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METHODOLOGY

Revisiting superiority and stability metrics 
of cultivar performances using genomic data: 
derivations of new estimators
Humberto Fanelli Carvalho1†, Simon Rio2,3†, Julian García‑Abadillo1 and Julio Isidro y Sánchez1*† 

Abstract 

The selection of highly productive genotypes with stable performance across environments is a major challenge 
of plant breeding programs due to genotype‑by‑environment (GE) interactions. Over the years, different metrics 
have been proposed that aim at characterizing the superiority and/or stability of genotype performance across envi‑
ronments. However, these metrics are traditionally estimated using phenotypic values only and are not well suited 
to an unbalanced design in which genotypes are not observed in all environments. The objective of this research 
was to propose and evaluate new estimators of the following GE metrics: Ecovalence, Environmental Variance, Fin-
lay–Wilkinson regression coefficient, and Lin–Binns superiority measure. Drawing from a multi‑environment genomic 
prediction model, we derived the best linear unbiased prediction for each GE metric. These derivations included 
both a squared expectation and a variance term. To assess the effectiveness of our new estimators, we conducted 
simulations that varied in traits and environment parameters. In our results, new estimators consistently outper‑
formed traditional phenotype‑based estimators in terms of accuracy. By incorporating a variance term into our new 
estimators, in addition to the squared expectation term, we were able to improve the precision of our estimates, 
particularly for Ecovalence in situations where heritability was low and/or sparseness was high. All methods are imple‑
mented in a new R‑package: GEmetrics. These genomic‑based estimators enable estimating GE metrics in unbalanced 
designs and predicting GE metrics for new genotypes, which should help improve the selection efficiency of high‑
performance and stable genotypes across environments.

Keywords Genotype‑by‑environment, Genomic prediction, Environmental variance, Ecovalence, Finlay–Wilkinson 
regression coefficient, Lin–Binns superiority measure

Background
The performance of cultivars is dependent on selective 
breeding or genetic modification of a specific genotype to 
display distinct agronomic traits. Such performance var-
ies, given different locations and management conditions 
(e.g. temperature, rainfall, or nitrogen content), a phe-
nomenon referred to as genotype-by-environment (GE) 
interaction [1]. As this interaction complicates the selec-
tion of suitable genotypes for quantitative traits, it delays 
the cultivation and distribution of new crop varieties [2]. 
A good characterization of GE interactions is fundamen-
tal to a better understanding of the relationship between 
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genetic and environmental factors that shape complex 
crop traits [3]. Multi-environment trials (MET), or exper-
imental sets that evaluate a population of genotypes in 
various conditions, help characterize GE interactions and 
facilitate the decision-making process of breeders [4, 5].

Several metrics have been proposed over the years to 
characterize the stability of genotypes across multiple 
environments. Two concepts of stability have been estab-
lished: static stability, in which a stable genotype main-
tains a constant performance regardless of the effect of 
the environment, and dynamic stability, in which the 
genotype follows environmental response with constant 
deviation [6]. Accordingly, we can categorize GE metrics 
as static, such as Environmental Variance defined as the 
variance in performance of a genotype across environ-
ments [7], or dynamic such as Ecovalence defined as the 
contribution of a genotype to the GE sum of squares of an 
analysis of variance (ANOVA) [8]. Additionally, the Fin-
lay–Wilkinson regression coefficient of the performance 
of a genotype on environmental means can be used to 
assess stability according to the two concepts: static 
around zero and dynamic around one [9]. A cultivar’s 
potential is assessed not only by the stability of its per-
formance across environments but also by its superiority 
to other cultivars. Although mean cultivar performance 
remains the gold standard in breeding, other measures 
have been proposed, such as Lin–Binns superiority meas-
ure [10]. In the latter, cultivars that perform particularly 
poorly in one or more environments are penalized in 
comparison to those with average performance. Stability 
and superiority measures are traditionally estimated using 
phenotypic observations only. In practice, the estimates of 
GE combinations are obtained from a linear model with 
fixed genotyped and environment effects [6, 11].

Linear mixed models have been employed to estimate 
breeding values (BVs) considering genotype effects as 
random [12, 13]. The model’s advantages include shrink-
age towards the mean when the reliability of the BV esti-
mates are low, the capability to handle unbalanced data, 
and the ability to estimate genetic and non-genetic com-
ponents of variance [14]. They have proven their worth 
across diverse datasets, estimating multi-generation 
indices across years and environments [15], dealing with 
highly unbalanced experimental design as p-rep [16], and 
estimating quantitative genetics model parameters using 
Bayesian inference [17].

Using dense molecular marker panels, genomic predic-
tion has been suggested to predict the breeding value of 
unobserved genotypes, which revolutionized selection 
methods for quantitative traits [18]. The incorporation 
of a genomic relationship kernel into mixed models has 
amplified genomic selection efficiency [19]. In the con-
text of METs, GE interactions can be viewed as resulting 

from the differential expression of quantitative trait loci 
(QTL) in relation to environmental variables. The mixed 
model’s flexibility with genomic data aids in predicting 
GE effects and unobserved genotype performance in dif-
ferent environments [20–24].

In the prevailing genomic era, utilizing only adjusted 
means from a standard linear model to estimate tradi-
tional GE metrics does not fully exploit the extensive 
information available. For instance, [25] proposed a 
Bayesian approach to estimate the Finlay and Wilkinson 
regression coefficient while taking genomic information 
into account. Alternatively, one approach to refine GE 
metric estimates is to use environment-specific GEBVs 
(env-GEBVs, i.e. genomic BLUPs of environment-specific 
BVs) instead of merely relying on adjusted means. Within 
the linear mixed model context, the expectation of a ran-
dom term, given observed data, equates to its BLUP [13, 
26]. From this definition, we can compute a genomic 
BLUP for GE metrics that encompasses both a squared 
expectation component and a variance component. As far 
as we are aware, no previous work has presented or evalu-
ated these new GE metric estimators.

