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Abstract 

Background  The process of optimizing in vitro shoot proliferation is a complicated task, as it is influenced by interac‑
tions of many factors as well as genotype. This study investigated the role of various concentrations of plant growth 
regulators (zeatin and gibberellic acid) in the successful in vitro shoot proliferation of three Punica granatum cultivars 
(‘Faroogh’, ‘Atabaki’ and ‘Shirineshahvar’). Also, the utility of five Machine Learning (ML) algorithms—Support Vec‑
tor Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGB), Ensemble Stacking Regression (ESR) 
and Elastic Net Multivariate Linear Regression (ENMLR)—as modeling tools were evaluated on in vitro multiplication 
of pomegranate. A new automatic hyperparameter optimization method named Adaptive Tree Pazen Estimator 
(ATPE) was developed to tune the hyperparameters. The performance of the models was evaluated and compared 
using statistical indicators (MAE, RMSE, RRMSE, MAPE, R and R2), while a specific Global Performance Indicator (GPI) 
was introduced to rank the models based on a single parameter. Moreover, Non‑dominated Sorting Genetic Algo‑
rithm‑II (NSGA‑II) was employed to optimize the selected prediction model.

Results  The results demonstrated that the ESR algorithm exhibited higher predictive accuracy in comparison 
to other ML algorithms. The ESR model was subsequently introduced for optimization by NSGA‑II. ESR-NSGA‑II 
revealed that the highest proliferation rate (3.47, 3.84, and 3.22), shoot length (2.74, 3.32, and 1.86 cm), leave number 
(18.18, 19.76, and 18.77), and explant survival (84.21%, 85.49%, and 56.39%) could be achieved with a medium con‑
taining 0.750, 0.654, and 0.705 mg/L zeatin, and 0.50, 0.329, and 0.347 mg/L gibberellic acid in the ‘Atabaki’, ‘Faroogh’, 
and ‘Shirineshahvar’ cultivars, respectively.

Conclusions  This study demonstrates that the ’Shirineshahvar’ cultivar exhibited lower shoot proliferation success 
compared to the other cultivars. The results indicated the good performance of ESR-NSGA-II in modeling and opti‑
mizing in vitro propagation. ESR-NSGA-II can be applied as an up-to-date and reliable computational tool for future 
studies in plant in vitro culture.
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Background
Over the past decade, the pomegranate tree (Punica gra-
natum L.) has attained significant attention as an eco-
nomically super fruit cultivated throughout the world, 
particularly in the arid and semiarid regions. This is 
due to its high medicinal effects, rich content of bioac-
tive compounds such as antioxidant polyphenol, and 
numerous health advantages [1, 2]. Traditional methods 
of propagating pomegranates include sexual propaga-
tion through seeds and vegetative methods. However, 
both conventional propagation methods may face several 
limitations that cause pomegranate propagation to be dif-
ficult. Vegetative methods are time-consuming, depend-
ent on seasonal production, and require intensive labor. 
Moreover, a large number of plants derived from cuttings 
often fail to survive [3]. On the other hand, sexual meth-
ods are challenging due to the high heterozygosis and 
a long juvenile period in plants. In addition, seedlings 
propagated by mentioned methods are strongly affected 
by pest infestation and diseases [4]. So, to achieve large-
scale pomegranate cultivation, in  vitro cell and organ 
culture techniques have been developed. Plant tissue cul-
ture methods offer a promising approach for the rapid 
production of true-to-type pomegranate plants and the 
biotechnological exploitation of pomegranate and other 
plant species with valuable properties [5]. Previous stud-
ies have attempted to apply in  vitro culture techniques 
to propagate different cultivars of pomegranate [6, 7]. 
However, the findings have clearly emphasized that 

pomegranate micropropagation is moderately difficult 
and can vary depending on the cultivar, probably due to 
genetic variations among them [6, 8]. Nevertheless, the 
successful propagation of economically important woody 
plant species like pomegranate still presents challenges, 
due to the emergence of some problems during the pro-
liferation stage including defoliation of explants, shoot tip 
necrosis, callusing, and hyperhydricity. These plant phys-
iological disorders arise from factors such as undesirable 
medium composition, unsuitable type and concentration 
of plant growth regulators (PGRs), microbial contami-
nation, phenolic browning caused by phenol secretion, 
ethylene accumulation, and tissue recalcitrance to prolif-
eration (Fig. 1) [8–10].

The successful in vitro propagation of fruit trees is an 
intricate process that is influenced by numerous factors, 
including culture conditions, plant materials, and the 
composition of culture media, particularly PGRs [11]. 
Extensive research has emphasized the crucial role of 
PGRs, such as cytokinins and auxins, and their different 
combinations with gibberellic acid (GA3) in promoting 
shoot regeneration in different pomegranate cultivars 
[7]. However, certain PGRs have shown varying levels 
of effectiveness in promoting proliferation. For example, 
6-γ,γ-dimethylallylaminopurina (2-iP) has been reported 
to have lower proliferative efficiency, while others like 
6-Benzylaminopurine (BAP), a commonly used cytokinin 
in tissue culture, can produce short and thin shoots, 
sometimes accompanied by excessive callus proliferation. 

Fig. 1  A schematic view of different factors that influence physiological disorders of in vitro plants
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Among the cytokinins, zeatin (ZT), a natural cytokinin, 
has been found to play a vital role in stimulating the 
maximum axillary buds and is applied at various con-
centrations either alone or in combination with other 
growth regulators. ZT is considered desirable for its sta-
bility in nutrient media, as it does not easily degrade or 
break down, thus providing sustained benefits for rapid 
and high rates of proliferation in most plant explants [12, 
13]. Although different growth regulators, including BAP, 
kinetin, thidiazuron (TDZ), GA3, and IBA, have been 
used in various combinations with or without ZT to pro-
mote the stimulation of axillary buds, GA3 is particularly 
known for inducing rapid shoot elongation, which is ben-
eficial for subsequent rooting. Considering the high cost 
of ZT, researchers are actively exploring the combined 
use of ZT with other cytokinins while maintaining the 
proliferative potential of shoot cultures [14]. However, it 
is important not to overlook the role of ZT in ensuring a 
good rate of proliferation [12]. Nonetheless, it is crucial 
to acknowledge that the responses of different pomegran-
ate cultivars to in vitro propagation are significantly vary 
depending on the interacting factors during the in vitro 
process, even in closely related species [15]. Therefore, 
to achieve optimal results, optimizing of specific in vitro 
culture condition is necessary for each cultivar.

In vitro micropropagation is a multifactorial and com-
plex biological process influenced by genotype/cultivar 
and various interacting factors that are crucial for opti-
mizing this process. Traditional statistical techniques 
encounter with significant challenges in deciphering the 
large datasets of biological interactions, especially when 
datasets are nonlinear, complex, noisy, and ambiguous 
in nature, as observed in in vitro culture processes [16]. 
To overcome these challenges, advanced computer-based 
technologies such as Machine Learning (ML) tools have 
emerged as capable solutions for analyzing and predict-
ing complex and multivariate datasets with high accu-
racy. ML approaches offer the advantage of autonomous 
learning and data transformation into useful information 
without being humanly programmed [17]. Recent stud-
ies have highlighted the superior predictive performance 
of MLs over traditional statistics in various in vitro cul-
ture systems, including optimizing culture conditions for 
shoot proliferation and rooting [10, 18, 19], androgenesis 
[20], seed germination [21], somatic embryogenesis [22], 
gene transformation [23], and enhancing of the second-
ary metabolite biosynthesis [24].

