volume in a 7330 hectare forest area in Norway 
using a hierarchical model-based inference and reported 
this approach to be cost-effective for large scale forest 
resource assessments. However, UAS photogrammetric 
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point clouds have been reported to have challenges 
in capturing the vertical vegetation structure that are 
required for estimating AGB in denser forest environ-
ments [22, 33]. In a related study, Wang et al. [32] used 
a lidar sensor mounted on a UAS platform (UAS-lidar) 
partial coverage data as a link between field plot data 
and wall-to-wall Sentinel-2 imagery to estimate man-
grove forests AGB in Hainan Island, China. Apart from 
lowering field sampling costs, their research observed 
that their method produced better AGB estimations 
 (R2 = 0.62; rRMSE = 35.41%) than the usual method, 
which directly correlates field plots to Sentinel-2 data 
 (R2 = 0.0.52; rRMSE = 39.88%).

This paper proposes a two-phase sampling technique 
for low-cost, large-scale AGB estimates for the Miombo 
ecoregion by capitalizing on publicly-available Senti-
nel-2 satellite images and inexpensive UAS-lidar data. In 
order to achieve this, the specific objectives were: (i) to 
identify suitable UAS-lidar metrics and Sentinel-2 met-
rics for estimating AGB in the Zambian Miombo; (ii) to 
identify the optimal prediction model for mapping AGB; 
(iii) to assess if UAS-lidar-estimated AGB can replace 

field-estimated AGB as reference data; and (iv) to com-
pare the findings of direct field plots to Sentinel-2 AGB 
estimations from utilizing field plots to UAS-Lidar and 
UAS-lidar to Sentinel-2 in a two-phase sampling strategy.

Materials and method
Study area
The research was conducted in Miengwe Forest Reserve 
Number 36, Masaiti District, Copperbelt Province, Zam-
bia (Fig.  1). The forest reserve is situated approximately 
17 km from the Ndola-Lusaka highway and 90 km south-
west of the Ndola city center. The 8,094-ha Miengwe 
Forest Reserve is located between 13°24′05′′S and 
28°49′00′′E. The region receives an average of 1200 mm 
of rainfall annually and experiences three distinct sea-
sons: hot dry (September–November), rainy (Decem-
ber–March), and cold dry (April–August) [7]. The most 
prevalent soil form is residual lateritic soil, which consists 
primarily of silty clays and sediments. The area is within 
the Wet Miombo region and is characterized by the 
dominance of the families of Papilionacae and Fabaceae. 
The dominant genera and species are Brachystegia 

Fig. 1 Location of study area
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(Brachystegia spiciformis and Brachystegia longifolia), 
Julbernardia (Julbernadia globiflora and Julbernadia pan-
iculata), and Isoberlinia (Isobernilia angolensis).

Field sample plots
To ensure that field sample plots, UAS-lidar data, and 
Sentinel-2 data corresponded in the two-phase sam-
pling approach [34], the Sentinel-2 image covering the 
study area was resampled to 20 m spatial resolution and 
used to generate a 20 × 20 m grid framework that served 
as the foundation for both field and UAS-lidar sampling 
(Fig.  2). The study area was divided into ten UAS lidar 
blocks ranging in size from 30 to 50 hectares, which were 
selected based on the vegetation coverage, accessibil-
ity, and availability of a UAS launch site as determined 
by visual interpretation of Google Earth images and 
field assessment. In each of the UAS-lidar blocks, ten to 
twelve circular sample plots of 10  m radius were estab-
lished at 250  m spacing at the centre of the 20 × 20  m 
Sentinel-2 grid framework, at least 50 m distant from the 
block border. These plots were designed to align with the 
20 × 20 m grids that were used for extracting UAS-lidar 
metrics. The LT700H real time kinematic RTK (Shanghai 
Huace Navigation Technology Limited, China) Global 
Navigation Satellite Systems (GNSS) receiver was used to 
precisely locate the centers of these plots on the ground 
to within a few centimeters. The DBH, tree height, and 

species names of trees with DBH more than 5 cm were 
recorded in each of the sample plots. Allometric equa-
tions proposed by Handavu et  al. [7] were used to esti-
mate AGB at the plot level.

Collecting and pre‑processing data from UAS‑lidar
Using a T-Drone M1200 quadcopter equipped with a 
gAirHawk GS-100C UAS-lidar scanning system, we col-
lected the raw UAV-lidar point clouds between Novem-
ber 10th and 12th, 2021. The Livox Avia sensor on the 
GS-100C UAS-lidar operates at 200 HZ and can provide 
up to 720,000 points/sec in triple echo. The mission was 
planned using the open-source program Mission Planner, 
which was also used to track the aircraft in real-time and 
monitor its flight characteristics. UAS-lidar data were 
collected at an altitude of 80 m, a speed of 5 m per sec-
ond, and a swath width of 42  m. A GNSS ground base 
station was used as a reference for subsequent UAS-lidar 
data post-processing.