In this study, we (i) derived novel estimators for GE sta-
bility and superiority metrics, comparing their efficacy in 
approximating the true GE metric values - those theoreti-
cally derived from environment-specific breeding values 
(env-BVs)—against traditional phenotype-based estima-
tors; (ii) assessed how various traits and environmental 
parameters influence the performance of these estima-
tors; and (iii) determined the predictability of GE stabil-
ity and superiority metrics for genotypes not observed in 
any of the environments. Our analyses utilize three pub-
lic empirical datasets-maize, oat, and sorghum-and are 
further supported by simulations.

Methods
Derivation of GE metric estimators
In this study, we focused on five GE metrics used to 
assess the stability and superiority of genotype perfor-
mances across environments. To develop new estima-
tors, our approach consisted of (i) presenting formulas to 
calculate true GE metrics, i.e. the values that one would 
obtain by calculating them directly using env-BVs, (ii) 
proposing a genomic prediction model adapted to METs 
data, and (iii) calculate the expectation of GE metrics 
conditional on the phenotypes based on the genomic 
prediction model, i.e. BLUPs of the GE metrics. Accord-
ing to this approach, GE metrics are defined as random 
variables. Note that they could also be defined as fixed 
or variance model parameters [27–29]. The advantage of 
treating GE metrics as random variables is that it elimi-
nates the need to fit a model that specifically accounts for 
stability parameters. Instead, GE metric estimates can be 
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obtained from any multi-environment genomic predic-
tion model that considers GE interactions.

GE metrics
Let us assume a METs dataset with N genotypes evalu-
ated in J environments. Each genotype i has an env-BV Gij 
specific to each environment j, as a result of environmen-
tal effects and GE interactions. In what follows, the aver-
age over N genotypes or over J environments is indicated 
by a dot in the BV subscripts, e.g. the BV corresponds to 
the average env-BV of a genotype i over environments is 
referred to as Gi. =

1
J

∑J
j=1Gij , and the average BV over 

all genotypes is referred to as G.. =
1
JN

∑N
i=1

∑J
j=1Gij.

The first GE metric Li considered in our study is the 
Lin–Binns superiority measure [10]:

which aims, for each genotype i, to average over all envi-
ronments the squared difference between its env-BV 
and that of the best-performing/reference genotype rj in 
environment j. Compared to a simple average of geno-
type performances over environments, it tends to penal-
ize genotypes that perform particularly poorly in given 
environments.

The second GE metric Si is a measure of static stability 
named Environmental Variance [7]:

which aims to calculate the variance of the performance 
of each genotype i over environments.

The third GE metric Wi is a measure of dynamic stabil-
ity named Ecovalence [8]:

which aims to quantify the contribution of a genotype to 
the GE sum of squares of an ANOVA, i.e. to which extent 
env-BVs deviate non-uniformly from the mean of each 
environment.

The last GE metric Bi presented in our study is the Fin-
lay–Wilkinson regression coefficient [9]:

(1)Li =
1

2J

J∑

j=1

(
Gij − Grjj

)2

(2)Si =
1

J − 1

J∑

j=1

(
Gij − Gi.

)2

(3)Wi =

J∑

j=1

(
Gij − Gi. − G.j + G..

)2

(4)Bi =

∑J
j=1

(
Gij − Gi.

)(
G.j − G..

)

∑J
j=1

(
G.j − G..

)2

which aims, for each genotype i, to regress env-BVs on 
the environment means.

Genomic prediction model
We decomposed each env-BV Gij into an environment 
mean parameter µj and a centered env-BV Uij:

We then modeled the phenotypes as [30]:

where yT =
(
yT1 , ..., y

T
J

)
 is the concatenated vec-

tor of phenotypes in J environments with P plots 
each, β = (µ1, ...,µJ )

T is the vector of fixed environ-
ment means, X is the design matrix for fixed effects, 
uT =

(
uT
1 , ...,u

T
J

)
 is the concatenated vector of ran-

dom centered env-BVs with u ∼ N(0,�G) and �G 
being the covariance matrix of u , Z is the incidence 
matrix linking phenotypic observations to environment-
specific breeding values, e is the vector of errors with 
e ∼ N(0,�E) and �E being the covariance matrix of 
e . Independence is assumed between u and e , and the 
covariance matrix between phenotypic observations is: 
�Y = Z�GZ

T + �E .

Let us assume �G = �G
⊗

A where A is the genomic 
relationship matrix between genotypes (or any genetic 
relationship matrix between them), and �G is the 
genetic covariance matrix between environments used 
to account for GE interactions. Similarly, let us assume 
�E = �E

⊗
IP where IP is the identity matrix of dimen-

sion P and �E is the error covariance matrix between 
environments. Note that �E can be written using a Kro-
necker product as the number of plots/observations P is 
considered constant in all environments. We will assume 
the following form for �G and �E:

where σ 2
Gj

 is the genetic variance in environment j, σGj,j′
 is 

the genetic covariance between environments j and j′ , 
and σ 2

Ej
 is the error variance in environment j. Let us also 

define ρj,j′ =
σGj,j′

σGjσGj′

 as the genetic correlation between 

environments j and j′.

(5)Gij = µj + Uij

(6)y = Xβ + Zu+ e

• �G =




σ 2
G1

.. σG1,J

.. .. ..

σGJ ,1 .. σ 2
GJ





• �E =




σ 2
E1

.. 0

.. .. ..

