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Introduction
Chinese Medicinal Plants (CMPs) can be directly used 
in the clinical practice of traditional Chinese medicines. 
It has been an essential part of healthcare for thousands 
of years, with a focus on using natural plant-based rem-
edies to promote health, prevent illness, and treat vari-
ous medical conditions [1–3]. CMPs are employed as 
either a primary or complementary method to address 
a diverse spectrum of health concerns, spanning from 
minor ailments to chronic conditions. The important role 
of CMPs in the prevention and treatment of many epi-
demic, chronic, and infectious diseases, such as COVID-
19, CMPs has been widely demonstrated and recognized 
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Abstract
Background Traditional Chinese Medicinal Plants (CMPs) hold a significant and core status for the healthcare system 
and cultural heritage in China. It has been practiced and refined with a history of exceeding thousands of years for 
health-protective affection and clinical treatment in China. It plays an indispensable role in the traditional health 
landscape and modern medical care. It is important to accurately identify CMPs for avoiding the affected clinical 
safety and medication efficacy by the different processed conditions and cultivation environment confusion.

Results In this study, we utilize a self-developed device to obtain high-resolution data. Furthermore, we constructed 
a visual multi-varieties CMPs image dataset. Firstly, a random local data enhancement preprocessing method is 
proposed to enrich the feature representation for imbalanced data by random cropping and random shadowing. 
Then, a novel hybrid supervised pre-training network is proposed to expand the integration of global features 
within Masked Autoencoders (MAE) by incorporating a parallel classification branch. It can effectively enhance the 
feature capture capabilities by integrating global features and local details. Besides, the newly designed losses are 
proposed to strengthen the training efficiency and improve the learning capacity, based on reconstruction loss and 
classification loss.

Conclusions Extensive experiments are performed on our dataset as well as the public dataset. Experimental results 
demonstrate that our method achieves the best performance among the state-of-the-art methods, highlighting the 
advantages of efficient implementation of plant technology and having good prospects for real-world applications.
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by the international community [4–6]. The quality of 
CMPs is one of the major factors in ensuring medication 
safety and clinical security [7–10].

Typically, biological techniques and chemical methods, 
such as mass spectrometry, gas chromatography, etc., 
can be used for adulteration detection [11–13]. However, 
these analyses require highly trained professionals, and 
also it is time-consuming. On the other hand, molecu-
lar markers serve as a fast and promising analytical way, 
but it is cumbersome and high professional threshold 
[14, 15]. Additionally, the evaluation of CMPs by manual 
identification lacks objectivity and scientificity. As an 
effective alternative, the research hot spot for the identi-
fication of CMPs based on intelligent sensory technology 
(such as electronic nose, electronic tongue, and elec-
tronic eyes) has aroused strong attention. Previous works 
[16–18] have demonstrated the effectiveness of discrimi-
nation, however, those require expensive equipment and 
are not efficient. Additionally, image processing by hand-
designed features relies heavily on the analysis of shallow 
visual features, lacking the capture of high-level seman-
tic features. Consequently, the approaches for rapid and 
accurate detection of CMPs are necessary for practical 
use and market demands.

With the continuous innovation and research in com-
puter technology, deep learning in following-up on the 
effects of image processing has been widely recognized 
for the identification of food, plant, agriculture, medical 
care, and multiple fields [19–23]. It has also been used 
for the identification of CMPs. Zhou et al. [24] combined 
near-infrared spectroscopy and convolutional neural net-
works to analyze medicinal plants from different origins. 
Wang et al. [25] proposed hyperspectral imaging assisted 
by an attention mechanism and a long short-term mem-
ory network to identify the origin of the coix seed and 
predict the nutritional content. Miao et al. [26] fused 
ConvNeXt with the ACMix network to extract features 
and classify traditional Chinese medicine. Bai et al. [27] 