The unprocessed UAS-lidar data downloaded from the 
GS-100C comprised raw lidar points, UAS inertia meas-
urement unit data, UAS GNSS data, and raw photogram-
metry imagery (used for colourising the point cloud). The 
raw UAS-lidar data and raw GNSS data from the ground 
GNSS base station were first processed in gAirhawk 5.0 
version software (Geosun Navigation Technology Lim-
ited, Wuhan, China), where lidar data, IMU data, and 

Fig. 2 Sample plot and grid framework overlaid on: a Sentinel-2 image and b lidar point cloud
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GNSS base data were integrated to process the flight 
trajectory and generate georeferenced UAS-lidar point 
cloud data in las format. The UAS-lidar point cloud data 
in las format underwent further processing in Lidar360 
version 5.4.3.0 software (GreenValley International, Cali-
fornia, CA, USA), which included: (i) denoising the lidar 
point cloud using an outlier reduction method; (ii) classi-
fication of point clouds into either ground or non-ground 
using an enhanced version of the progressive triangulated 
irregular network (TIN) densification filter method [35]; 
and (iii) normalizing point clouds by subtracting the ele-
vation of each point from the DTM that was generated 
using the inverse distance weighting (IDW) interpolation 
technique. The normalized points were used as input for 
extracting UAS-lidar metrics which were used for the 
subsequent modelling.

Sentinel‑2 data collection and pre‑processing
There were no cloud-free images for November 2021 to 
coincide with the lidar data collection period, so Senti-
nel-2 images with less than 5% cloud cover captured in 
November 2022, which reflected the closest state to the 
time lidar data was collected, were downloaded from 
the open access European Space Agency [36]. The Sen-
tinel Application Platform (SNAP) and ArcGIS Desktop 
Version 10.7.1 [37] software were used to pre-process 
the raw Sentinel-2 imagery. The Sen2Cor atmospheric 
correlation processor (version 2.5.5) was used to do 
atmospheric correction to create Level2A bottom-of-
atmosphere reflectance data. Three visible bands [Blue 
(B2), Green (B3), and Red (B4)], three red edge bands 

[Red Edge 1 (B5), Red Edge 2 (B6), and Red Edge 3 (B7)], 
two near infrared bands (B8) and Narrow Near Infrared 
(B8a)), and two shortwave bands [Shortwave 2 (B12) and 
Shortwave 3 (B13)] were used in the Sentinel-2 image 
composite. Bands 1, 9, and 10 were removed because they 
were dedicated to atmospheric correction and had coarse 
resolution of 60  m. All adopted bands were resampled 
to 20 m resolution using the nearest neighbor approach 
in ArcGIS to match our sampling strategy [28, 38, 39]. 
Finally, subsets of all generated sentinel-2 imagery prod-
ucts were clipped to the size of the study area.

Extraction of AGB predictors
The UAS-lidar metrics were extracted in Lidar360 soft-
ware based on polygons generated from a 20 × 20 m resa-
mpled Sentinel-2 grid framework (Fig. 2). We generated 
a total of 37 UAS-lidar metrics at the plot level (Table 1). 
The 20 × 20  m grid framework was generated based on 
the re-sampled Sentinel-2 using the “create fishnet tool’ 
in ArcToolbox, implemented in ArcGIS Desktop soft-
ware, which includes an option for generating points 
inside each grid. The points inside each grid served as the 
basis for extracting Sentinel-2 image metrics for estimat-
ing the AGB for the study area.

Acquiring Sentinel‑2 metrics
Prior experience [38, 39] in estimating AGB using Senti-
nel-2 imagery influenced the choice of relevant bands as 
well as the derived vegetation indices (VI) and biophysi-
cal variables (BV) in this work (Table 2). In addition, nor-
malized difference fraction index (NDFI), an index that 

Table 1 UAS-lidar metrics

Lidar metrics Description

Percentile heights (H1, H5, H10, H20, H25, H30, H40, H50, 
H60, H70, H75, H80, H90, H95, H99)

The percentile of the canopy height distributions (1st, 5th 10th, 20th, 25th, 30th 40th, 50th, 
60th, 70th,75th, 80th 90th, 95th and 99th) of first returns

Canopy return density (D1, D2, D3, D4, D5, D6, D7, D8, D9) The proportion of points above the quantiles (10th,20th, 30th, 40th, 50th and 60th, 70th, 
80th and 90th) to total number of points

Variance of height (Hvar) The variance of the heights of all points

Maximum height (Hmax) Maximum of return heights above 2 m

Coefficient of variation of heights (Hcv) Variation of heights of lidar returns above 2 m

Hskew Skewness of height

Hmd The median of absolute deviation of heights

Hkurtosis The kurtosis of the heights of all points

Hstd Standard deviation of height

Hmean Mean height above ground of all first returns

Canopy relief ratio (CRR) Mean height returns minus the minimum height divided by the maximum height 
minus the minimum height