0 .. σ 2
EJ
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BLUP of GE metrics
Let us first consider the env-GEBVs (i.e. the BLUPs of env-
BVs), which are the cornerstone of MET genomic predic-
tion. They can be obtained by considering the distribution 
of Gij conditional on y , which is Gaussian with expectation:

and variance:

In practice, β is unknown and is thus replaced by its best 
linear unbiased estimate (BLUE):

which, after replacing fixed effects by their estimates, 
gives the following formula for env-GEBVs:

with:

Note that Pij,ij in Eq. (8) can be seen as the prediction error 
variance (PEV) associated with the prediction of Gij for 
which β would be known [i.e. not estimated using Eq. (9)].

The BLUP of the average env-BVs (Average) over envi-
ronments can be calculated as:

(7)E
(
Gij|y

)
= µj +

[
�GZ

T�−1
Y (y − Xβ)

]

ij

(8)

Var
(
Gij|y

)
=

[
�G − �GZ

T�−1
Y Z�G

]

ij,ij
= [P]ij,ij = Pij,ij

(9)β̂ =

(
XT�−1

Y X
)−1

XT�−1
Y y

(10)Ĝij = µ̂j +

[
�GZ

TMy
]

ij

(11)M = �−1
Y − �−1

Y X
(
XT�−1

Y X
)−1

XT�−1
Y

Let us now consider a squared linear combination of 
env-BVs named Q2 . One can calculate the BLUP of Q2 
and split it into two terms following the König–Huygens 
theorem:

with a first term corresponding to the squared expecta-
tion of Q conditional on phenotypes (i.e. the squared 
BLUP of Q) and a second term corresponding to the vari-
ance of Q conditional on phenotypes. This result can be 
used to calculate the BLUP of each GE metric, which 
involves quantities previously presented (see matrix deri-
vations in Appendix and algebraic derivations in Supple-
mentary File S1):

and

and

and

(12)E(Gi.|y) =
1

J

J∑

j=1

Ĝij

(13)E
(
Q2|y

)
= [E(Q|y)]2 + Var(Q|y)

(14)

E(Li|y) =
1
2J

J∑

j=1

(
Ĝij − Ĝrj j

)2
+

1
2J

J∑

j=1

(
Pij,ij + Prjj,rj j − 2Pij,rj j

)

(15)

E(Si|y) =
1

J − 1

J∑

j=1

(
Ĝij − Ĝi.

)2

+
1

J − 1

J∑

j=1



Pij,ij −
1
J

J∑

j′=1
Pij,ij′





(16)

E
�
Wi|y

�
=

J�

j=1

�
�Gij − �Gi. − �G.j + �G..

�2
+

J�

j=1



Pij,ij −
1

J

J�

jÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢=1

Pij,ijÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢

−

N�

iÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢=1

�
2

N
Pij,iÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢j −

1

N 2

N�

iÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢ÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢=1

PiÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢j,iÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢ÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢j





+
1

J

J�

jÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢=1

N�

iÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢=1

�
2

N
Pij,iÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢jÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢ −

1

N 2

N�

iÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢ÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢=1

PiÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢j,iÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢ÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢jÃƒÂ¢Ã¢âŁšÂ¬Ã¢âŁ~Â¢









(17)E(Bi|y) ≈

∑J
j=1

(
Ĝij − Ĝi.

)(
Ĝ.j − Ĝ..

)
+

∑J
j=1

(
1

N

∑N
i′=1 Pij,i′j −

1

JN

∑J
j′=1

∑N
i′=1 Pij,i′j′

)

∑J
j=1

(
Ĝ.j − Ĝ..

)2
+

∑J
j=1

(
1

N2

∑N
i′=1

∑N
i′′=1 Pi′j,i′′j −

1

JN2

∑J
j′=1

∑N
i′=1

∑N
i′′=1 Pi′j,i′′j′

)
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For the BLUP of the first three GE metrics, the first part 
of their expression corresponds to the squared expecta-
tion term and consists of replacing env-BVs in Eq. (1), 
Eqs. (2) and (3) by env-GEBVs. The rest of the expression 
corresponds to the variance term and involves summing 
elements of the P matrix from Eq. (8). For the BLUP of 
Finlay–Wilkinson, which consists of a ratio between 
two terms, a simplifying assumption was made that the 
expectation of this ratio was approximately equal to the 
ratio of the expectation of the two terms. Each term of 
the ratio was then considered similarly to the other GE 
metrics. Note that this approximation corresponds to the 
first order Taylor series approximation of the BLUP of 
Finlay–Wilkinson [31].

In this study, we evaluated three estimators for each GE 
metric. First, we considered the traditional “No-Geno” 
estimator, which consists of replacing Gij by estimates 
based solely on phenotypic information, i.e. BLUEs of 
genotypic effects, in Eqs.  1–4. Based on our theoretical 
results, we then proposed two novel estimators account-
ing for genomic information: “Geno-Exp” which incor-
porates only the squared expectation term of Eqs. 14–17, 
and “Geno-Exp-Var” which encompasses all quantities 
from the above-mentioned formulas. Note that only the 
“Geno-Exp-Var” estimators are unbiased in the sense that 
the expectation (on the phenotypes) of the BLUPs of GE 
metrics equals the expectation of the GE metrics [32], 
e.g. Ey[E(Li|y)] = E(Li).