combined deep learning and spectral fingerprint features 
to accurately predict the soluble solids content of jujube 
in multiple geographical areas. Yan et al. [28] used vis-
ible/near-infrared combined with deep learning to iden-
tify the geographical origin of licorice. Yue et al. [29] 
employed near-infrared 2DCOS images combined with 
a residual neural network to identify the origin of Yun-
nan’s big leaves. Compared with widely used generative 
adversarial networks (GANs) [30, 31] and CNN-based 
methods [32–34], the Masked AutoEncoders (MAE) [35] 
have caused public concerns due to reducing dependence 
on data. In this paper, our goal is to investigate a rapid 
and effective strategy for identifying the different variet-
ies of CMPs. Inspired by MAE and CoAtNet, a hybrid 
structure by fusing MBConv [36] and Transformer [37] 
has been designed to better obtain the local details and 
global features for the classification of CMPs.

To the best of our knowledge, there is no public medic-
inal fruit plants dataset, thus, we create a new data-
set. We create a comprehensive visual multi-varieties 
CPMs images dataset, where high-resolution images 
are captured using a self-developed acquisition device, 
the details are shown in Sect.  2. On the other hand, to 
enhance MAE for extracting global features and reduc-
ing information loss, we propose a novel framework. 
The overview of our model is illustrated in Fig.  1, and 
details of our proposed methods can be found in Sect. 3. 
Finally, the experimental results and analysis are shown 
in Sect. 4, with a conclusion drawn in Sect. 5. The contri-
butions of this study are highlighted as follows:

(1) Utilizing self-developed equipment to acquire 
our dataset, which is the first publicly dataset related to 
medicinal fruit plants.

(2) Compared with the previous works, the proposed 
method addresses the limitations of MAE in extracting 
global features and reduces information loss. By combin-
ing a new pre-training paradigm integrating self-super-
vised and supervised label information, it can mitigate 

Fig. 1 The image detection to detection results. (A) is the image acquisition device. The device is composed of a box, a light system, and an image ac-
quisition system, which can provide stable and consistent environmental conditions. (B) is the obtained medicinal plant images of different types. (C) is 
the detected images with bounding boxes
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the model overfitting to imbalanced data and enhance 
adaptability.

(3) In response to the characteristics of the dataset, a 
novel random data augmentation method is proposed to 
enhance the model’s focus on edge regions and feature 
extraction by randomly adding shadows to local areas.

(4) Extensive experiments are performed on our data-
set as well as public datasets. The experimental results 
show that our model achieves the highest accuracy 
among state-of-the-art models. Our proposed model has 
excellent practical value for plant technology.

Materials
Sample preparation
All samples are obtained from the Lotus Pond medicinal 
market in Chengdu. Our collection has 14 different types 
of samples as long as their derived products. These sam-
ples are certified by experts from the Chengdu Institute 
of Food and Drug Control (Chengdu, China). The dry 
samples are derived from intact samples and are stored in 
ordinary cold storage.

Data acquisition
A self-developed high-resolution data acquisition device 
(Canon EOS 60D) is used to acquire images as shown in 
Fig. 2A. The device is composed of a box, a light system, 
and an image acquisition system, which can provide sta-
ble and consistent environmental conditions. The image 
acquisition process is illustrated in Fig. 2.

The box is made of wood and has a reflective gray coat-
ing with a reflectivity of 18%. PHILIPS Graphical TL-D 
light with a temperature of 5000  K is used in the light 
system. Four light tubes and scattering plates are utilized 
to eliminate any shadowing during the image-capturing 

process. All images are captured using a 35 mm CMOS 
sensor with a resolution of 5120 × 3840, as shown in 
Fig.  2B. Images are annotated and cropped to obtain a 
target. (Fig.  2C), while incomplete, blurry, and inappro-
priate images are removed. Our dataset is shown in Fig. 3.