Canopy cover (CC) above 2 m Percentile of first returns above 2 m

Gap fraction (GF) An indication how much of the sky is visible from beneath a plant canopy

Leaf area index (LAI) Half of the surface area of all leaves per unit ground area
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has been widely used to monitor forest disturbances in 
the tropics [40–42] was calculated. It is based on spec-
tral unmixing, which is the breakdown of the spectral sig-
nature of a mixed pixel into proportions of endmembers 
(pure spectra) [43]. Using this approach, Souza et al. [41] 
employed a linear mixture model to decompose field data 
on cleared, selectively logged, and undisturbed Ama-
zon forests into proportions of soil, shade, green veg-
etation (GV), and non-photosynthetic vegetation (NPV). 
Dense forests revealed high GV and low soil, NPV, and 
shade percentages. Cleared and thinned forests exhibited 
greater canopy shade and GV than non-disturbed forests. 
The NDFI was adopted in this study because it empha-
sizes the difference between forest and non-forest pixels 
[40], which is crucial for estimating AGB. The NDFI was 
calculated using Eq. 1 and  GVshade is the shade-normal-
ised GV fraction given by Eq. 2 [41].

(1)NDFI =
GV shade − (NPV + Soil)

GV shade + (NPV + Soil)

(2)GV shade =
GV

1+ Shade

NDFI is the ratio of the GV, NPV, soil, and shade end-
member fractions, with the resulting NDFI values rang-
ing from -1 to 1. In the present study, the calculation of 
the NDFI was implemented within the System for Earth 
Observation Data Access, Processing, and Analysis for 
Land Monitoring (SEPAL) cloud application [44]. Sub-
sequently, the final suitable metrics for the study were 
arrived at after undergoing a variable section process.

Predicting AGB
The multi-linear regression (MLR) approach was 
employed to predict AGB in this study because of its 
simplicity and ability to handle dependencies on or cor-
relations between the predictor variables [26, 45]. A two-
phase sampling approach was utilized to estimate the 
AGB for the Miengwe forest. The first phase involved 
creating the ground plot to UAS-lidar relationship and 
estimating AGB in the blocks covered by UAS-lidar. The 
UAS-lidar blocks were selected based on accessibility and 
availability of a UAS launch site and did not follow a strict 
north–south orientation. Since the UAS-lidar blocks did 
not match the orientation of the Sentinel-2-generated 
grid framework, the grid cells in the UAS-lidar block’s 
margins, covering only a fraction of the 400-m square 

Table 2 Selected multispectral bands, VI, and BF from Sentinel-2 images

Bands Description Central wave length (nm)

B2 Blue 490

B3 Green 560

B4 Red 665

B5 Vegetation red edge 705

B6 Vegetation red edge 740

B7 Vegetation red edge 783

B8 Near infrared (NIR) 842

B11 Short wave infrared (SWIR) 1610

B12 Shortwave infrared (SWIR) 2190

Vegetation indices Description (reference) Equation

NDVI Normalized Difference Vegetation Index [76] NDVI =
B8−B4

B8+B4

EVI Enhanced vegetation index [76] EVI = 2.5×
(B8−B4)

(B8+6×B4−7.5×B2+1)

SAVI Soil adjusted vegetation index [76] SAVI =
B8−B4

B8+B4+L
× (1+ L)

RENDVI_705 Red-edge normalized difference vegetation index [76] RENDVI =
B8−B5

B8+B5

NBRI Normalized Burn Ratio Index [60] NBRI =
B8−B12

B8+B12

GNDVI Green Normalized Difference Vegetation Index [77] GNDVI =
B8−B3

B8+B3

Biophysical variables Description (reference)

LAI Leaf area index [39]

FAPAR Fraction of absorbed photosynthetically active radiation [39]

FCOVER Fraction of vegetation cover [39]

CAB Chlorophyll content in the leaf [39]
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grid, were removed. We estimated the AGB for a total of 
4248 grid cells covering all the 10 UAS-lidar blocks in the 
study area, representing about 2.5% of the total Miengwe 
forest area. The estimated AGB of the UAS-lidar blocks 
were used as reference points in the subsequent estima-
tion of AGB in areas covered by Sentinel-2 imagery for 
the rest of the study area.

In the second phase, a relationship was established 
between the UAS-lidar predicted AGB (response vari-
able) and wall-to-wall Sentinel-2 image metrics (Table 2) 
as predictor variables to estimate the AGB for the entire 
study area using MLR technique. Seven hundred random 
(700) points were generated within the 10 UAS-lidar 
blocks using the create random points tool implemented 
in ArcGIS Desktop Version 10.7.1. The 700 random sam-
ples of UAS-lidar estimated AGB grid cells served as 
training data for estimating AGB for the whole study area 
using Sentinel-2 image metrics.