Materials
To validate the new GE estimators, we utilized both 
simulated and empirical datasets. We performed simu-
lations based on the model in Eq. (6), varying the fol-
lowing parameters: (i) the standard normal deviation of 
the environment means ( σµ ), where µj ∼ N(100, σ 2

µ) 
independent and identically distributed (IID), (ii) the 
genetic correlation between 10 environments pair-
wise ( ρj,j′ ), (iii) the heritability in each environment 
( h2j  ), where h2j = c + dj with a constant c and a devia-
tion dj ∼ U (−0.2, 0.2) IID, and (iv) the sparsness of the 

dataset defined as the percentage of missing genotype-
environment combinations. In this study, to examine 
the influence of the simulation parameters, we first 
considered a basic scenario with intermediate param-
eter levels: σµ = 1, ρj,j′ = 0.5 for all j  = j′ , h2j = 0.5+ dj , 
and sparseness = 0%. We studied the influence of each 
parameter by modulating them one by one, considering 
the following levels: σµ ∈ {0.1, 1, 10} , ρj,j′ ∈ {0.2, 0.5, 0.8} 
for all j  = j′ , c ∈ {0.2, 0.5, 0.8} for h2j  , and sparseness 
∈ {0%, 25%, 50%, 75%} (Supplementary Table S1).

For simulated traits, the vector of random centered 
env-BVs was generated using the product between the 
Cholesky decomposition of �G (scaled with σ 2

Gj
= 1 for 

all j and ρj,j′ chosen according to the simulation scenario) 
and a vector of independent draws from a standard nor-
mal distribution [30]. As genomic data, we used data 
from a 200-genotyped wheat population, which consisted 
of 1279 SNPs obtained through diversity array technol-
ogy (DArT) sequencing [33].

Three publicly available datasets were used to validate 
the reliability of our novel GE metric estimators, as pre-
sented in Table  1. These datasets span various species, 
genotypes, and environments, all genotyped-by-sequenc-
ing. They vary in the number of genotypes (111 to 699), 
environments (3 to 16), and molecular markers (17,288 
to 58,960). For each dataset, yield and plant height traits 

Table 1 Summary of the datasets utilized in this study

“Dataset” refers to the species included in each dataset, “Genotypes” represent 
the number of genotypes, “Markers” indicate the number of markers, 
“Environments” indicates the number of environments, and “Reference” refers 
to the published study associated with each dataset. In each dataset, the 
population was evaluated for yield and plant height
a 133 genotypes were evaluated for yield and 111 for plant height
b From the 71 available environments, 15 were selected for yield and 16 for plant 
height, all based on a randomized complete block design (RCBD). This selection 
was made to minimize the number of missing values

Dataset Genotypes Markers Environments References

Maize 133/111a 22,432 15/16b [34], G2F: GE (2014‑ 
2017)

Oat 699 17,288 3 [35]

Sorghum 133 58,960 3 [36]

(See figure on next page.)
Fig. 1 Diagram illustrating the workflow steps. Input Data: either simulated datasets considering a combination of trait and environment 
parameters ( σµ , ρj,j′ , h2j  and sparseness), or empirical datasets (maize, oat, and sorghum). Parameter Inference: obtain estimates for fixed parameters 
( β ), and variance component ( �G and �E ), used to calculate �G , �E , and �Y . Genotype-by-Environment (GE) Metric Estimations: calculation 
of env‑GEBVs and conditional variance of env‑BVs, which are used to estimate the following GE metrics: Lin–Binns, Environmental Variance, 
Ecovalence, Finlay–Wilkinson, and Average. GE metrics were estimated using: an estimator based on phenotypic information only (No‑Geno), 
an estimator accounting for genomic information through env‑GEBVs (Geno‑Exp), and a last estimator accounting for genomic information 
through env‑GEBVs and conditional variance of env‑BVs (Geno‑Exp‑Var). GE Estimator Performance: comparing the performance of GE metric 
estimators using the correlation, the root‑mean‑square error (RMSE), and the selection coincidence between GE metric estimates and GE metric 
reference values

https://www.genomes2fields.org/
https://www.genomes2fields.org/
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Fig. 1 (See legend on previous page.)
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were evaluated in randomized complete block designs in 
each environment. Adjusted means were calculated to 
correct for within-environment spatial/design effects and 
were used directly as response variables in the genomic 
prediction model. Further details on the experiments and 
adjusted means are available in Table 1.

Workflow scheme
In this study, the workflow was divided into four stages: 
input data, parameter inference, GE metrics estimation, 
and estimator performance (Fig.  1). The specific details 
are expounded upon as follows:

Input data: Three empirical datasets were considered 
(Table  1), as well as simulated datasets considering 
combinations of trait and environment parameter 
levels: σµ , ρj,j′ , h2j  , and sparseness (Supplementary 
Table S1). A detailed description of the input datasets 
and the simulation procedure is presented in the pre-
vious section.
Parameter inference: The second phase involved 
adjusting the model from Eq. (6) on the input data. 
From this model, estimates were obtained for fixed 
effects β and for the �G and �E variance compo-
nents, which are used to calculate �G , �E , and �Y  . 
A Bayesian multivariate approach based on a Gibbs 
sampler was used to infer parameters [37].
GE metrics estimations: The third step consisted of 
estimating the GE metrics. New estimators require 
the calculation of env-GEBVs (Eq.  10) as well as 
the conditional variance of env-BVs (Eq.  8). Two 
genomic-based estimators were derived: one based 
only on the squared expectation term (Geno-Exp) 
and a second also involving the variance term (Geno-
Exp-Var). Note that the phenotype-based estimator 
(No-Geno) only requires phenotypic data. For the 
latter, missing genotype-environment combinations 
were imputed with the average value of the environ-
ment, unlike genomic-based estimators for which 
they could always be predicted.
Estimator performance: The fourth step entailed 
comparing the different estimators (No-Geno, Geno-
Exp, and Geno-Exp-Var) in terms of the precision 
of their estimates. Their performance was evaluated 
based on the correlation and the root-mean-squared 
error (RMSE) between the GE metric estimates and 
either (i) the true GE metrics based on env-BVs for 
simulated datasets or (ii) the GE-metrics calculated 
based on adjusted means (i.e. No-Geno estimates) 
for empirical datasets. Therefore, the No-Geno esti-
mators were not evaluated for empirical datasets, as 
these estimates were used as reference values for vali-

dation. Using simulation, a selection coincidence was 
determined by calculating the proportion of common 
genotypes obtained with a given selection intensity 
(e.g. 10% best) between genotypes selected based 
on GE metric estimates and GE metric true values. 
For the genomic prediction of GE metrics of non-
observed genotypes, cross-validation (CV) was per-
formed by repeatedly splitting the datasets into train-
ing and test sets, considering 50 repetitions. The CV 
approach consisted of discarding all phenotypic data 
associated with test genotypes, commonly referred to 
as CV1 in MET experiments [20]. Different training 
set sizes were defined in terms of percentage of the 
full dataset (25%, 50%, and 75%) and precision crite-
ria were calculated based on the test set only.