Among the various algorithm-based ML tools, ensem-
ble learning methods have gained significant attention 
due to their simplicity and their ability to create pow-
erful and robust predictions. These methods can be 
broadly categorized into bagging, boosting, and stacking/
blending. Notably, three prominent ensemble learning 

methods are Extreme Gradient Boosting (XGB), which 
utilizes the boosting concept, Random Forest (RF), based 
on bagging concept, and Ensemble Stacking Regression 
(ESR), based on stacking concept [25]. Support Vector 
Machine (SVM) is a robust ML method that has been 
widely recognized for its remarkable accuracy in plant 
in  vitro micropropagation, as evidenced by the findings 
of previous studies [19, 26]. One notable advantage of 
SVM is its ability to effectively handle high-dimensional 
data without encountering difficulties. Researchers have 
explored the potential of SVM to address the challenges 
by utilizing a small training dataset, further highlight-
ing the versatility and effectiveness of SVM in provid-
ing accurate and reliable predictions even with limited 
training data [27]. The Elastic Net Multivariate Linear 
Regression (ENMLR) was introduced by Zou and Hastie 
[28] as a robust approach for analyzing high-dimensional 
datasets. It was designed to overcome the limitations of 
the LASSO method. By incorporating regression tech-
niques, ENMLR effectively regularizes and selects impor-
tant predictor variables, thereby improving prediction 
accuracy of sparse modeling. This method has demon-
strated its value in addressing the challenges associated 
with multicollinearity among predictor variables [29]. 
Selecting the most appropriate ML method depends 
on the association between input and output variables, 
as well as the optimization of hyperparameters [19]. In 
addition, the combination of ML techniques with evo-
lutionary optimization algorithms confers significant 
advantages in predicting the critical factors that influence 
plant growth parameters in in vitro culture systems. One 
powerful algorithm in this regard is the non-dominated 
sorting genetic algorithm-II (NSGA-II), which is widely 
recognized as a search algorithm for optimizing multi-
objective problems. NSGA-II enables efficient solving 
and prediction of complex processes while providing a 
simplified interpretation of results, simultaneously [30]. 
In previous studies, the combining approach of ML with 
NSGA-II (ML-NSGA-II) has been acknowledged as a 
robust modeling technique for complex datasets, such 
as in optimizing the protocol of in vitro tissue culture on 
micropropagation phases [21, 31, 32] and in various plant 
science fields [30, 33].

Based on our current knowledge, the application of ML 
algorithms as a novel strategy for modeling and predict-
ing the in vitro shoot proliferation of pomegranate plants 
remains largely unexplored. The overall objective of this 
study is (i) to evaluate the effects of ZT at different con-
centrations and in combination with GA3 on optimizing 
the tissue culture protocol of three commercially signifi-
cant cultivars, namely ‘Faroogh’, ‘Atabaki’ and ‘Shirine-
shahvar’; (ii) to compare the potential robustness of the 
most commonly used ML algorithms, including SVR, 
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RF, XGB, ESR, and ENMLR, in terms of their ability to 
model and optimize of the in  vitro shoot proliferation 
process of pomegranate cultivars; and (iii) to employ the 
NSGA-II in order to predict the most effective level of 
PGRs for enhancing the proliferation of pomegranate. To 
our knowledge, this study is the first application of ML 
models for optimizing pomegranate tissue culture media. 
In addition, despite the potential advantages of ESR and 
ENMLR, no study has been conducted on applying these 
procedures in plant science.

Materials and methods
Plant material and explant preparation
The experiments were conducted using single nodal 
explants from three different pomegranate cultivars: 
‘Faroogh’, ‘Atabaki’ and ‘Shirineshahvar’. These explants 
were obtained from pomegranate plants grown in a 
greenhouse of College of Agriculture, Shiraz University, 
Iran. Explants were pre-sterilized using a liquid soap 
solution and rinsed several times with tap water. Subse-
quently, the explants were subjected to surface steriliza-
tion by immersing them in 70% aqueous ethanol for 30 s, 
followed by treatment with 5% sodium hypochlorite for 
10 min. Afterward, the explants were washed three times 
with sterilized distilled water under a laminar airflow 

chamber. Following the sterilization process, the stem 
explants were cut into 2–3 cm segments with lateral buds 
(Fig. 2a).

In vitro culture establishment
A preliminary test was carried out using different combi-
nations of culture media: MS (Murashige and Skoog) [34], 
VS (Van der Salm) [35], WPM (woody plant medium) 
[36], half-strength MS, and modified MS (mMS), PGRs 
(BAP and NAA), phenol-controlling compounds (polyvi-
nylpyrolidon, ascorbic acid, and activated charcoal), and 
silver nitrate (AgNO3) as ethylene inhibitor. The main 
experiment was set up based on the pre-test results, 
which indicated that the mMS medium supplemented 
with activated charcoal and AgNO3 in combination with 
either BAP or NAA was the best treatment for stimu-
lating new shoot regeneration. In this experiment, the 
explants (2–3 cm stem segments with lateral buds) were 
immediately cultured in the capped glass containers con-
taining 25 mL of mMS as a basal medium supplemented 
with 1  mg/L BAP, 0.5  mg/L NAA, 250  mg/L activated 
charcoal, 4.5  mg/L AgNO3, 0.7% agar, and 3% sucrose. 
To obtain the best hormonal composition at the proto-
col of pomegranate proliferation, the effects of different 
concentrations of GA3 (0, 0.1, 0.25, and 0.5 mg/L) and ZT 

Fig. 2  In vitro propagation of pomegranate cultivar ‘Faroogh’. a Single-node explants, b shoot proliferation in mMS medium supplemented 
with 0.750 mg/L zeatin and 0.500 mg/L gibberellic acid, c shoot proliferation in control medium, and (d) shoots propagated in mMS medium 
supplemented with 0.750 mg/L zeatin and 0.500 mg/L gibberellic acid
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(0, 0.25, 0.5, and 0.75 mg/L) on shoot proliferation were 
evaluated. Prior to autoclaving at 121 ℃ for 15 min, the 
pH of the medium was adjusted to 5.7–5.8. To mitigate 
tissue culture browning, the cultures were incubated in 
darkness for 7  days in a growth chamber at a tempera-
ture of 25 ± 2 ℃, and then transferred to a 16-h photoper-
iod with a light intensity of 80 µmol  m−2 s−1 and an 8-h 
dark period. After three subcultures on the same culture 
medium, various morphological responses of the plants 
were measured for each cultivar; including the prolif-
eration rate (PR; number of new shoots per explant), 
shoot length (SL; length of new regenerated shoots per 
explant in cm), leave number (LN; the number of leaves 
per explant), and explant survival (ES; the survival rate of 
explants in percent) (Fig. 3a).

Experimental design and data analysis
The proliferation experiment was carried out using a 
Completely Randomized Design (CRD) with a facto-
rial arrangement. Each set of treatments consisted of 20 
replicates, and subcultures were conducted over a three-
week period. The variances analysis was performed using 
statistical analysis software (version 9.4; SAS Institute, 
Cary, NC).

Description of ML models and optimization algorithm
Model development
In this study, we employed a range of ML algorithms to 
build computational models using the datasets as train-
ing and testing data. Specifically, we selected most widely 
used ML algorithms such as SVR, RF, XGB, ENMLR, and 
ESR to analyze the effect of the independent variables 
on in  vitro pomegranate plant growth responses. These 
five ML algorithms were applied to different pomegran-
ate cultivars (‘Faroogh’, ‘Atabaki’, and ‘Shirineshahvar’), 
with two independent variables consisting of various 
concentrations of GA3 and ZT as inputs, and four plant 
growth responses (PR, SL, LN, and ES) considered as 
outputs. Prior to applying ML modeling, data scaling was 
employed to standardize the training set for each cultivar. 
The features are transformed into a mean of zero and a 
variance of one by standardizing the data using the Eq. 1. 
Additionally, Principal Component Analysis (PCA) was 
used to identify any outlier data; however, no outlier data 
was found in analysis. To train and test all five models, 
the experimental data (960 data points) were randomly 
divided into 80% and 20% for training and testing sets, 
respectively.

(1)Xstd =
Xo − µ

σ

Fig. 3  The schematic diagram of the step-by-step procedure of the present research includes (A) pomegranate micropropagation, B modeling 
growth parameters based on K-fold cross-validation and ATPE algorithm using MLs, and (C) optimization process of growth parameters 
via non-dominated sorting genetic algorithm-II (NSGA-II)
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where Xstd is standardized value, Xo is original value, µ 
and σ are mean and standard deviation, respectively.

Hyper parameter optimization in ML models
In ML, the optimization and tuning of hyperparameters 
in advance play a crucial role in training ML models 
[37]. These hyperparameters have a significant impact 
on prediction accuracy and overall performance. Various 
strategies exist for hyperparameter optimization, includ-
ing babysitting, grid search, random search, and bayes-
ian optimization [38]. Among these strategies, Bayesian 
optimization is widely recognized for its generalizability 
across different test sets and its ability to achieve optimal 
hyperparameters with fewer iterations. In this study, a 
novel automatic tuning hyperparameter algorithm called 
Adaptive Three-structured Parzen Estimator (ATPE) was 
utilized in Bayesian optimization. This algorithm aimed 
to adjust the initial hyperparameters of five ML models 
to achieve optimized performance. It has not yet been 
applied to the optimization of in vitro PGRs. To improve 
the generalization performance of these models and 
avoid overfitting and underfitting, the study combined 
the ATPE method with K-fold cross-validation (K = 10). 
By employing the K-fold cross-validation method, all data 
points were involved in the training phase. The process 
is illustrated in Fig.  3b. The ML’s hyperparameters and 
their search space are shown in Table  1. The investiga-
tion was conducted with K values ranging from 1 to 10 
for K-fold cross-validation. Each K value represented the 
ATPE algorithm for optimal ML model selection and 
hyperparameter tuning. One fold was randomly selected 
as the validation set, while the remaining folds were used 
to train the model. By employing the K-fold cross-valida-
tion method, all data points were involved in the training 
process.