We also predicted the AGB for the Miengwe forest 
using the direct relationship between ground plots and 
Sentinel-2 imagery metrics, which allowed us to assess 
whether or not the use of UAS-lidar as a bridging sam-
pling tool between the two was beneficial. The UAS-lidar 
to Sentinel-2 estimated AGB was later compared with 
the one obtained directly the ground points to Sentinel-2 
metrics estimated AGB.

The MLR modeling approach
The first stage of variable selection involved using Pear-
son’s correlation coefficient (r) to evaluate the association 
between the dependent variable and the independent 
variables to ensure model parsimony and eliminate over-
fitting by removing predictor variables with high levels 
of correlation with each other (r > 0.85). The best subsets 
regression approach built in Minitab Version 21.1.1 [46] 
was used to identify the best performing model and vari-
ables from a set of selected variables. As a model selec-
tion method, best subsets regression involves trying out 
every conceivable collection of predictor variables and 
picking the one that performs the best statistically [47]. 
The best model is chosen based on different criteria 
including: highest adjusted-R2 and predicted-R2 as well 
as the lowest values for Mallows Cp, Akaike’s Informa-
tion Criterion corrected (AICc), and Bayesian informa-
tion criterion (BIC). In our case the model with lowest 
AICc was considered to be the best as it has been proved 
to perform well for smaller samples in prior studies [48, 
49]. Finally, the best MLR model was used to predict the 
AGB.

To compare the predicted values with the observed 
values (AGB values acquired from lidar), three accuracy 
assessment indicators employed in Liu et  al. [50] were 

utilized. The developed MLR models were tested using 
k-fold cross validation to determine their accuracy. The 
idea behind this method is to randomly divide the data 
into k groups or folds where each member is nearly the 
same size. When doing k-fold cross-validation, each fold 
is treated as its own validation set. We choose k = 10 
because this number has been widely used and empiri-
cally proved to provide non-biased and rather stable esti-
mates of the test error rate. Ten subsets of the original 
dataset are created and used for tenfold cross-validation. 
Each fold uses 9 of the 10 subsets for training and the 
remaining 1 for testing the accuracy of the learnt model 
on the validation set. Each subgroup will undergo the 
validation procedure many times. Finally, we utilized the 
aforementioned equations to calculate cross-validated 
RMSE from a table containing all of the folds’ predicted 
values.

Results
Variables selection
In this study, three models were developed to predict 
AGB in two phases: Model 1, represented by Eq. 3, uti-
lized the correlation between field estimated AGB and 
UAS-lidar metrics. Model 2, represented by Eq.  4, uti-
lized the correlation between UAS-lidar estimated AGB 
and Sentinel-2 metrics. Model 3, represented by Eq.  5, 
was developed by utilizing the direct correlation between 
field estimated AGB and Sentinel-2 image metrics for the 
purpose of comparing with model 2. Since the processes 
for models 1–3 are similar, we only show the variable 
selection process for model 1. The variable CC emerged 
as the primary predictor in all ten models identified in 
the best subsets approach, indicating its significant influ-
ence (Table 3). Hcv and H80 were also shown to be influ-
ential predictors, since they were picked in seven out of 
the ten models. Overall, height related metrics domi-
nated the list of selected lidar metrics.

The model of four predictor variables was chosen to 
be the best model because it produced the highest pre-
dicted  R2 and lowest AICc (Bolded in Table 3), and was 
less complicated compared to the model of six predictor 
variables. After implementation of the chosen model, it 
resulted in model 1, Eq. 3. This selection procedure was 
repeated in phase two for estimating UAS-lidar-derived 
AGB using Sentinel-2 metrics and resulted in model 
2, Eq.  4 (Table  4). The same procedure was applied to 
directly estimate AGB using the relationship between 
field-estimated AGB and Sentinel-2 metrics, resulting in 
model 3, Eq. 5

(3)
ln(AGB) = 1.68CC + 0.08H80+ 5.32D20− 2.97Hcv + 0.20
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AGB estimation at phase one
Estimation of AGB by applying the relationship between 
field estimated AGB and UAS-lidar metrics using 
model 1 explained 90% of the variance of AGB, RMSE 
of 17.70  Mg/ha and a bias of 3.79  Mg/ha (Table  5) and 

(4)

ln(AGB) = 4.18NDFI + 0.24LAI + 5.98NBRI

− 14.53B06− 8.49B12+ 3.15B11+ 2.05

(5)
AGB = 2778B11+ 1084GNDVI + 59.1LAI − 1171

Fig.  3a, indicating that the model successfully predicted 
the AGB.