Statistical software
We conducted all analysis using the R programming lan-
guage version 4.2.2 [38]. We developed a new R-package 
named “GEmetrics” available from the CRAN and from 
GitHub (https:// github. com/ TheRo cinan te- lab/ GEmet 
rics), providing functions for simulating data and calcu-
lating new GE metric estimators. The inference of model 
parameters has been performed using the R package 
“BGLR” [39], with the “Multitrait” function and the fol-
lowing parameters: nIter = 20000, burnIn = 2000, and 
thin = 2. Data visualization and harmonization were car-
ried out using the tidyverse R-package [40]. The plots and 
figures in this study are colorblind-friendly, following the 
Safe pallet of color from the colorblindcheck R-package 
[41].

Results
Simulation‑based evaluation of estimator performance
Simulation of trait and environment parameters: In this 
study, to evaluate the influence of trait and environment 
parameters on the precision of GE metric estimates, we 
simulated MET data varying the following parameters: 
standard deviation of the environmental means ( σµ ), the 
genetic correlation between environments ( ρj,j′ ), herit-
ability ( h2j  ), and sparseness of the data. We considered 
a basic scenario with 0% sparseness and intermediate 
parameter levels for other parameters ( σµ = 1, ρj,j′ = 0.5, 
and h2j  = 0.5). We assessed the impact of each parameter 
by modulating it while keeping the others fixed (Supple-
mentary Table S1).

As a precision criterion, we first used the correlation 
between GE metric estimates and GE metrics calculated 
using simulated env-BVs (Fig.  2). Results revealed large 
differences in precision between GE metrics, regard-
less of the estimator. The two GE metrics assessing the 
genotype superiority (i.e. Lin–Binns and Average) had 

https://github.com/TheRocinante-lab/GEmetrics
https://github.com/TheRocinante-lab/GEmetrics
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higher correlations than the other three metrics assessing 
stability. Increasing the values of σµ and h2j  parameters 
increased the correlations while the sparseness param-
eter decreased the correlation for all GE metrics. Regard-
ing the genetic correlation ρj,j′ , increasing the parameter 
values was associated with a slightly decreasing correla-
tion for Ecovalence, Environmental Variance, and Fin-
lay–Wilkinson and a slightly increasing correlation for 

Lin–Binns and Average. The phenotype-based estimator 
(No-Geno) underperformed compared with the esti-
mators taking advantage of the genomic information 
(Geno-Exp and Geno-Exp-Var) for all scenarios. The 
Geno-Exp-Var estimator had a slightly higher correla-
tion for Ecovalence than Geno-Exp for all simulation 
parameters. This difference between the two estimators 
was amplified with increasing sparseness and decreasing 
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Fig. 2 Correlation (y‑axis) between the GE metrics calculated from simulated environment‑specific breeding values and the estimates obtained 
from No‑Geno, Geno‑Exp, and Geno‑Exp‑Var estimators. Different simulation parameter levels were considered (x‑axis): standard deviation 
of the environmental means ( σµ = Env.Mean.SD), genetic correlation between environments ( ρj,j′ = CORg), heritability ( h2j  = h2), and sparseness 
of the data (0%, 25%, 50%, and 75%). All simulation parameters were modulated one by one around a basic scenario
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heritability. Unlike Ecovalence, the other GE metrics 
presented similar correlation values for all simulation 
scenarios when comparing Geno-Exp and Geno-Exp-
Var estimators. We confirmed all these results using the 
scaled RMSE as an alternative precision criterion (Sup-
plementary Figure S1).

Coincidence of Selection: To evaluate the ability of the 
new estimators to identify the most superior and/or sta-
ble genotypes among a set of individuals, we defined the 

selection coincidence as the proportion of common gen-
otypes selected using GE metric estimates and GE metric 
true values, with a given selection intensity. Note that this 
approach was not applied to Finlay–Wilkinson, as stabil-
ity cannot be assessed in terms of low (or high) values, 
unlike Ecovalence, Environmental Variance and Lin–
Binns for which a low value is desirable. For Average, the 
direction towards which the selection is made depends 
on the trait. A low value was considered desirable here, 
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Fig. 3 Coincidence of selection for a selection intensity of 10% between genotypes selected using GE metric estimates (y‑axis) and with the GE 
metric values calculated using env‑BVs (x‑axis). Estimators considered included: No‑Geno, Geno‑Exp, and Geno‑Exp‑Var. The threshold indicating 
the 10% best genotypes is indicated by a grey vertical dashed line for GE metric true values and by colored horizontal lines for GE metric estimated. 
The example shown consists of one simulation run considering the basic scenario with 25% sparseness. The coincidence of selection is indicated 
in percent for each estimator in the upper left corner of each panel
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but the opposite choice could have been considered with-
out changing the results. The basic simulated scenario 
was used for comparison, but with 25% sparseness to 
highlight the differences between Geno-Exp and Geno-
Exp-Var, which tend to increase with sparseness. The 
coincidence of selection was first illustrated based on one 
simulation run with 10% selection intensity (Fig. 3), dis-
playing coincident genotypes as large bullet points, and 
further summarized over 50 replicates (Table 2). Overall, 

the percentages of coincidence of selection presented 
in Table  2 confirmed the superiority of Geno-Exp and 
Geno-Exp-Var estimators over No-Geno in all tested sce-
narios. When compared, Geno-Exp and Geno-Exp-Var 
estimators generally presented a similar coincidence of 
selection. However, for Ecovalence, Geno-Exp-Var had 
higher values than Geno-Exp when considering 10%, 
15%, and 20% selection intensity (Table  2). Regardless 
of the estimator, the highest mean values of coincidence 