Support vector regression (SVR)
SVM is a supervised ML method that developed by 
Vapnik [39]. Initially developed for classification prob-
lems (Support Vector Classifier or SVC), SVM was later 
extended to handle regression problems (SVR) [40]. The 
fundamental concept behind SVR involves the use of a 
kernel function to map the original input data into a fea-
ture space. The SVM model estimates regression by uti-
lizing a series of kernel functions to convert the original 
input data from its lower-dimensional representation 
to a higher-dimensional feature space. Unlike Artificial 
Neural Network (ANN) models, which often encounter 
multiple local minima, SVM provides a unique solution 
results that are at the global optimum. The approximated 
function within the SVR algorithm can be expressed as 
follows:

where f (x) represents the estimated output value, ω 
denotes weight for the ith sample point, and b represents 
the bias. The values of ω and b are determined by mini-
mizing the regularized risk function, which is expressed 
as:

where C represents the penalty parameter that balances 
the trade-off between model complexity and training 
error, di denotes the desired value, n represents the total 
number of observations, and C 1

n

∑n
i=1 L

(
di, yi

)
 is the 

empirical error. The following equation is employed to 
determine the insensitive loss function ( lε):

where 12‖ω‖
2 represents the regularization term, while 

ɛ (epsilon) represents the insensitive tube. The approxi-
mated function in Eq.  (2) can be explicitly expressed by 
incorporating Lagrange multipliers and leveraging the 
optimality constraints. By introducing the Lagrange mul-
tipliers (ai) , the function is given by:

where K (xi, x
T
i ) represents the kernel function. The 

Radial Basis Function (RBF) non-linear kernel function 
plays a crucial role in mapping of input vectors nonlin-
early into a high-dimensional feature space. In this study, 
the RBF was utilized due to its superior performance in 
estimating the H estimations compared to other kernel 
functions.

Random forest (RF)
RF introduced for classification or regression predic-
tion algorithm introduced by Breiman [41]. It solves 
the performance limitations of decision trees and 
exhibits favorable characteristics such as robustness to 
noise and outliers, scalability, and parallelism in high-
dimensional data classification tasks. RF overcomes the 
"dimensionality disaster" often encountered in big data 
scenarios that often other models fail to perform effec-
tively. Additionally, RF demonstrates comparable error 
rates to other methods across various learning tasks 

(2)f (x) = ωTx + bwithωǫx, bǫR

(3)R(C) = C
1

n

n∑

i=1

L
(
di, yi

)
+

1

2
�ω�2

(4)lε
(
d, y

)
=

∣∣d − y
∣∣− ε

∣∣d − y
∣∣ ≥ εor0otherwise

(5)f
(
x, ai, a

∗
i

)
=

n∑

i=1

(
ai − a∗i

)
K (xi, x

T
i )+ b

(6)Krbf (xi, x
T
i ) = exp

[
−
(
xi − xTi

)2

2σ 2

]
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and exhibits a reduced tendency to overfitting. Nota-
bly, RF is a well-known bagging algorithm that excels in 
regression problems [38]. RF algorithm combines deci-
sion tree-based techniques with ensemble methods, 
effectively leveraging their synergistic benefits, making 
it a suitable choice as one of the foundational models 
in the ensemble model employed in this study. The for-
mula of RF is as follows:

(7)îy(xi)=
1

K

K∑

k=1

TD(θk)(xi), k = {1, 2, . . . ,K }

where xi refers to the value of the sample proportion, 
D(θk) denotes a different bootstrapped sample, and K is 
tree number ( TD(θK )).

eXtreme Gradient Boosting (XGB)
XGB is an advanced supervised learning algorithm 
proposed by Chen and Guestrin [42]. This method is 
based on the Gradient-Boosted Decision Tree (GBDT) 
approach. XGB aims to create a “strong” learner by com-
bining predictions from a collection of “weak” learners 
using additive training strategies. This algorithm incor-
porates a second-order Taylor expansion of the loss 
function and a regular term, which effectively mitigates 

Table 1  Hyperparameter tuning of the constructed models using ATPE

SVR Support Vector Regression, RF Random Forest, XGB Extreme Gradient Boosting, ENMLR Elastic Net Multivariate Linear Regression, ESR Ensemble Stacking 
Regression

Model Hyperparameters Search Space Type Description

XGB n_estimators [10, 1500] Integer The quantity of trees or boosting rounds that need to be constructed. Overfitting 
may result from larger values

learning_rate [0.001, 0.3] Continues Shrinking steps in order to avoid overfitting. Lower values could enhance the perfor‑
mance of the model but require more boosting rounds

gamma [0, 10] Continues Minimum loss reduction to create a new tree split. regulates regularization on nodes 
in the tree

max_depth [1, 20] Integer The maximum depth of a tree that restricts the quantity of nodes. aids in managing 
model complexity

subsample [0.001, 1] Continues Percentage of training data utilized in each round of boosting. adds randomization 
to stop overfitting

colsample_bytree [0.01, 1] Continues Percentage of features utilized in every round of boosting. reduces overfitting 
by introducing diversity

min_child_weight [1, 10] Continues The lowest total weight that a child needs in an instance. governs the size of the leaf 
nodes, affecting the robustness of the model

reg_lambda [0, 5] Continues L2 regularization term. penalizes big weights to help prevent overfitting

reg_alpha [0, 5] Continues L1 regularization term. increases the feature matrix’s sparsity, which reduces overfit‑
ting

RF n_estimators [10,1500] Integer The number of trees in the forest

max_features (0, 1] Continues The maximum number of features considered for splitting a node. regulates 
how diverse each individual trees is in the forest

max_depth [2, 50] Integer The maximum depth of each tree in the forest. It limits the growth of trees and helps 
prevent overfitting

min_samples_split [1, 100] Integer The minimum number of samples needed to divide an internal node. It affects 
the trees’ depth and can stop overfitting

min_samples_leaf [1, 15] Integer The minimum number of samples needed for a leaf node. It can inhibit overfitting 
and has an impact on the trees’ granularity

min_weight_fraction_leaf [0, 0.5] Continues The minimum weighted proportion of the total weights necessary for a leaf node 
to exist. It permits the dataset’s occurrences to be weighted differently

max_leaf_nodes [2,200] Integer The maximum number of leaf nodes in each tree

ENMLR alpha [0, 5] Continues Determines the strength of regularization. A higher alpha lead to stronger regulariza‑
tion, helping prevent overfitting by penalizing large coefficients

L1-ratio [0, 1] Continues Controls the balance between L1 and L2 regularization

SVR Gamma (0, 10] Continues Controls the influence of each training point; higher values lead to a more complex 
decision boundary

C (0, 50] Continues Regularization parameter, balancing the trade-off between smooth decision bound‑
ary and classifying training points correctly

epsilon (0, 5] Continues Defines the margin of tolerance for regression errors
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overfitting and expedites convergence. The XGB algo-
rithm enhances prediction accuracy by iteratively con-
structing new decision trees with continuously diminish 
the residuals between predicted and observed values. 
XGB stands out as a prominent open-source boosting 
tree toolkit, offering remarkable speed and performance 
advantages over other gradient-boosting methods. It is 
more than 10 times faster than common toolkits, making 
it the preferred selection for massively parallel boosting 
tree tasks. XGB prediction for i instance is:

where fk(xi) represents the learner at step d , the predic-
tions at steps d and d − 1 are denoted as f (d)i  and f (d−1)

i  , 
respectively and xi represents the input variable.

In order to prevent the problem of overfitting without 
sacrificing the computational speed of the model, XGB 
employs an analytical expression to evaluate the “good-
ness” of the model in relation to the original function. 
This analytical formula, denoted as Eq. (2), is created by 
XGB to provide an estimate of the model’s “goodness” 
while also reducing the computational speed associated 
with mathematical computations.

where l is the loss function, n indicates the observation 
number used, and σ denotes the regularization term as 
represented in Eq. (3).

where ω denote the vector of scores associated with 
leaves, � represents the regularization parameter, and γ 
indicates the minimum loss required for further parti-
tioning of a leaf node.