AGB estimation at phase two
In phase 2, UAS-lidar prediction of AGB from phase 
one were used as sample data for predicting AGB using 
the relationship with Sentinel-2 variables (Eq.  4, model 
2) and was able to explain 79% of the variance of AGB 
for the entire Miengwe forest. Additionally, model 2 was 
used to generate the AGM map at 20 m resolution for the 
Miengwe forest (Fig. 4). The RMSE of 27.97 Mg/ha and 

Table 3 Candidate MLR Models for Field estimated AGB prediction using UAS-lidar metrics (see Table 1 for UAS-lidar metrics 
description)

X: selected variable, bold values: selected model

Vars R2 adj‑R2 pred‑R2 Cp RMSE AICc BIC CC Haad H20 H30 H80 H99 Hcv D10 D20 D30 D70

1 0.66 0.65 0.56 37.7 0.19441 28.629 27.312 X

2 0.79 0.77 0.53 20 0.16265 21.062 20.189 X X

3 0.84 0.82 0.74 3.9 0.12312 8.524 7.814 X X X

4 0.89 0.87 0.82 1.6 0.10209 0.995 0.122 X X X X
5 0.90 0.87 0.82 0 0.10318 4.08 2.664 X X X X X

6 0.90 0.87 0.79 1.5 0.10399 7.401 4.995 X X X X X X

7 0.90 0.87 0.77 3.2 0.10564 11.59 7.663 X X X X X X X

8 0.90 0.86 0.76 5.1 0.10835 16.841 10.755 X X X X X X X X

9 0.90 0.85 0.67 7 0.11127 22.837 13.819 X X X X X X X X X

10 0.90 0.84 0.54 9 0.11481 29.93 17.027 X X X X X X X X X X

Table 4 Candidate MLR Models for UAS-lidar estimated AGB prediction using Sentinel-2 metrics (see Table 2 for Sentinel-2 metrics 
description)

X: selected variable, bold values: selected model

Vars R2 adj‑R2 pred‑R2 Cp RMSE AICc BIC NDFI B02 NBRI B06 B11 B07 B05 B12 B04 LAI

1 46.3 46.3 45.2 268.2 0.66021 1493.583 1507.379 X

2 56.1 56.0 54.8 87.0 0.59750 1346.480 1364.864 X X

3 58.8 58.7 57.3 38.1 0.57911 1301.127 1324.092 X X X

4 59.7 59.5 58.1 23.2 0.57311 1286.692 1314.234 X X X X

5 65.3 65.1 62.8 13.8 0.56914 1277.416 1309.529 X X X X X

6 78.7 70.4 63.9 9.5 0.56615 1273.136 1309.914 X X X X X X
7 78.8 70.4 63.9 9.4 0.56671 1273.144 1314.382 X X X X X X X

8 78.9 70.5 63.8 9.4 0.56633 1273.184 1318.977 X X X X X X X X

9 79.0 70.5 63.7 9.0 0.56579 1272.816 1323.157 X X X X X X X X X

10 79.0 70.5 63.3 11.0 0.56617 1274.856 1329.741 X X X X X X X X X X

Table 5 Summaries of used models

Model R2 adj‑R2 Pred‑R2 RMSE (Mg/ha) rRMSE% Bias (Mg/ha)

Ground—UAS-lidar 0.90 0.87 0.81 17.70 14.38 3.79

UAS-lidar—Sentinel-2 0.79 0.70 0.64 27.97 28.89 3.94

Ground—Sentinel-2 0.62 0.55 0.46 38.10 37.54 6.19
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Fig. 3 Scatter plots showing estimation of above ground biomass: a Ground to UAS-lidar model and b UAS-lidar to Sentinel-2 model

Fig. 4 Biomass map for Miengwe forest at 20 m resolution
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bias of 3.94  Mg/ha was achieved (Table  4) and Fig.  3b. 
With a cross-validated predicted  R2 = 0.64, this demon-
strated potential for applying UAS-lidar sampling when 
estimating AGB using Sentinel-2 imagery, contrasting 
it with what was determined using usual direct ground 
sampling to Sentinel-2 metrics, explaining only 62% of 
the variance of AGB across the Miengwe forest and a 
cross-validated predicted  R2 = 0.46 Table  5 and Fig.  5). 
The UAS-lidar-Sentinel-2 model exhibited a bias of 
3.94 Mg/ha, which was only slightly higher than the bias 
of 3.79 Mg/ha in the Ground-UAS-lidar model, showing 
a good match between Sentinel-2 and UAS-lidar data 
and validating the use of UAS-lidar sampling.

Discussion
Accurately estimating AGB across extensive forest areas 
presents a significant challenge. Currently, AGB esti-
mates for the majority of the vegetation formations of the 
Miombo woodland remain unknown, and corresponding 
AGB maps for these areas are unavailable. The present 
study presents the approach for producing an AGB map 
(Fig.  3) for Miombo woodland through utilization of a 
two-phase UAS-lidar sampling methodology that lever-
ages the combined advantages of field plots, UAS-lidar 
technology, and Sentinel-2 imagery.