Table 2 Percentage of selection coincidence among genotypes selected based true GE metric values (i.e. calculated using env‑BVs) or 
with GE metric estimates obtained using the following estimators: No‑Geno, Geno‑Exp, and Geno‑Exp‑Var

The following selection intensities (Sel. Int.) were considered: 5%, 10%, 15%, and 20%, with the corresponding number of selected genotypes indicated in 
parentheses. Data was simulated using the basic scenario but with 25% sparseness. The values correspond to averages over 50 replicates, and the standard deviations 
are shown in parentheses

Intensity Estimator Ecovalence EnvironmentalVar LinBinns Average

5% (10) No‑Geno 7.00 %( 9.09) 14.20% (10.90) 47.40% (13.67) 54.40% ( 9.07)

Geno‑Exp 15.20% (12.49) 30.40% (17.14) 59.00% (14.18) 63.00% (11.29)

Geno‑Exp‑Var 14.60% (13.28) 26.00% (16.54) 60.00% (13.85) –

10% (20) No‑Geno 12.90% ( 7.57) 22.20% ( 9.85) 58.20% (11.01) 60.70% ( 8.63)

Geno‑Exp 23.20% ( 9.52) 38.60% (13.13) 68.10% (11.29) 71.20% ( 8.42)

Geno‑Exp‑Var 23.90% (15.16) 36.90% (14.32) 67.90% (10.88) –

15% (30) No‑Geno 20.80% ( 6.72) 28.13% ( 9.06) 62.87% ( 9.26) 67.27% ( 6.34)

Geno‑Exp 29.20% ( 9.20) 45.00% (10.11) 74.07% ( 7.54) 73.93% ( 6.86)

Geno‑Exp‑Var 31.93% (13.95) 43.07% (10.56) 73.33% ( 7.88) –

20% (40) No‑Geno 26.80% ( 6.53) 33.25% ( 6.25) 68.10% ( 6.52) 70.20% ( 5.97)

Geno‑Exp 35.15% ( 8.02) 50.10% ( 8.75) 77.10% ( 6.32) 77.30% ( 5.91)

Geno‑Exp‑Var 39.75% (10.99) 49.00% ( 9.83) 76.95% ( 6.02) –
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Fig. 4 Predictive ability (y‑axis) of each GE metric considering the basic simulated scenario. The predictive ability was calculated using 
the correlation between GE metrics predictions and reference values (i.e. calculated using adjusted means), and was assessed by cross‑validation 
considering different training set sizes (x‑axis) in percentage of the total number of genotypes (25%, 50%, and 75%). Two estimators were 
compared: Geno‑Exp and Geno‑Exp‑Var
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were achieved by Average followed by Lin–Binns, and 
the lowest values were observed for Ecovalence. Similar 
conclusions could be made considering 0%, 50%, and 75% 
sparseness (Supplementary Tables S2, S3, and S4).

Genomic prediction of GE metrics
Simulation: Using simulations, we investigated the abil-
ity of the new estimators Geno-Exp and Geno-Exp-Var 
to predict the GE metrics of genotypes that were never 
observed over the whole design. To do so, we performed 
cross-validation with increasing training set size (Fig. 4). 
The different estimators were evaluated for their predic-
tive ability, i.e. the correlation between the GE metrics 

predictions and the true GE metric values calculated on 
the test set genotypes. The predictive ability of all GE 
metrics increased with training set size regardless of the 
estimator. The highest values were obtained for Aver-
age, followed by LinBinns, and the lowest values were 
obtained for Ecovalence. For Environmental Variance, 
Finlay–Wilkinson and Lin–Binns, the performance of 
the new estimators (Geno-Exp and Geno-Exp-Var) was 
similar across training set sizes. However, for Ecovalence, 
Geno-Exp-Var outperformed Geno-Exp, in particular 
for a small training test size of 25% of the total number 
of genotypes. We confirmed all these results using the 
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Fig. 5 Predictive ability (y‑axis) of each GE metric for empirical datasets (Maize, Oat, and Sorghum) evaluated for yield (Y) and plant height (PH). 
The predictive ability was calculated using the correlation between GE metrics predictions and reference values (i.e. calculated using the adjusted 
means), and was assessed by cross‑validation considering different training set sizes (x‑axis) in the percentage of the total number of genotypes 
(25%, 50%, and 75%). Two estimators were compared: Geno‑Exp and Geno‑Exp‑Var
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scaled RMSE as an alternative precision criterion (Sup-
plementary Figure S2).