Elastic net multivariate linear regression (ENMLR)
ENMLR is a regression technique that combines two 
effective shrinkage regression methods: Ridge regression 
(L2 penalty) and LASSO regression (L1 penalty). Ridge 
regression is employed to address high-multicollinearity 
problems, while LASSO regression focuses on feature 
selection in regression coefficients. The elastic net esti-
mator in ENMLR benefits from ridge regularization, 
which allows for better handling of correlations between 
predictors compared to LASSO regression. Simultane-
ously, the L1 regularization in elastic net promotes spar-
sity, facilitating the identification of essential features. 
However, similar to LASSO regression, the bias issue is 

(8)f
(d)
i =

d∑

k=1

fk(xi) = f
(d−1)
i fd(xi)

(9)Objective(d) =

n∑

k=1

l
(
yi, yi

)
+

d∑

k=1

σ(f i)

(10)σ
(
f
)
= γT + 0.5��ω�2

still present in ENMLR. The elastic net estimator mini-
mizes the following expression:

where β is the regression coefficients, βj is the regres-
sion coefficient of the jth predictor variable, �1 and �2 are 
the tuning parameters coming from Lasso and Ridge, 
respectively and positive numeric values ( �1 , �2> 0). λ is 
a penalty parameter and has the effect of a compression 
variable, and its numerical value indicates the severity of 
punishment.

Ensemble stacking regression (ESR)
The stacking regressor, initially introduced by Wolpert 
[43], is an effective ensemble learning technique that 
combines multiple regression models to improve pre-
diction accuracy. In this approach, a meta-regressor is 
trained to aggregate the predictions of the base regres-
sors, thereby leveraging the collective knowledge of the 
individual models Li et  al. [44]. Different techniques, 
such as stacking, weighted averaging, and direct averag-
ing, can be employed to create ensemble regressors by 
integrating the predictions of the base models [45]. The 
choice of the specific technique depends on finding an 
optimal balance for combining the predictions, and the 
meta-regressor can be any type of regression models 
[46]. To implement stacking regression, the new meta 
feature sets generated by each base regressor are merged 
to form the meta training set, and the new target sets 
produced by each base regressor are combined to cre-
ate the meta testing set. The final predictions are then 
generated by the meta-regressor, which is trained using 
the new meta training set Wu et  al. [25]. The stacking 
regression methodology has gained popularity in various 
domains, including molecular quantum characteristics 
[44], daily reference evapotranspiration estimation [25], 
genome prediction [47], and stock portfolio prediction 
[48]. In this particular study, XGB, SVR, and ENMLR 
models were utilized as the base regressors, while RF was 
employed as the meta-regressor.

Performance evaluation
In order to evaluate and compare the accuracy and 
performance of the developed ML algorithms in pre-
dicting the proliferation of pomegranate, five popular 
statistical quantitative indicators, namely the correla-
tion coefficient (R), Coefficient of Determination (R2), 
Root Mean Square Error (RMSE), Relative Root Mean 
Squared Error (RRMSE), Mean Absolute Error (MAE), 
and Mean Absolute Percentage Error (MAPE), were 

(11)EN (β) =

n∑

i=1

(
yi − xTi β

)2
+ �1

p∑

j=1

∣∣βj
∣∣+ �2

p∑

j=1

∣∣βj
∣∣2
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utilized. These quantitative indicators can be found in 
Table 2.

Global performance indicator (GPI)
In order to enhance the accuracy and reliability of sta-
tistical analysis and to mitigate any potential discrep-
ancies, we employed the GPI method. Despotovic 
et  al. [49] were the pioneers in introducing GPI as a 
novel aspect. GPI is a remarkable technique that com-
bines the effects of multiple statistical indicators. Dur-
ing the process, all statistical indicators are scaled to 
a range between 0 and 1. Subsequently, the appropri-
ate median value of all models is subtracted from each 
scaled value of a statistical indicator. These differences 
are then aggregated using appropriate weighting factors 
(a weight of -1 for R and R2 and a weight of 1 for all 
other statistical indicators). The model with higher GPI 
values is considered the best. The following equation 
represents the GPI model:

(12)GPIi =

5∑

j=1

αj

(
MS

j − ISij

)

where GPIi represents global performance indicator for 
model i , MS

j  is median of scaled values of indicator j , ISij is 
the scaled value of indicator j for model i , αj equals -1 for 
both R and R2 and 1 for other performance criteria.

Optimization of ML model via non‑dominated sorting 
genetic algorithm‑II (NSGA‑II)
The best ML algorithm as the fitness function was intro-
duced to the Non-dominating Sorting Genetic Algorithm 
(NSGA-II) as optimization algorithm in order to find the 
optimal combination of inputs (GA3 and ZT) for achiev-
ing maximal growth responses in three cultivars (Fig. 3c). 
Based on natural selection, this study employed several 
parameters to ensure the effectiveness of the NSGA-II 
optimization process. The first step in the NSGA-II pro-
cess involved the creation of an initial population, where 
all the chromosomes were constructed. Then the tour-
nament selection method was adopted to select an elite 
population for crossover. A binary crossover function, 
a well-known crossover technique, was considered to 
generate the next generation of chromosomes. To intro-
duce diversity into the population and prevent conver-
gence to local optima, a mutation operator was applied. 
It introduced random variations into the chromosomes, 
reducing the possibility of having similar chromosomes 

Table 2  Description of statistical indicators for the constructed models evaluation

Where n is total measurement, Oi and Pi , are observed and predicted values, O and P stand for mean of observed and predicted values, respectively

Performance criteria Formula Description

Correlation coefficient
R =

∑
n

i=1

(
Oi−O

)(
Pi−P

)
√∑

n

i=1

(
Oi−O

)2
√∑

n

i=1

(
Pi−P

)2
R is a statistical measure that quantifies the degree of correlation 
between observed and predicted values. The model’s predictability 
improves as it approaches 1

Coefficient of determination (7)
R
2 =

(
∑

n

i=1

(
Oi−O

)(
Pi−P

)
√∑

n

i=1

(
Oi−O

)2(
Pi−P

)2

)2 R2 represents the proportion of the variance in the observed data 
that is explained by the regression model. As R2 approaches 1, the model’s 
ability to account for the variability in the data improves

Root mean squared error
RMSE =

(
1

n

∑
n

i=1
(Oi − Pi)

2

)0.5 RMSE used to describe the average squared difference 
between the measured and predicted values. It determines the concen‑
tration of data around the optimal fit line
The lower, the better model’s performance

Mean absolute error MAE = 1

n

∑
n

i=1
|Oi − Pi | MAE used to describe the sum of the absolute differences 

between the measured and predicted values. It does not punish high 
mistakes that result from outliers. It furthermore offers a reliable gauge 
of the model’s accuracy
The lower, the better model’s performance

Relative root mean squared error
RRMSE(%) = 100

O

(
1

n

∑
n

i=1
(Oi − Pi)

2

)0.5 RRMSE is the RMSE, which normalized by mean of observations
model performance is considered as:
excellent for RRMSE < 10%
good for 10% < RRMSE < 20%

fair for 20% < RRMSE < 30%

poor for RRMSE > 30%

Mean absolute percentage error
MAPE(%) = 100

n

∑
n

i=1

(
|Oi−Pi |

Pi

)
MAPE used to describe the absolute inaccuracy of the observed and pre‑
dicted variables in percentage
model performance is considered as:
excellent for MAP E < 10%
good for 10% < MAPE < 20%

acceptable for 20% < MAPE < 50%

inaccurate for MAP E > 50%
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within the population [50]. The non-dominated sort-
ing concept was utilized to derive non-dominated solu-
tions, with each non-dominated front assigned a rank 
or level date. The non-dominated front with the highest 
rank is removed, and the remaining solutions were used 
to generate the parent population for the next genera-
tion. Crowding distance was employed to estimate the 
objective function, and solutions categorized by crowd-
ing distance in descending order based on the lowest 
density of solutions with less priority. In order to achieve 
an improved fitness function during the optimization 
process, the optimal values for crucial operators such as 
the crossover rate, maximum generation, initial popula-
tion, and mutation rate were regulated through trial and 
error. In the current study, the crossover rate was set at 
90% with a distribution index of 15, the maximum gen-
eration was set to 200, the initial population size was 100, 
and a distribution index of 20 was used for the mutation 
operator which was real-valued polynomial mutation 
(real_pm) (Fig. 3c).

All mathematical codes for implementing and evaluat-
ing ESR, RF, SVR, and ENMLR models were performed 
using the Python library Scikit-learn version 1.3.2 [51]. 
Additionally, XGB was performed using the XGBoost 
library version 2.0.3 [42]. The tuning of hyperparam-
eters for each of the five models (SVR, RF, XGB, ESR, 
and ENMLR) was conducted using the Hyperopt library 
version 0.2.7 [52], and the Pymoo library version 0.6.1.1 
[53], specifically applied for multi-objective optimization 
(NSGA-II algorithm).