Choosing the optimal predictors for estimating the AGB
The process of variable selection was conducted in order 
to identify the optimal predictors for accurately estimat-
ing the AGB across all phases. The first phase involved 
selecting best predictors for estimating AGB using the 
relationship between field estimated AGB and UAS-lidar 
derived metrics. The second phase involved selecting 
best predictors for estimating AGB using the relation-
ship between UAS-lidar metrics estimated AGB and 
metrics derived from Sentinel-2 imagery. The third and 
final phase was to select the best Sentinel-2 metrics for 
predicting AGB using the relationship between AGB esti-
mated through field observations and Sentinel-2 image 
metrics.

In phase 1, the most important predicators for AGB 
were a set of metrics associated with height, density, 
and canopy cover. CC was the most important predic-
tor selected in all the 10 models for predicting AGB, fol-
lowed by Hcv and H80, which were selected in 7 of the 
10 models (Table  3). This accords with UAS-lidar met-
rics selected in previous studies elsewhere, for example, 
height percentiles [50–52], canopy cover [50, 51], canopy 
density [51] and coefficient of variation for heights [50, 
53, 54] for estimating AGB. Several previous studies 
[50, 55, 56] have demonstrated the utility of Hmean as 
a predictor for estimating aboveground biomass (AGB). 

Fig. 5 Scatter plots showing estimation of above ground biomass using ground to Sentinel-2 model
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However, in our study, it was seen that Hmean exhib-
ited a strong correlation with other predictors, and as a 
result, it was excluded from further consideration. The 
differences in the selected predictors can be attributed 
to variation in metric selection algorithms, modelling 
approach and variation in forest structure and composi-
tion [57–59].

For phase 2, the best Sentinel-2 image metrics predic-
tors for estimating AGB were vegetation indices (NDFI 
and NBRI), the red-edge band (B6), SWIR bands (B11 
and B12) and the biophysical variable LAI. The vegeta-
tion indices (NDFI and NBRI) and red-edge bands (B7 
and B6) were strong for models with fewer predictor 
variables (models 1–3, Table 4) because they are known 
to be good for separating vegetated from non-vegetated 
areas [39–41, 60], which is critical for AGB estimation. 
The red edge band lies at a specific wavelength that fluc-
tuates swiftly at the convergence of the near-infrared and 
red spectral bands [57]. This band is highly responsive to 
subtle changes in both the structure of the plant canopy 
and the chlorophyll content. Consequently, it is regarded 
as having the capacity to mitigate saturation effects and 
improve estimation of AGB, supporting works by other 
researchers (e.g. [61]). Furthermore, this supports an 
assertion by Adam et al. [62] that vegetation indices pos-
sess the ability to mitigate the effects of shadows and 
environmental factors on reflectance, thereby enhanc-
ing their correlation with AGB. The addition of the 
SWIR bands and the biophysical variable LAI resulted 
in improved models (models 5–10, Table 4). This finding 
is consistent with previous studies conducted by Dang 
et al. [63] in Yok Don National Park, Vietnam, Mauya and 
Madundo [38] in tropical montane forests of Tanzania, 
and Moradi et al. [64] in Zagros oak forests in Iran, who 
reported a high correlation between AGB and red, red-
edge, NIR and SWIR bands and vegetation indices that 
are derived from them.

B11, NDFI, and LAI were the selected predictors (Eq. 5) 
for directly calculating AGB using field-estimated AGB 
and Sentinel-2 measurements. This was consistent with 
the results of Muhe and Argaw [39], who employed Senti-
nel-2 metrics to estimate AGB in a tropical afro-montane 
forest in Ethiopia. However, unlike Muhe and Argaw [39], 
Sentinel-2-derived biophysical variables were observed 
to be significantly correlated with each other, and just 
LAI was utilized to develop the model as opposed to the 
three biophysical variables applied in Muhe and Argaw 
[39]. Sentinel-2 derived products (indices and biophysical 
factors) were added instead of raw Sentinel-2 bands only 
since they were shown to enhance AGB estimates in pre-
vious research [39, 65]. The NDFI was a strong predic-
tor in both models 2 and 3. This is not surprising because 
this index has been observed to be good at discriminating 

vegetated from non-vegetated areas [40, 41]. In addi-
tion to selecting a suitable regression model, the variable 
selection strategy approach was crucial to lowering the 
feature dimension, minimizing information redundancy, 
and enhancing modeling efficiency [47].

Identify the optimal prediction model for mapping AGB
After choosing the most important predictors for esti-
mating AGB at the two phases, best subsets regres-
sion [47], was used to come up with the best models for 
predicting AGB at all phases (Tables  3 and 4). Our cri-
teria were based on the model with the highest predic-
tion accuracy (pred-R2) as well as the lowest AICc, BIC 
and Mallows Cp, followed by the model with the fewest 
predictors, in that order. However, the most important 
consideration in selecting the optimal model was check-
ing to see whether it contains variables that are consist-
ent with ecological reasoning and have been shown to be 
strong AGB predictors in the literature [66]. The model 
included height metrics including the lower, middle, and 
upper percentiles, thereby offering data on the distribu-
tion of tree heights, as well as metrics for canopy cover 
and density, thus yielding valuable insights into canopy 
cover. Previous studies have shown the efficacy of using 
the complement of selected metrics in estimating AGB 
[50, 52, 53]. Our approach aligns with prior research that 
utilized the best subsets regression method, which was 
determined to be efficacious in identifying the optimal 
multiple linear regression (MLR) model [47, 52].