Empirical Datasets: For all empirical datasets, the 
adjusted means for yield and plant height were plotted 
in a scaled boxplot to observe the variability between 
environments (Supplementary Figure S3). In general, the 
variability between environments was higher for yield 
than plant height. Unlike simulations, we did not have 
access to the true value of the GE metrics and could only 
use the phenotype-based estimates obtained from the 
No-Geno estimator as a reference. To avoid over-fitting 
caused by the inclusion of phenotypes in both the train-
ing and validation data, we evaluated the performance of 
the Geno-Exp and Geno-Exp-Var estimators by cross-
validation only, accessing the predictive ability (Fig. 5). In 
general, the predictive abilities obtained were moderate 
to high for superiority measures (Lin–Binns and Average) 
depending on the dataset and the trait. In comparison, 
the predictive abilities obtained for the other stability 
GE metrics were low to moderate. Like with simulations, 
the predictive abilities generally increased with increas-
ing training set size. The performance of Geno-Exp and 
Geno-Exp-Var was very similar across GE metrics, data-
sets, and traits. However, for the prediction of Ecovalence 
using the maize dataset, Geno-Exp-Var outperformed 
Geno-Exp for yield and plant height. The opposite situa-
tion was observed for the prediction of Ecovalence using 
the Sorghum for the same two traits. We confirmed all 
these results using the scaled RMSE as an alternative pre-
cision criterion (Supplementary Figure S4).

Discussion
New genomics‑based GE metric estimators
In this study, we presented new estimators of the follow-
ing GE metrics: Environmental Variance [7], Ecovalence 
[8], Finlay–Wilkinson regression coefficient [9], Lin–
Binns superiority measure [10], and the Average perfor-
mance. Our strategy consisted of calculating the BLUP of 
each GE metric, defined as random variables, based on 
any multi-environment genomic prediction model [30]. 
This approach contrasts with modeling GE metrics as 
model parameters [27–29], which requires fitting dedi-
cated models.

Except for Average, all BLUPs of GE metrics involved 
a squared expectation and a variance term. From these 
theoretical results, we have built two types of estimators: 
Geno-Exp involving only the squared expectation term 
and Geno-Exp-Var involving both terms. In practice, 
applying Geno-Exp essentially involves calculating GE 
metrics using env-GEBVs. These env-GEBVs are com-
mon quantities from the application of a multi-environ-
ment genomic prediction model. Regarding the variance 
term, it requires the P matrix from Eq. (8), which can be 

easily calculated from the model parameter estimates and 
design and covariance matrices.

The precision of new genomics-based estimators was 
compared to that of phenotype-based estimators using 
simulation. Their superiority in terms of estimation 
accuracy was confirmed for all GE metrics (Fig.  2 and 
Table  2). The substantial gains observed could probably 
be explained by the ability of the new genomics-based 
estimators to borrow information from relatives. Simi-
larly, when focusing on estimating TBVs rather than GE 
metrics, gains in precision have been observed when 
combining genomic and phenotypic data [42].

The most interesting feature of our novel estimators is 
their ability to handle missing values, which is referred 
to here as sparseness. The gains, compared to the phe-
notype-based estimator (No-Geno), generally increased 
with sparseness (Fig.  2). This ability to handle missing 
values could be extended to the extreme case of predict-
ing the GE metric values of genotypes that have never 
been observed over the design. Note that this application 
was only possible using genomics-based estimators. We 
demonstrated that GE metrics could be predicted with 
moderate accuracies using simulated and empirical data 
(Figs. 4 and 5). The accuracies obtained from the empiri-
cal data were often lower than those obtained from simu-
lations. This could be explained by the fact that, unlike 
simulations, we did not have access to true GE metric 
values (i.e. values calculated using env-BVs), but only to 
phenotype-based estimates as reference values. Simi-
larly, assessing the accuracy of genomic prediction on 
empirical data sets is impacted by the heritability of phe-
notype-based BV estimates used to validate predictions. 
This phenotype-based accuracy is commonly divided by 
the square root of the heritability to obtain an estimate 
of the true accuracy [43]. However, when it comes to the 
predictive ability of GE metrics, a simple division by the 
square root of the heritability is not sufficient, and addi-
tional research is required to determine the appropriate 
adjustment.

Regarding the differences between the two genomics-
based estimators, we demonstrated that the use of the 
complete BLUP (Geno-Exp-Var) was beneficial for Eco-
valence but less so for the other GE metrics. From a theo-
retical perspective, the additional variance term included 
in Geno-Exp-Var is used to add variance to environment-
genotype combinations that are poorly predicted. With-
out this term, a genotype without any observation and 
unrelated to the rest of the population would be consid-
ered perfectly stable according to Ecovalence (i.e. esti-
mate close to zero), since it would be predicted at the 
mean value of each environment. Due to the presence of 
the variance term, this hypothetical genotype would not 



Page 13 of 16Carvalho et al. Plant Methods           (2024) 20:85  

be considered perfectly stable as its Ecovalence would be 
estimated above 0.

In practice, we recommend applying the complete 
genomic BLUP of GE metrics, which we define here as 
Geno-Exp-Var estimators, because they are unbiased. 
However, replacing phenotypes with env-GEBVs in tra-
ditional phenotype-based estimators has also proven to 
perform well for most GE metrics, which justifies this 
approach.

For Finlay–Wilkinson, the genomics-based estima-
tors were obtained by approximating the expectation of 
the ratio from in Eq. 4 by the ratio of the expectation of 
the numerator and denominator, which consists of a first 
order Taylor series approximation [31]. In the future, 
genomics-based estimators of Finlay–Wilkinson may 
be improved by considering higher order Taylor series 
approximations.

All GE metric estimators could theoretically be applied 
in the absence of genomic information, provided that the 
model from Eq. (6) is identifiable. To achieve this, the 
genomic relationship matrix should be replaced by the 
identity matrix, and certain genotypes should have repli-
cates in certain environments to separate genetic covari-
ance from error covariance. Because there would be no 
information shared between relatives, the accuracies 
associated with predicting GE metrics would probably be 
inferior to those obtained with genomic information.

Impact of environment and trait parameters on GE metric 
estimates
The GE metrics considered in this study serve as tools 
for assessing both genotype stability and superiority 
across various environments. These metrics are sensi-
tive to many parameters that characterize the trait and 
environment. Likewise, the ability to estimate these met-
rics can be influenced by these same trait and environ-
ment parameters, possibly differently depending on the 
estimator. We have, therefore, investigated the impact of 
such parameters on the estimation accuracy of our new 
estimators.