shanzha is a medicinal and edible plant, which com-
monly applied in clinical practice by slices. In our 
dataset, there are four varieties from the same origin, 
including shanzha, chaoshanzha, jiaoshanzha, and shan-
zhatan. They are fired at different temperatures by sliced 
shanzha. For example, chaoshanzha is fired at 100℃, 
jiaoshanzha is fired at 150℃, and shanzhatan is fired at 
200℃. With the fluctuation of temperature during frying, 
there are alterations in both the morphology and color, 
leading to variations in pharmacological effects. Simi-
larly, jiangbanxia, fabanxia, qingbanxia, and jingbanxia 
are from the same origins, while they are obtained from 
mature harvested banxia by different processing meth-
ods. Specifically, qingbanxia is obtained by purifying 
banxia, jiangbanxia is made by mixing ginger juice and 
banxia, and fabanxia is obtained by soaking banxia in 
licorice lime liquid. Additionally, jingbanxia is a highly 
valuable medicinal plant prepared by mixing banxia with 
various adjuvants. jiangnanxing is a processed product 
derived product from Tiger’s Paw Southern Star and has 
completely different medicinal effects from banxia. On 
the other hand, shuibanxia has a different origin and 
effects from banxia. Furthermore, lubeimu, qingbeimu, 
and songbiemu are three different species of chuanBeimu, 
they have different market values due to their different 
morphology and color.

We explain the different morphologies and color 
changes in our dataset. According to the properties of 
images, all data are detected to remove redundant pixels 

Fig. 2 The dataset consists of 14 different CHMs and their produced products. Namely (A) chaoshanzha (B) jiaoshanzha (C) shanzhatan (D) jiangbanxia 
(E) lubei (F) qingbei (G) songbei (H) fabanxia (I) shengbanxia (J) jingbanxia (K) shuibanxia (L) jiangnanxing (M) shanzha (N) qingbanxia
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that contain no information. During the data collection 
processing, we collect multiple images of the same plant 
sample from different angles to enrich the diversity of 
data. Thus, we compile the specific quantity of each 
medicinal plant, and the distribution of the original data-
set is shown in Fig. 4. The blue represents the raw sam-
ples, while the orange is the collected original data.

Methodology
Overview architecture
Our framework for CMP classification is shown in Fig. 1. 
Our model has 3 parts: (A) Encoder, (B) Decoder, and 
(C) Classification. Specifically, we use ViT to extract 
global features from different images. Additionally, we 
use MBConv to reduce the number of parameters and 
improve learning ability. Thus, the encoder is dedicated 
to learning the structural knowledge of images by incor-
porating MBConv and ViT. The patches and masks are 
processed to reconstruct the original images. Addition-
ally, it harnesses the potential of the ViT in capturing 
essential information. Furthermore, a parallel super-
vised classification branch is introduced to make up 
the integration of global features within MAE. Lastly, 
the decoder aims to predict the features of the masked 
regions. As a result, the model accomplishes image 
classification.

Taking advantage of the sparsity of images and the 
learning ability of MAE, the combination Transformer 

with MBConv is used to extract local deep features. the 
loss is designed to compute for all patches. Moreover, 
we can generate diverse data by random masking, which 
provides a powerful regularization effect in supervised 
pre-training.

Random data enhancement
We first use Grad-CAM [38] to analyze which parts are 
more important for our model, the heatmap is illustrated 
in Fig. 5. Through the heatmap we can observe that our 
model focuses more on image edges, with limited atten-
tion to other areas. According to this observation, we 
propose a random data enhancement method that aims 
to improve the feature representation by selectively aug-
menting underrepresented minority images through ran-
dom cropping and random shadowing.

Random shadow augmentation
As shown in Fig.  6, when processing the input image, 
a random value p  is generated within the range 0 to 
1. If p  is less than dark_rate , a random rectangular 
region is selected, and the values of RGB channels are 
decreased to create a shadow. Otherwise, the original 
image is kept.

The shadow areas Drect  are computed in:

 X (i, j, c) = x (i, j, c)− shadow, (i, j) ∈ Drect, c ∈ (0,1, 2) (1)

Fig. 3 The distribution of the number of images within each CMP in our dataset. The blue represents the raw samples, while the orange is the collected 
original data
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Fig. 5 The Grad-CAM heatmap is based on MAE. The first row and Third row display original images, while the second row and 4-th row show the Grad-
CAM heatmap results. The heatmaps are where the model is focused on

 

Fig. 4 The overview of our identification model
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Where x (i, j, c) represents the RGB channel in the area, 
shadow, (i, j) is the levels of shadow intensity. X (i, j, c) is 
the RGB value after shadow darkening.