Model comparison
Model 1 (Eq.  3), in which we estimated the AGB using 
the relationship between field AGB estimates and UAS-
lidar metrics, yielded the best results overall (Adj-
R2 = 0.84, rRMSE = 14.7%). It outperformed models 2 and 
3, which predicted AGB using Sentinel-2 metrics. This 
is not surprising considering that lidar data, unlike opti-
cal images represents 3-dimensional vegetation struc-
ture [67, 68]. Model 1 also performed better than Mauya 
et al. [16], who estimated AGB using airborne-lidar in the 
Miombo woodlands of Tanzania (rRMSE 46.8%). Point 
cloud densities may have caused the variation in AGB 
estimate accuracy [16]. The airborne-lidar system utilized 
in Mauya et  al. [16] had an average point density of 1.8 
pts  m−2, whereas the UAS-lidar employed in this study 
had 300 pts  m−2. Since canopy height determination 
relies on the DTM, a greater point density will result in 
a better terrain surface model and more accurate canopy 
height determination [69–71]. Model 2 (Eq. 4) used the 
relationship between UAS-lidar estimated AGB from 
model 1 with Sentinel-2 image metrics to estimate the 
AGB for the entire study area, achieving (Adj-R2 = 0.7, 
rRMSE = 28.9%), which was obviously less precise than 
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model 1, but achieved better results than model 3, which 
used direct relationship between field estimated AGB 
and Sentinel-2 metrics to estimate AGB. These find-
ings confirms work by Wang et  al. [32], who employed 
UAS-lidar and Sentinel-2 imagery to estimate AGB in 
mangrove forests, northeastern Hainan island, China. 
The better performance of model 2 can be attributed to 
the large number of UAS-lidar estimated AGB reference 
points as well as the sampling strategy (Fig. 2), which pre-
cisely linked the UAS-lidar data and Sentinel-2 data to a 
common location on the ground.

UAS‑lidar as reference data
Previous research has shown that utilizing UAS imagery 
data to replace field data as reference data in a two-phase 
sampling approach is feasible [30, 32]. This was dem-
onstrated in this study when UAS-lidar estimated AGB 
was used as reference data to estimate AGB using Sen-
tinel-2 imagery for the entire study area, achieving (Adj-
R2 = 0.70), comparable to a study by Mauya et  al. [16] 
who used airborne-lidar to estimate AGB in the Miombo 
woodlands of Tanzania and achieved (Adj-R2 = 0.69). 
The positive relationship between UAS-lidar estimated 
AGB and Sentinel-2 image metrics exhibited in this study 
has benefits with synergistic potential to improve AGB 
estimation in the Miombo ecoregion. On the one hand, 
UAS-lidar offers the benefits of flexible deployment, 
affordability, and the capacity to capture precise vertical 
structure of vegetation, but it has drawbacks in terms of 
poor area coverage and massive processing and storage 
memory requirements [22, 72]. On the other hand, we 
have multi-spectral Sentinel-2 imagery, which is suitable 
for wall-to-wall coverage at 10  m resolution with NIR, 
red-edge, and SWIR bands, and a short revisit period of 
5 days that it is useful for AGB estimation but falls short 
of capturing the fine vertical vegetation structure details 
that are required for forest management at a local level 
[2, 21]. The findings of this study validate UAS data’s 
capacity to deliver comprehensive training and validation 
information, which would have otherwise taken a signifi-
cant amount of time and money utilizing field inventory 
processes. Furthermore, Sentinel-2-based AGB estima-
tion offers a viable technique for broadening the scope of 
assessments beyond UAS-surveyed areas, boosting the 
efficiency of AGB estimation and monitoring operations. 
Previous research conducted on the estimation of AGB 
in the Miombo forests using direct ground to medium 
resolution Landsat data has shown suboptimal model 
fit. Kashindye et  al. [14] found  R2 values ranging from 
0.47 to 0.65 in their research conducted in Babati dis-
trict, Tanzania. Their finding falls within a similar range 
as the study conducted by Halperin et al. [19] in Nyimba 
district, Zambia, where the  R2 ranged from 0.35 to 0.59 

and it agrees with what was found utilizing direct ground 
to Sentinel-2 estimation in the present study  (R2 = 0.62). 
These were all lower than the estimations derived in this 
work by ground-UAS-Lidar-Sentinel-2 two-phase sam-
pling  (R2 = 0.79). Hence, the integration of the two remote 
sensing data sources, as exemplified in this research, in 
conjunction with field techniques, enables the estima-
tion of AGB in the Miombo woodlands with comprehen-
sive accuracy that surpasses the individual capabilities of 
either data source, as evinced in prior studies [32, 73, 74].