Results
The effect of PGRs on in vitro shoot proliferation 
and development of pomegranate
According to data analysis using factorial ANOVA, the 
growth responses of pomegranate, including LN, PR, ES, 
and SL were found to be significantly influenced by dif-
ferent concentrations and combinations of PGRs (GA3 
and ZT), as well as the cultivar type. The detailed results 
can be found in Table 3.

The addition of ZT to the growth medium, particularly 
at a concentration of 0.75  mg/L, resulted in improved 
shoot regeneration favorable vegetative growth char-
acteristics per explant when compared to the control 
medium. Based on the results of Table  3, although the 
positive changes in the growth parameters were pri-
marily attributed to increasing the concentrations of 
PGRs and the interaction between them, the combina-
tion of the highest concentration of ZT and GA3 treat-
ment was the most effective treatment in promoting 
overall growth response. Specifically, when the media 
was augmented with 0.50 mg/L GA3 and 0.75 mg/L ZT 
the average growth response was significantly enhanced 

(Table  3). It is important to note that the observed 
changes in the growth parameters were different based 
on the cultivar type. Among the three cultivars studied, 
the ‘Faroogh’ cultivar exhibited the maximum values of 
LN (23.62), and PR (4). Similarly, the ‘Atabaki’ cultivar 
showed the highest growth responses in SL (6.75  cm) 
when treated with 0.50  mg/L GA3 and 0.75  mg/L ZT. 
Regarding ES, both ‘Faroogh’ and ‘Atabaki’ cultivars 
demonstrated a maximum value of ES which was 100% 
when exposed to three treatments involving the interac-
tion of 0.25, 0.50, 0.75 mg/L ZT with 0.50 mg/L GA3. In 
contrast, the ‘Shirineshahvar’ cultivar exhibited lower ES 
rates than other cultivars. For this particular cultivar, the 
same treatment interaction as mentioned earlier led to 
the highest values of LN (18.94), PR (3.56), ES (61.87%), 
and SL (1.95 cm). Generally, the highest and lowest over-
all growth responses were achieved in the ‘Faroogh’ and 
‘Shirineshahvar’, respectively (Table 3).

Comparison of ML performance
In the present study, we utilized the advantages of five 
ML algorithms namely RF, XGB, SVR, ESR, and ENMLR 
to build the mathematical models. The scatter plots in 
Figs.  5, 6 and 7 illustrate the prediction results of these 
models, while the corresponding prediction evaluation 
indexes are shown in Tables 4, 5, and 6. Violin plots of the 
performance metrics are presented in Fig. 4. When com-
paring the ENMLR to other ML algorithms for all param-
eters (outputs), both the training and test subset R-values, 
which measure the correlation between observed (exper-
imental) and predicted values of ML algorithms, were 
lower. This indicates that all five ML models had a good 
performance and predictability. However, the ESR with 
higher R and R2 and smaller RRMSE, RMSE, MAE, and 
MAPE values in both training and testing sets was the 
best algorithm in comparison to four other models for 
all growth parameters (Tables 4, 5 and 6). In this regard, 
the results derived by comparing the statistical indicators 
of the different models on the measured growth param-
eters revealed that the values of the ESR was very close 
to the other ML algorithms in all three cultivars. Moreo-
ver, the impact of statistical quantitative indicators was 
not clearly distinguishable and different statistical indi-
cator values are in favor for different models; therefore, 
to address this vagueness, the GPI for the test dataset of 
overall ML logarithms was calculated and presented in 
Table  7. The GPI estimation ranked the ESR model as 
the top performer among all other models. Calculated 
GPI revealed the order of ESR vs. XGB, RF, SVR, and 
ENMLR models were: 1.829 vs. − 1.674, 0.647, 0, − 4.171, 
for LN of ‘Atabaki’ cultivar; 1.312 vs. −  2.562, 0, 0.525, 
and − 4.688 for LN of ‘Faroogh’ cultivar; 0.089, − 3.040, 
0.032, 0.004, and −  5.911 for LN of ‘Shirineshahvar’ 
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Table 3  Effect of different concentrations of PGRs on in vitro growth parameters of pomegranate cultivars

Cultivar PGRs (mg/L) LN PR ES (%) SL (cm)