The first parameter considered was the environment-
specific heritability ( h2j  ), which quantifies the propor-
tion of the variance that can be attributed to genetics in 
a given environment. As expected, the estimation accu-
racy increased with the heritability, regardless of the GE 
metric and estimator. Phenotypic data with high herit-
ability are less affected by environmental variations, mak-
ing their estimation more straightforward. This concept 
is also crucial in genomic prediction, where high herit-
ability has been shown to improve the accuracy of pre-
dictions [44].

The second parameter was the level of sparseness mon-
itoring the amount of information available to estimate 

the GE metrics. As expected, increasing sparseness was 
associated with decreasing estimation accuracy, regard-
less of the GE metric and estimator.

The third parameter considered in this study was 
the genetic correlation between pairs of environments 
( ρj,j′ ). This parameter was used to control the level of 
GE interaction generating differences in genotype rank-
ing between environments, commonly referred to as 
crossovers and as opposed to the convergence/diver-
gence of env-BVs according to the environment [45]. The 
impact of genetic correlations between environments 
differed depending on whether the GE metric character-
izes stability or superiority. For superiority GE metrics, 
i.e. Average and Lin–Binns, increasing genetic correla-
tions were associated with increased accuracy (Fig.  2). 
In the absence of GE interaction, the identification of the 
best-performing genotype becomes easier as all environ-
ments are consistent with each other. For stability meas-
ures, increasing genetic correlations was associated with 
decreased accuracy (Fig. 2). In the absence of GE inter-
action, all genotypes tend to become equally stable, with 
differences in performance due solely to shared environ-
mental effects. As a consequence, assessing which geno-
type is the most stable becomes very difficult, regardless 
of the estimator.

Finally, the last parameter was the variance of the envi-
ronment means σ 2

µ , which controls the proportion of 
overall variance due to inter-environmental variability 
relative to intra-environmental variability. This parameter 
only had an impact on the precision of Finlay–Wilkinson 
and Environmental Variance (Fig. 2). For Finlay–Wilkin-
son, a higher variance of the environment means directly 
impacts the variable on which env-BVs are regressed. The 
greater the variance, the easier it is to adjust the regres-
sion and estimate the regression coefficient.

The main drawback of the genomic prediction model in 
Eq. 6 is the difficulty associated with estimating variance 
parameters ( �G and �E ) correctly when the number of 
environments becomes large [20]. In such cases, factor 
analysis approaches may be considered to help structure 
the genetic covariance matrix �G and reduce the number 
of parameters to estimate [46, 47]. However, the simpli-
fied GE structure resulting from those approaches may 
limit the ability to identify unstable genotypes according 
to specific GE patterns not accounted for in the factor 
analysis model. Alternatively, if many genotypes per envi-
ronment are connected by pedigree relationships, it may 
not be necessary to borrow information across environ-
ments, as sufficient data from observed relatives in each 
environment can enable accurate predictions. In this 
scenario, it would be feasible to apply a simplified model 
that ignores genetic covariance between environments, 
using a heterogeneous diagonal �G matrix.
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Conclusions
Assessing the superiority and/or the stability of genotype 
performance over a set of target environments is crucial 
to making the most suitable varieties available to farm-
ers. An accurate evaluation generally involves costly 
MET experiments where all genotype-environment com-
binations are observed repeatedly in each environment. 
In practice, the data resulting from these experiments 
is often incomplete due to various issues at different 
stages of the experiment (e.g. germination defects, plant 
establishment, floral abortion, etc.). Our new estimators 
offer an elegant way to deal with incomplete datasets as 
missing genotype-environment combinations can be 
predicted in the presence of genomic information. Even 
when the dataset is complete, we have demonstrated that 
gains in accuracy can be expected by exploiting informa-
tion shared between relatives.

METs for which genomic information is available for all 
genotypes are likely to become the norm in breeding com-
panies. We recommend estimating the proposed GE met-
rics along with the average genotype performance, which is 
the most common metric characterizing genotype perfor-
mance. Two genotypes with similar average performance 
may exhibit contrasting behavior in terms of stability, and 
an unstable genotype is susceptible to underperforming 
in given environmental conditions. Such information is of 
particular interest from late breeding stages to variety reg-
istration. The availability of accurate GE metric estimates 
provided by our new estimators should facilitate the iden-
tification of high-performance and stable genotypes in a 
range of target environments.

Appendix
Note that Lin–Binns (Eq.  1), Environmental Variance 
(Eq. 2), Ecovalence (Eq. 3), and the numerator/denominator 
of Finlay–Wilkinson (Eq. 4) can be expressed as:

where Qi is a GE metric with quadratic form, a is a coef-

ficient, g is the vector of env-BVs of dimension NJ, C i and 

Di are contrast matrices of dimension J × NJ  specific to 
individual i.

The expected value of Qi conditional on phenotypes is

where ĝ  is the vectors of BLUPs of environment-specific 
values and “ Tr ” stands for the trace of the matrix (i.e. the 
sum of diagonal elements).

For Lin–Binns (Eq. 1), C i = Di has the following form:

(18)Qi = a× gTCT
i Dig

(19)E(Qi|y) =a×

[
ĝ
T
CT

i Diĝ + Tr
(
CT

i DiP
)]

For Environmental Variance (Eq. 2), C i = Di has the fol-
lowing form:

For Ecovalence (Eq. 3), C i = Di has the following form:

For the numerator of Finlay–Wilkinson (Eq. 4), C i has the 
same form as Eq. (21) and Di has the following form:
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1 if i′ = i and j = j′
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0 otherwise
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