Benefits of two phase‑sampling
Estimation of AGB across vast Miombo woodlands is 
often restricted by the difficulty in obtaining sufficient 
field measurements owing to a variety of reasons such as 
limited labour, limited financial resources, remoteness, 
and poor access to their location. Most Miombo wood-
lands AGB estimation studies are undertaken over small 
regions or at a local scale using either destructive sam-
pling [7, 8, 75] or remote sensing methods [13, 16] and 
a modest number of field samples. The two-phase sam-
pling approach has demonstrated how UAS-lidar could 
be used to upscale the field sampling to cover extensive 
areas, even with few field sample plots. From a mod-
est 54 field points in phase 1, we were able to upscale to 
700 UAS-lidar sample points in phase 2 to cover exten-
sive areas and easily relate between UAS-lidar estimated 
AGB and Sentinel-2 metrics to estimate AGB over an 
expanded area covered by the Sentinel-2 image. The 
benefits of using the upscaling UAS-Lidar-Sentinel-2 
imagery model (adj-R2 = 0.70) as opposed to the direct 
field Plots-Sentinel-2 imagery model (adj-R2 = 0.55) to 
estimate AGB have been demonstrated. The reason for 
an improved result from the UAS-lidar sampling tech-
nique could be because UAS-lidar covers a larger area 
with more points representing a wide range of verti-
cal and horizontal vegetation structural changes and 
accurately measures terrain morphology. Then, using 
the UAS-lidar estimated AGB as training samples, the 
model can fit AGB variations over the entire study area 
and generate high prediction accuracy. This assertion is 
supported by earlier studies that employed lidar as a sam-
pling tool for biomass estimation [25, 26, 32]. Though 
not investigated in this study, earlier studies have dem-
onstrated that UAS-lidar sampling reduces the required 
number of field samples and the overall sampling cost 
[30, 32]. Previous research, however, has shown that opti-
cal Sentinel-2 images may become saturated in densely 
forested regions. This saturation problem may negatively 
impact AGB estimations. Nonetheless, Wang et  al. [78] 
showed that adding Sentinel-1 synthetic aperture radar 
(SAR) data might assist reduce saturation and improve 
AGB estimates over wide regions. They did so by using 
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data from UAS-Lidar, Sentinel-1, and Sentinel-2 satellites 
to estimate AGB for regional coniferous forests in China. 
Similarly, Navarro et  al. [29] estimated AGB in Senega-
lese mangrove plantations using UAS-SfM point clouds, 
Sentinel-1, and Sentinel-2 data. The outcomes of this 
research and other related studies suggest that this tech-
nique can be used for improved AGB estimation for the 
entire Miombo ecoregion.

Arguably, the best approach could have been using 
most accurate UAS-lidar to estimate the AGB for esti-
mating the AGB for the whole study area. But UAS-lidar 
has limitations in terms of area covered per flight, storage 
space and processing speed [22, 23], which makes it cum-
bersome to cover extensive areas. In the present study, 
for example, the coverage area achieved during each 
flight utilizing our UAS was limited to 30–40 hectares. 
Moreover, the point clouds from flight (one UAS-lidar 
block) required 30–40 Giga Bites (GB) of storage space 
for processing. These factors provided a substantial chal-
lenge for our field laptop, which had just 150 GB of free 
space, restricting us to processing three blocks at a time 
and backing them up to an external drive before mov-
ing on to the next batch. With all of the aforementioned 
problems and what the literature has adequately stated 
[22, 23], it can be concluded that the utilization of UAS-
lidar technology is currently limited to small sites and 
can only serve as a sampling tool for larger sites.

Conclusion
A two-phase sampling approach was used to estimate 
total AGB in the Miengwe forest reserve in the Miombo 
woodlands of Zambia. The findings of this study show 
the potential of using UAS-lidar as a sampling tool for 
estimating and monitoring AGB and other forest struc-
tural attributes across vast regions using wall-to-wall 
Sentinel-2 imagery when field data are limited. The AGB 
estimates are of a precision that is suitable for local for-
est management and international reporting mecha-
nisms such as REDD + and MRV. The approach used in 
this study could be up-scaled to provide spatially consist-
ent, low cost and precise AGB estimates over extensive 
regions for supporting the long-term sustainability of 
carbon monitoring and reporting initiatives in Miombo 
woodlands. The continuous improvement and reduction 
in cost of UAS-lidar technology and the continuous avail-
ability of wall-to-wall optical imagery such as Sentinel-2 
assure viability and warrant further investigation and 
refinement of this approach for future wall-to-wall car-
bon monitoring and reporting programs in the Miombo 
ecoregion.
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