Random crop augmentation
Simultaneously, a random local enhancement method is 
used for data preprocessing in this study. For the different 
classes, the proportion A is calculated, and 1− A is used 
as the threshold. A random point and a random length 
are selected, and the local region is cropped. This is cal-
culated in Formula 2.

 

{
γ = 1 + (1 − A)× d

γ = 1− (1 − A)× d
 (2)

where d  represents the Euclidean distance from the cen-
ter, d ∈ [0, 112]. The threshold for random cropping is 
higher for fewer classes to enhance the capture of local 
information. Moreover, images are enhanced by random 
rotation and flip. The results of data augmentation are 
shown in Fig. 7.

Nonlinear transform of self-attention
Generally, the image is denoted as X ∈ Rh×w×C , which 
are divided into N = h× w/P 2  non-overlapping 
patches.

 X =
{
x1, x2 . . . xn

}
 (3)

where xn ∈ RP 2C  is the vector of patch, P  represents the 
resolution of patch. Each patch is projected as a 1D token 
embedding. Then, Nm  patches are randomly masked, 
and remaining Nv  are visible patches, N = Nm +Nv . 
Xv =

{
xk
∣∣ k /∈ M

}
 is defined as the set of visible pixels, 

Xm =
{
xk
∣∣ k ∈ M

}
 is the set of masked pixels, where M  

represents the indices of randomly masked pixels. Thus,

Fig. 7 In the partial results of data augmentation results, each row shows the randomly cropped data of different classes, namely shanzha, qingbanxia, 
jingbanxia, and jiangbanxia, respectively

 

Fig. 6 In the processing of Random shadow enhancement, p  is a random 
value between 0 to 1, dark_rate  is the added shadow probability
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 X = Xm ∪Xv,Xm ∩Xv = ∅  (4)

In this study, the size of 224× 224 image is divided into 
14× 14 grid of blocks, where each block has a size of 
16× 16. Each visible patch is projected into an embed-
ding, and the positional embeddingEpos  is added to 
ensure the position of patch.

 z =
[
xcls, x

1
pE, x2pE . . . ., xNp E

]
+Epos  (5)

Then, it is computed by self-attention, the scaled dot-
product attention is to obtain Z ∈ Rd×d .

 Z = Attn (z) = Softmax(QKT/
√
w)V  (6)

the Softmax  attention Attn(·)  with a global receptive 
field works as the following nonlinear mapping:

 y′ = LN(Z + FFN (LN (Z)))  (7)

where LN(·) is the Layer Normalization that essentially 
is a learnable column scaling with a shift, and FFN(·)  is 
a standard two-layer feedforward neural network applied 
to the embedding of each patch. The scaled dot-product 
attention (6) of Z , the jth element of its ith row zi is 
obtained in Formula 8.

 
Zj
i =

e(QKT/
√
w)i

∑h
j=1 e

(QKT/
√
w)ij

.V = Softmax(qiK
T/

√
w)V  (8)

From Formula 7, the representation space for an encoder 
layer in MAE is spanned by the row space of V and is 
being nonlinearly updated layer-wise. The embedding for 
each patch serves as a basis to form the representation 
space for the current attention block.

Compared with CNN, the global self-attention mech-
anism ignores some local information about images, 
especially fine-grained features. Thus, y′  is processed by 
depth-wise convolution to obtain deep details,

 y = DepthConv (y′) (9)

CNN is acting on a pixel level and is locally supported, 
thus having a small receptive field. MAE is globally sup-
ported, which means it can learn effectively the inter-
action between far-away patches. Transformer can 
aggregate coarse-grained features and expand the field of 
the convolutional blocks. Therefore, the hybrid structure 
exhibits superior performance.