GA3 ZT

‘Atabaki’ 0 0 15.75 ± 0.775yz 2.69 ± 0.479k−l 77.50 ± 2.582g 1.72 ± 0.075t−v

0 0.25 16.44 ± 0.814u−x 3.19 ± 0.403f−i 78.44 ± 2.394fg 1.86 ± 0.143t−r

0 0.50 16.56 ± 0.814s−x 3 ± 0.365i−l 81.56 ± 7.465d−f 2.09 ± 0.128op

0 0.75 16.94 ± 0.854q−u 3.12 ± 0.341g−j 82.5 ± 6.831c−e 2.21 ± 0.112no

0.1 0 16.06 ± 1.181w−z 2.69 ± 0.479l−n 77.5 ± 2.582g 1.73 ± 0.141tu

0.1 0.25 16.50 ± 1.033t−x 3.06 ± 0.574h−k 78.75 ± 2.236e−g 2.05 ± 0.187o−q

0.1 0.50 16.87 ± 0.885q−u 3.12 ± 0.342g−j 83.12 ± 8.539cd 2.37 ± 0.057mn

0.1 0.75 17.19 ± 0.911p−s 3.19 ± 0.544f−i 85 ± 8.944b−d 2.51 ± 0.043lm

0.25 0 15.44 ± 1.153z 2.62 ± 0.500mn 78.12 ± 2.500fg 2.00 ± 0.229p−r

0.25 0.25 18.06 ± 1.181j−n 2.81 ± 0.403j−n 82.50 ± 6.831c−e 2.62 ± 0.155kl

0.25 0.50 17.12 ± 0.885p−t 2.87 ± 0.342i−n 83.75 ± 8.062cd 2.78 ± 0.113i−k

0.25 0.75 17.12 ± 0.957p−t 3.19 ± 0.403f−i 86.25 ± 9.574bc 2.90 ± 0.125h−j

0.50 0 16.06 ± 1.181w−z 2.94 ± 0.680i−m 77.19 ± 2.562g 2.97 ± 0.388h

0.50 0.25 16.75 ± 0.775r−v 3.12 ± 0.342g−j 100 ± 0.000a 4.05 ± 0.616d

0.50 0.50 16.87 ± 1.025q−u 3.56 ± 0.512b−e 100 ± 0.000a 3.99 ± 0.532d

0.50 0.75 18.25 ± 1.183i−m 3.56 ± 0.512b−e 100 ± 0.000a 6.75 ± 0.491a

‘Faroogh’ 0 0 19.62 ± 0.619de 3.56 ± 0.629b−e 82.50 ± 5.773c−e 2.52 ± 0.192lm

0 0.25 19.62 ± 0.619de 3.75 ± 0.447a−d 83.12 ± 4.787cd 2.85 ± 0.113h−j

0 0.50 19.62 ± 0.619de 3.81 ± 0.403a−c 83.12 ± 4.787cd 2.78 ± 0.127i−k

0 0.75 19.69 ± 0.479de 3.81 ± 0.403a−c 83.75 ± 5.000cd 2.75 ± 0.169jk

0.1 0 19.56 ± 0.629d−f 3.75 ± 0.447a−d 83.75 ± 5.000cd 2.79 ± 0.196ij

0.1 0.25 19.62 ± 0.619de 3.75 ± 0.447a−d 86.25 ± 6.191bc 2.92 ± 0.135hi

0.1 0.50 19.94 ± 0.772d 3.81 ± 0.403a−c 84.37 ± 5.123cd 2.86 ± 0.135h−j

0.1 0.75 19.62 ± 0.619de 3.81 ± 0.403a−c 83.75 ± 5.000cd 2.79 ± 0.196ij

0.25 0 19.69 ± 0.602de 3.75 ± 0.447a−d 83.75 ± 5.000cd 2.84 ± 0.143h−j

0.25 0.25 19.19 ± 0.834e−g 3.81 ± 0.403a−d 83.75 ± 5.000cd 3.15 ± 0.125g

0.25 0.50 20.06 ± 0.772d 3.87 ± 0.341ab 83.75 ± 5.000cd 3.36 ± 0.124f

0.25 0.75 20 ± 0.730d 3.87 ± 0.342ab 88.75 ± 7.188b 3.54 ± 0.082e

0.50 0 19.75 ± 0.447de 3.69 ± 0.479a−e 84.37 ± 5.124cd 2.80 ± 0.087ij

0.50 0.25 22.06 ± 1.569c 3.69 ± 0.479a−e 100 ± 0.000a 4.40 ± 0.647c

0.50 0.50 22.94 ± 1.769b 3.75 ± 0.447a−d 100 ± 0.000a 4.55 ± 0.544bc

0.50 0.75 23.62 ± 1.670a 4.00 ± 0.000a 100 ± 0.000a 4.62 ± 0.506b

‘Shirineshahvar’ 0 0 11.31 ± 1.138A 2.31 ± 0.704m 43.12 ± 4.787p 1.26 ± 0.169z

0 0.25 15.94 ± 0.929x−z 3.12 ± 0.342g−j 47.50 ± 5.773o 1.41 ± 0.063yz

0 0.50 17.37 ± 0.619o−r 3.5 ± 0.516c−f 50 ± 6.324l−o 1.54 ± 0.069w−y

0 0.75 18.37 ± 0.619h−m 3.44 ± 0.512d−g 51.87 ± 4.031k−n 1.55 ± 0.079v−y

0.1 0 16.12 ± 1.025v−y 3.44 ± 0.512d−g 48.75 ± 6.191no 1.42 ± 0.082yz

0.1 0.25 17.75 ± 0.774m−p 3.44 ± 0.512d−g 52.50 ± 4.472k−n 1.51 ± 0.051xy

0.1 0.50 18.00 ± 0.816k−o 3.50 ± 0.516c−f 52.50 ± 4.472k−n 1.64 ± 0.040u−x

0.1 0.75 18.69 ± 0.793g−j 3.50 ± 0.516c−f 53.12 ± 4.787j−m 1.69 ± 0.036u−w

0.25 0 16.69 ± 1.138s−w 3.44 ± 0.512d−g 49.37 ± 6.801m−o 1.52 ± 0.055xy

0.25 0.25 17.94 ± 0.772l−o 3.44 ± 0.512d−g 53.75 ± 6.191j−l 1.71 ± 0.058t−v

0.25 0.50 18.19 ± 0.655j−m 3.56 ± 0.512b−e 55.00 ± 5.164jk 1.79 ± 0.075s−u

0.25 0.75 18.87 ± 0.806g−i 3.56 ± 0.512b−e 55.00 ± 5.164jk 1.90 ± 0.049s−r

0.50 0 17.44 ± 1.093n−q 3.37 ± 0.500e−h 46.87 ± 4.787op 1.53 ± 0.058w−y

0.50 0.25 18.62 ± 0.957g−k 3.50 ± 0.516c−f 56.87 ± 7.932ij 1.79 ± 0.129s−u

0.50 0.50 18.50 ± 1.155h−l 3.50 ± 0.516c−f 59.37 ± 6.801hi 1.95 ± 0.078s−r

0.50 0.75 18.94 ± 0.772f−h 3.56 ± 0.512b−e 61.87 ± 7.500h 1.91 ± 0.093s−r
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cultivar; 1.383 vs 0.980, 0.738, − 2.326, and − 3.801, for 
PR of ‘Atabaki’ cultivar; 1.182 vs. − 1.199, 0.567, − 2.121, 
and −  2.104 for PR of ‘Faroogh’ cultivar; 1.911, 0.574, 
−  2.616, 0.255, and −  3.807 for PR of ‘Shirineshah-
var’ cultivar; 0.933 vs. − 4.870, 0.573, 0, − 4.814, for ES 
of ‘Atabaki’ cultivar; 0.748 vs. −  3.813, 0.483, 0.085, and 
− 5.240 for ES of ‘Faroogh’ cultivar; 0.973, 0.818, − 1.501, 
− 2.966, and − 2.507 for ES of ‘Shirineshahvar’ cultivar; 
0.180 vs. −  5.158, 0.108, 0.035, −  5.782, for SL of ‘Ata-
baki’ cultivar; 0.619 vs. − 4.058, 0.092, 0.405, and − 5.380 
for SL of ‘Faroogh’ cultivar; 0.513, − 0.913, 0.193, 0.150, 
and − 5.487 for SL of ‘Shirineshahvar’ cultivar (Table 7). 
Additionally, the regression lines demonstrated the good 
fit correlation between the observed and predicted data 
for all growth parameters during both the training and 
testing phases of the ML models (Figs. 5, 6, and 7).

Optimization process via non‑dominated sorting genetic 
algorithm‑II
The NSGA-II algorithm, as multi-objective evolutionary 
optimization, was linked to the ESR model which was 
identified as the most accurate algorithm. ESR-NSGA-
II algorithm has successfully determined the optimal 
values for four growth parameters (LN, PR, ES, and SL) 
in response to different concentrations of PGRs. The 
results of the ESR-NSGA-II algorithm are summarized in 
Table 8. In the ‘Atabaki’ cultivar, the ESR-NSGA-II algo-
rithm identified that the culture medium supplemented 
with 0.750 mg/L ZT along with, 0.50 mg/L GA3, resulted 
in the most significant improvements in growth param-
eters. Specifically, this combination treatment displayed 
the best outputs with 18.18 LN, 3.47 PR, 84.21% ES, and 
2.74  cm SL. For the ‘Faroogh’ cultivar, the optimization 
algorithm determined that the culture medium sup-
plemented with 0.654  mg/L ZT along with, 0.329  mg/L 
GA3 were the optimal input variables to achieve the best 
outputs with 19.76 LN, 3.84 PR, 85.49% ES, and 3.32 cm 
SL. In the ‘Shirineshahvar’ cultivar, the culture medium 
supplemented with 0.705  mg/L ZT, combined with 
0.347  mg/L GA3, were the significant input variables to 
achieve the best outputs with 18.77 LN, 3.22 PR, 56.39% 
ES, and 1.86 cm SL (Table 8).

Discussion
The success of in  vitro plant tissue culture strongly 
depends on several external and internal factors, includ-
ing environmental conditions, PGRs types, culture 
medium composition, and gelling agents, and genotype 
[18]. The application of PGRs, particularly cytokinin 
and auxin, are commonly used to optimize protocols for 
in  vitro tissue culture and shoot regeneration [17, 54, 
55]. Auxin increases the susceptibility of apical meristem 
cells that are less mitotically active cells to cytokinin [56], 
while cytokinin promotes cell proliferation, including cell 
division and shoot elongation [10]. In the case of pome-
granate, which is a recalcitrant woody plant for in vitro 
culture, the optimization of type and concentration of 
PGRs, as well as their interactions, play a crucial role [8, 
57–59].

In previous studies to efficiently multiply various 
pomegranate species, it has been reported that integrat-
ing BAP with or without NAA at specific concentrations 
ranging from 0.4 to 2 mg/L for BAP and 0.5 to 1 mg/L for 
NAA, has proven effective [57]. However, it is important 
to note that the results of these studies are often specific 
to particular cultivars and cannot be universally applied. 
The optimization of PGR concentrations is necessary 
due to genetic factors and complexities associated with 
the oxidation of phenols in explants and culture media, 
which can lead to tissue death. Furthermore, pomegran-
ate tissue culture protocols are highly dependent on the 
cultivar and may differ due to variations in uptake rates, 
translocation rates, or metabolic processes within the 
meristematic regions of the plant. Additionally, cyto-
kinin metabolism plays a crucial role, as cytokinins 
may undergo degradation or conjugation with sugars or 
amino acids, leading to the formation of biologically inert 
compounds, as reported by Desai et al. [60].