Supervised branch
The mask token is a learnable vector shared 
by masked patch, and then is connected to the 

unshuffled representation of the unmasked patches. Let 
Nm ∈ R1×1×d  be the learned mask token embedding, and 
the index set of masked and unmasked patches as W and 
U, respectively. Thus, the affine maps are generated for 
{Q′ , K ′, V ′} .

 

∥∥∥∥∥∥

n∑

j=1

Attn (Qi,Kj)Vi −
∑

j∈U

(
Q′

i, K
′
j

)
V ′

i

∥∥∥∥∥∥
< Cn−1

 (10)

where Attn(·)  denotes the attention kernel, which maps 
each patch’s embedding represented by the rows of Q, 
K to a measure of how they interact. It shows that the 
network interpolates the representation using global 
information from the embeddings learned by the MAE 
encoder, not just the nearby patches. For the embedding 
of masked patch i ∈ W, vt+1

i  is the output embedding of 
a decoder layer, vti  is the input from the encoder, then 
vt+1
i  is computed:

 
vt+1
i =

∑

j∈U
ajv

t
i  (11)

Where aj(vi1 . . . .vik) is a set of weights based on 
unmasked patches, U = {i1 . . . ik} . To prove that the 
latent representations of the masked patches are inter-
polated globally based on an inter-patch topology that 
is learned by the attention mechanism. To better learn 
the feature representations of data, the supervised label 
information is added. Simultaneously, we introduce a 
regularization term through the supervised branch to 
help prevent the model from overfitting to imbalanced 
data and improve its generalization ability.

Loss functions
We optimize the reconstruction loss and classification 
loss at the same time. Reconstruction loss quantifies the 
disparity between the input data and the model’s recon-
structed output. It incentivizes the model to acquire 
meaningful representations of the input data by penal-
izing inconsistencies between the original input and the 
reconstructed output. Classification loss is used to quan-
tify the disparity between the predicted labels and the 
ground truth labels. The goal of the classification loss is 
to prevent the model from overfitting to imbalanced data 
and improve the generalization ability. The overall loss is 
shown:

 Loss = LossMSE + LossClS  (12)

 
LossMSE =

1

M
∑m

0 (y − x)2
 (13)



Page 8 of 18Tan et al. Plant Methods           (2024) 20:81 

According to the characteristics of the dataset, 
LabelSmooth [38] is selected as the classification loss 
function:

 
LossLS = −

n∑

i

y (i) log (p (xi)) (14)

 
y (i) =

{
ε
n
i �= target

1− ε+ ε
n
i = target

 (15)

The penalty factor ε is introduced to emphasize the 
importance of low probability distributions. Therefore, it 
is used to address overfitting and insufficient supervision, 
and ε is set to 0.25.

Results and discussions
Training paraments
In this study, the model is optimized by the AdamW 
[39] algorithm. The initial learning rate is 1e-3, and the 
learning rate decay strategy is StepLR [40]. The batch 
size is set to 32, the gamma is set to 0.1. The experiment 
is based on Pytorch1.8.1 and Python3.9. The model is 
trained with Nvidia 2080Ti, and with 11G GPU. The final 
pre-trained model is obtained when reaching 400 epochs. 
For the fine-tuning, the initial learning rate is set to 1e-3, 
and the learning rate decay strategy is Cosine Annealing. 
The input image size is 224× 224, the batch size is set to 
32, and the final model is obtained when it reaches 200 
epochs.

Random data enhancement
Random shadow augmentation
To test suitable parameters for random shadow augmen-
tation, the experiments are performed. The four differ-
ent shadow sizes (16, 32, 64, 128), three levels of shadow 
intensity (20, 30, 40), and four different dark rates (0.1, 
0.2, 0.3, 0.4) are respectively selected. In fairness, the 
remaining parameters remain unchanged. The experi-
mental results are shown in Table 1.