Although ZT has been recognized as highly effective 
in promoting shoot proliferation in various plant spe-
cies [61–63], its use in pomegranate tissue culture has 
limited compared to other cytokinins. Similarly, the use 
of GA3 in shoot proliferation, particularly in recalci-
trant woody trees like pomegranate, has received limited 
attention. However, several studies have demonstrated 
that the interaction between cytokinins with GA3 can 
improve the development of shoot/root apical meristems 
[8, 64, 65]. This study introduces a new shoot prolifera-
tion protocol for pomegranate cultivars, which utilizes a 
combination of ZT and GA3. The results demonstrate the 

Table 3  (continued)
The results were expressed as the mean ± standard deviation (n = 20)

GA3 gibberellic acid, ZT zeatin, PR proliferation rate, SL shoot length, LN leave number, and ES explant survival

Bold values have mentioned the biggest and best values, respectively.
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remarkable efficacy of this combination in stimulating 
shoot development compared to using BAP alone. Nota-
bly, the treatment involving the highest concentration of 
both ZT and GA3 exhibited the most significant growth 

response, highlighting its effectiveness. Additionally, GA3 
enhanced shoot regeneration and increased the ES% of all 
three tested pomegranate cultivars when combined with 
cytokinins and auxins. Although limited reports exist 

Table 5  Statistical evaluation of the constructed models for the micropropagation of the pomegranate cultivar ‘Faroogh’

SVR Support Vector Regression, RF Random Forest, XGB Extreme Gradient Boosting, ENMLR Elastic Net Multivariate Linear Regression, ESR Ensemble Stacking 
Regression, R coefficient of determination, RRMSE Relative Root Mean Square Error, RMSE Root Mean Square Error, MAPE Mean Absolute Percentage Error, PR 
proliferation rate, SL shoot length, LN leave number, and ES explant survival

Cultivar Model Study 
parameter

Data sets Performance criteria

RRMSE (%) RMSE MAE MAPE (%) R2 R

‘Faroogh’ XGB LN Trainng Set 5.33 1.079 0.801 3.89 0.545 0.738

RF 4.78 0.969 0.749 3.65 0.645 0.803

SVR 4.52 0.915 0.692 3.39 0.677 0.823

ENMLR 5.78 1.170 0.918 4.46 0.462 0.680

ESR 4.49 0.909 0.699 3.43 0.676 0.822

XGB Testing Set 6.01 1.225 0.926 4.51 0.498 0.706

RF 5.11 1.041 0.834 4.05 0.671 0.819

SVR 4.85 0.989 0.801 3.92 0.684 0.827

ENMLR 6.60 1.345 1.060 5.17 0.393 0.627

ESR 4.60 0.938 0.730 3.58 0.711 0.843

XGB PR Trainng Set 12.86 0.562 0.394 11.82 0.212 0.460

RF 12.82 0.461 0.399 11.95 0.220 0.469

SVR 13.42 0.483 0.449 13.41 0.172 0.415

ENMLR 13.54 0.487 0.432 12.97 0.127 0.356

ESR 12.86 0.462 0.394 11.87 0.213 0.462

XGB Testing Set 14.29 0.518 0.427 13.30 0.182 0.427

RF 14.17 0.514 0.430 13.37 0.199 0.446

SVR 14.54 0.527 0.470 14.63 0.208 0.456

ENMLR 14.38 0.521 0.444 13.95 0.186 0.431

ESR 14.14 0.512 0.418 13.10 0.199 0.446

XGB ES Trainng Set 6.26 5.456 4.646 5.42 0.514 0.717

RF 5.42 4.720 4.054 4.76 0.637 0.798

SVR 5.64 4.912 4.366 5.01 0.634 0.796

ENMLR 6.87 5.981 5.188 6.00 0.417 0.646

ESR 5.47 4.769 4.094 4.82 0.630 0.794

XGB Testing Set 6.32 5.516 4.582 5.40 0.514 0.717

RF 4.92 4.291 3.778 4.46 0.699 0.836

SVR 5.07 4.424 4.025 4.61 0.711 0.843

ENMLR 6.67 5.822 4.920 5.71 0.448 0.669

ESR 4.84 4.228 3.711 4.39 0.709 0.842

XGB SL Trainng Set 11.72 0.375 0.279 8.49 0.699 0.836

‘Faroogh’ RF 8.46 0.271 0.184 5.40 0.843 0.918

SVR 8.95 0.286 0.199 6.02 0.828 0.910

ENMLR 12.54 0.401 0.295 8.99 0.654 0.809

ESR 8.84 0.283 0.190 5.66 0.830 0.911

XGB Testing Set 13.77 0.449 0.339 10.16 0.707 0.841

RF 9.94 0.259 0.177 4.88 0.937 0.968

SVR 7.33 0.239 0.175 5.11 0.927 0.963

ENMLR 15.40 0.503 0.380 11.39 0.624 0.790

ESR 7.27 0.237 0.164 4.66 0.941 0.970
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on the effect of ZT on shoot proliferation in pomegran-
ate, Naik et al. [66] reported significant improvements in 
regeneration frequency and shoot growth by adding zea-
tin riboside (ZR) to the culture medium. The analysis of 
current study also highlighted that different pomegranate 

cultivars exhibited different reactions to the same cul-
ture medium, despite their close genetic relationship. It is 
noteworthy that the ‘Faroogh’ cultivar exhibited the high-
est growth responses among the three cultivars investi-
gated. However, the ‘Shirineshahvar’ cultivar displayed 

Table 6  Statistical evaluation of the constructed models for the micropropagation of the pomegranate cultivar ‘Shirineshahvar’

SVR Support Vector Regression, RF Random Forest, XGB Extreme Gradient Boosting, ENMLR Elastic Net Multivariate Linear Regression, ESR Ensemble Stacking 
Regression, R coefficient of determination, RRMSE Relative Root Mean Square Error, RMSE Root Mean Square Error, MAPE Mean Absolute Percentage Error, PR 
proliferation rate, SL shoot length, LN leave number, and ES explant survival

Cultivar Model Study 
parameter

Data Sets Performance Criteria

RRMSE (%) RMSE MAE MAPE (%) R2 R

‘Shirineshahvar’ XGB LN Trainng Set 6.63 1.156 0.932 5.64 0.616 0.785

RF 4.86 0.849 0.702 4.11 0.792 0.890

SVR 5.04 0.879 0.738 4.33 0.783 0.885

ENMLR 7.43 1.297 0.957 5.96 0.516 0.718

ESR 4.91 0.857 0.706 4.14 0.789 0.888

XGB Testing Set 6.66 1.157 0.896 5.67 0.740 0.860

RF 4.68 0.812 0.650 3.84 0.863 0.929

SVR 4.67 0.811 0.653 3.92 0.863 0.929

ENMLR 8.40 1.457 1.081 7.03 0.593 0.770

ESR 4.64 0.805 0.644 3.81 0.865 0.930

XGB PR Trainng Set 19.19 0.496 0.358 17.20 0.650 0.806

RF 20.49 0.530 0.365 19.65 0.627 0.792

SVR 20.00 0.517 0.355 18.39 0.654 0.809

ENMLR 22.99 0.594 0.463 23.54 0.503 0.709

ESR 19.04 0.492 0.375 19.26 0.656 0.810

XGB Testing Set 21.86 0.546 0.407 20.98 0.630 0.794

RF 23.92 0.598 0.431 25.86 0.590 0.768

SVR 22.35 0.559 0.398 22.64 0.638 0.799

ENMLR 24.00 0.600 0.503 28.14 0.584 0.764

ESR 21.07 0.526 0.406 22.45 0.677 0.823

XGB ES Trainng Set 11.08 5.825 4.768 9.20 0.354 0.595

RF 10.58 5.563 4.525 8.71 0.413 0.643

SVR 10.86 5.706 4.866 9.48 0.387 0.622

ENMLR 12.35 6.490 5.179 9.98 0.307 0.554

XGB Testing Set 11.08 5.769 4.821 9.46 0.388 0.623

RF 11.26 5.862 4.834 9.52 0.361 0.601

SVR 11.73 6.107 5.233 10.37 0.338 0.581

ENMLR 12.49 6.501 5.222 10.26 0.375 0.612

ESR 11.05 5.754 4.752 9.44 0.391 0.625

XGB SL Trainng Set 5.14 0.084 0.063 4.07 0.845 0.919

‘Shirineshahvar’ RF SL Trainng Set 4.58 0.075 0.058 3.76 0.870 0.933

SVR 4.67 0.076 0.059 3.84 0.867 0.931

ENMLR 6.03 0.098 0.073 4.72 0.774 0.880

ESR 4.75 0.077 0.058 3.78 0.861 0.928

XGB Testing Set 4.97 0.081 0.063 3.96 0.845 0.919

RF 4.54 0.074 0.057 3.64 0.867 0.931

SVR 4.64 0.075 0.055 3.52 0.857 0.926

ENMLR 6.60 0.108 0.081 5.11 0.717 0.847

ESR 4.45 0.072 0.055 3.48 0.870 0.933
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higher recalcitrant to shoot proliferation compared to the 
other cultivars. This could be attributed to variations in 
the concentration of endogenous phytohormones within 
the plants and their interaction with the applied exoge-
nous PGRs in the culture of explants [67].

Developing and optimizing tissue culture protocols is 
a complex task that poses significant challenges to the 
field as a whole. The multifactorial nature of in vitro cul-
ture processes makes them difficult to understand and 
interpret using traditional statistical approaches such 
as ANOVA, t-tests, correlation, and regression, spe-
cifically when the variables investigated are nonlinear, 
noisy, complex, and vague in nature [68]. The knowledge 
derived from MLs, as complex mathematical tools, offer 
promise in understanding and interpreting the intricate, 
nonlinear relationships within datasets. ML models have 
demonstrated superior predictive power over traditional 

statistical methodologies when analyzing unpredictable 
variables and big dataset. Despite the advantages of ML, 
uncertainty in ML outcomes remains a major constraint 
in its application [69]. Uncertainty in ML studies arises 
from three primary sources: data quality, the sample of 
data collected from the domain, and model fitting [70]. 
To avoid uncertainties, researchers have recommended 
the application of different ML algorithms [69, 70]. In 
this study, five ML approaches (XGB, RF, SVR, ESR, and 
ENMLR) were employed for modeling the effects of vari-
ous parameters (PGRs) on in vitro shoot proliferation of 
pomegranate. While similar performance was observed 
across the ML models in predicting pomegranate shoot 
multiplication, the results of the GPI analysis indicated 
that the ESR model stood out as the best performer. It 
exhibited robustness and superior predictive accuracy in 
both the training and testing subsets. It is worth noting 

Fig. 4  The violin plots of the performance metrics of analyzed models on the observed value vs. the predicted values on in vitro pomegranate 
growth parameters including: A leave number, B proliferation, C explant survival, D shoot length
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that there is a lack of specific investigations regarding the 
use of the ESR algorithm in the field of plant tissue cul-
ture. Nonetheless, numerous studies in other scientific 
disciplines have demonstrated the robust performance 
of the ESR model in various prediction tasks [71, 72]. 
In recent research has shown that integrating optimiza-
tion algorithms, particularly NSGA-II, with ML models 
can provide valuable insights and effective utilization of 
the models. The application of NSGA-II in conjunction 
with ML enables the answering of "How to get" questions 
by identifying the optimal culture medium that simul-
taneously improves multiple desired parameters for the 
studied parameters [18, 73]. In the current research, the 
ESR was linked to the NSGA-II algorithm as a computa-
tional forecasting approach for predicting and identifying 
critical factors affecting the in vitro proliferation stage of 
pomegranate cultivars. The successful application of opti-
mization algorithms, especially NSGA-II, in the field of 
plant tissue culture has already been accomplished [31]. 
Additionally, various ML algorithms based on different 
optimization algorithms have shown promising results 
in modeling and predicting optimal plant tissue culture 
media for other fruit tree species such as kiwi berry [18], 
pear [74], prunus [15], pistachio rootstocks [74], and 

Persian walnut [10]. The outcomes obtained through 
the ESR-NSGA-II method accurately predicted that the 
highest plant growth responses would be achieved by 
supplementing the culture medium with 0.750 mg/L ZT, 
and 0.500 mg/L GA3 for the ‘Atabaki’ cultivar, 0.654 mg/L 
ZT, and 0.329  mg/L GA3 for the ‘Faroogh’ cultivar, and 
0.705  mg/L ZT, and 0.347  mg/L GA3 for the ‘Shirine-
shahvar’ cultivar. Overall, the ESR-NSGA-II algorithm 
revealed that the interaction between genotype and dif-
ferent concentrations of PGRs caused the most signifi-
cant influence on pomegranate shoot proliferation. These 
findings are consistent with a study by Sadat-Hoseini 
et  al. [10], which employed ML approaches to model 
growth parameters of in vitro Persian walnut using differ-
ent concentrations of BAP, tidiazuran (TDZ), and indole 
butyric acid (IBA), and reported that the genotype-PGR 
interaction plays a crucial role in the proliferation of Per-
sian walnut.

To the best of the author’s knowledge, this study rep-
resents the first investigation examining the specific 
effects of ZT and GA3, as well as their interactions, in 
enhancing the efficiency of pomegranate tissue cul-
ture protocol, especially with the studied pomegranate 
cultivars on in  vitro conditions for enhancing growth 

Table 7  Ranking of the best-performing ML models for growth parameters of pomegranate

SVR: Support Vector Regression, RF: Random Forest, XGB: Extreme Gradient Boosting, ENMLR: Elastic Net Multivariate Linear Regression, ESR: Ensemble Stacking 
Regression, GPI: Global Performance Indicator, PR: proliferation rate, SL: shoot length, LN: leave number, and ES: explant survival

Bold values have mentioned the biggest and best values, respectively.

Model Study parameter ‘Atabaki’ ‘Faroogh’ ‘Shirineshahvar’

GPI Rank GPI Rank GPI Rank

XGB LN − 1.674 4 − 2.562 4 − 3.040 4

RF 0.647 2 0.000 3 0.032 2

SVR 0.000 3 0.525 2 0.004 3

ENMLR − 4.171 5 − 4.688 5 − 5.911 5

ESR 1.829 1 1.312 1 0.089 1
XGB PR 0.980 2 − 1.199 3 0.574 2

RF 0.738 3 0.567 2 − 2.616 4

SVR − 2.326 4 − 2.121 4 0.255 3

ENMLR − 3.801 5 − 2.104 5 − 3.807 5

ESR 1.383 1 1.182 1 1.911 1
XGB ES − 4.870 5 − 3.813 4 0.818 2

RF 0.573 2 0.483 2 − 1.501 3

SVR 0.000 3 0.085 3 − 2.966 5

ENMLR − 4.814 4 − 5.240 5 − 2.507 4

ESR 0.933 1 0.748 1 0.973 1
XGB SL − 5.158 4 − 4.058 4 − 0.913 4

RF 0.108 2 0.092 3 0.193 2

SVR 0.035 3 0.405 2 0.150 3

ENMLR − 5.782 5 − 5.380 5 − 5.487 5

ESR 0.180 1 0.619 1 0.513 1
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parameters. While previous studies have reported 
in  vitro shoot proliferation success of different pome-
granate cultivars, the focus on the specific combination 
of ZT and GA3, and their interactions effects, is a novel 
aspect of this research. By evaluating the influence of 
these growth regulators on growth parameters, this 
study contributes to the advancement of pomegranate 
tissue culture techniques.

Conclusion
In vitro shoot proliferation is a multifactorial and com-
plex process influenced by various interacting factors. 
So, to evaluate the extensive datasets and optimize 
the pomegranate protocol, ML techniques such as RF, 
SVR, XGB, ESR, and ENMLR were employed as prom-
ising alternatives to traditional statistical methods. 
Based on our results, ESR-NSGA-II exhibited superior 

Fig. 5  Comparison between the predicted compressive strength via RF, XGB, SVR, ESR, and ENMLR models. A leave number, B proliferation, C 
explant survival, D shoot length of the pomegranate cultivar ‘Atabaki’
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accuracy and efficacy in studying pomegranate growth 
responses to multivariable stimuli in  vitro and optimiz-
ing the pomegranate protocol. Furthermore, the in vitro 
responses of pomegranate were found to be positively 
influenced by the concentrations of PGRs (ZT and GA3) 
and their interaction. Moreover, the optimization of 
in vitro condition of pomegranate was strongly depended 
on the specific cultivar. Specifically, the ‘Shirineshahvar’ 

cultivar demonstrated as a recalcitrant cultivar to in vitro 
shoot proliferation compared to other cultivars, while 
the ‘Faroogh’ cultivar exhibited the highest growth and 
shoot development. The main objective of the current 
research was to provide a reliable and robust technology, 
ESR-NSGA-II based on soft computing methodology, to 
provide new insight into the crucial factors that impact 

Fig. 6  Comparison between the predicted compressive strength via RF, XGB, SVR, ESR, and ENMLR models. A leave number, B proliferation, C 
explant survival, D shoot length of the pomegranate cultivar ‘Faroogh’
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Fig. 7  Comparison between the predicted compressive strength via RF, XGB, SVR, ESR, and ENMLR models. A leave number, B proliferation, C 
explant survival, D shoot length of the pomegranate cultivar ‘Shirineshahvar’

Table 8  Optimization of pomegranate cultivars and different concentrations of ZT, and GA3 according to the ESR-NSGA-II algorithm to 
obtain the best plant growth parameters

GA3 gibberellic acid, ZT zeatin, PR proliferation rate, SL shoot length, LN leave number, and ES explant survival

Input variables Predicted LN Predicted PR Predicted ES (%) Predicted 
SL (cm)

Cultivar GA3 ZT

‘Atabaki’ 0.500 0.750 18.18 3.47 84.21 2.74

‘Faroogh’ 0.329 0.654 19.76 3.84 85.49 3.32

‘Shirineshahvar’ 0.347 0.705 18.77 3.22 56.39 1.86
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the growth parameters of pomegranate cultivars cultured 
in vitro.
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