The experimental results reveal that the excessively 
large shadow size and low brightness have a detrimental 
impact on the performance of the model. Further analysis 
reveals that only a portion of the data is affected by shad-
ows. When we give a higher dark rate, we can see most 
of the training data becomes shadow-affected, resulting 
in excessive shadow processing. Conversely, the test-
ing set contains fewer shadow-affected data, leading to 
a decrease in accuracy. The optimal results are attained 
with a shadow size of 32, a shadow intensity of 30, and 
a dark rate of 0.3. Simultaneously, 1000 data is added to 
each class.

Random crop augmentation
Similarly, to test suitable parameters for random crop 
augmentation, the experiments are performed. And the 
four different crop sizes (16, 32, 64, 128) are selected. The 
experimental results are shown in Table 2.

The experimental results show that the small crop sizes 
can reduce the identification performance of the model. 
Upon further analysis, the limited features are learned by 
the small crop sizes. And the optimal results are attained 
with a crop size of 128. According to the size of the origi-
nal data of each class, the data of random crop augmenta-
tion are listed in Table 3.

Evaluation of identification performance
We split the data into 3 parts, that is, 70% of the data as 
the training set, 15% of the data as the testing set, and 
the remaining 15% of the data as the verification set. To 
measure our model the identification accuracy, we select 
4 metrics to measure our model performance, including, 
Precision, Recall, Specificity, and F1 Score [41, 42].

 
Precision =

TP

TP + FP
 (16)

Table 1 Random shadow augmentation experiment
Shadow 
Sizes

Shadow Intensity Dark_rate Top-1 Accuracy (%)

16 30 0.4 98.19
32 30 0.4 98.19
64 30 0.4 97.41
128 30 0.4 96.87
32 30 0.3 98.73
32 30 0.2 98.19
32 30 0.1 98.24
32 20 0.3 98.19
32 40 0.3 98.1

Table 2 Random crop augmentation experiment
Crop Sizes Top-1 Accuracy (%)
16 96.67
32 96.97
64 97.78
128 98.73

Table 3 The data for random crop augmentation
Classes Number Classes Number
(A) chaoshanzha 905 (H) shengbanxia 1236
(B) jiaoshanzha 941 (I) fabanxia 1437
(C) shanzhatan 894 (J) qingbanxia 1342
(D) jiangbanxia 1275 (K) shanzha 1648
(E) lubeimu 774 (L) jingbanxia 1764
(F) qingbeimu 730 (M) shuibanxia 1403
(G) chuanbeimu 489 (N) jiangnanxing 1342
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Recall =

TP

TP + FN
 (17)

 
Specificity =

TN

FP + TN
 (18)

 
F1Score =

2× (Precision × Recall)
Precision + Recall

 (19)

where TN is the number of True Negative, and TP is 
the number of True Positive. FN indicates the number 
of False Negative, and FP indicates the number of False 
Positive. The detailed results are shown in Table 4. Our 
method achieves satisfactory results in these 4 metrics 
across different classes.

Our model achieves excellent results. Additionally, to 
further analyze our model performance, we visualize the 
confusion matrix and ROC curve, as shown in Figs. 8 and 
9, respectively.

The results are harmonious with the classification 
results in Table  4. There are certain errors among dif-
ferent classes, especially qingbanxia and jingbanxia. 
qingbanxia and jingbanxia are both processed from 
banxia by different processing methods, resulting in 

similar morphology and textures. And the color is the 
most prominent distinction. Consequently, variations 
in angles and lighting conditions can impact visual 
differentiation.

Table 4 The Experimental classification results
Classes Precision Recall Specificity F1 Score
(A) chaoshanzha 1.0 1.0 1.0 1.0
(B) jiaoshanzha 1.0 1.0 1.0 1.0
(C) shanzhatan 1.0 1.0 1.0 1.0
(D) jiangbanxia 1.0 0.988 1.0 0.994
(E) lubeimu 0.99 1.0 1.0 0.995
(F) qingbeimu 0.995 1.0 1.0 0.997
(G) chuanbeimu 0.999 1.0 1.0 0.999
(H) shengbanxia 0.998 0.998 1.0 0.998
(I) fabanxia 0.96 0.957 0.994 0.958
(J) qingbanxia 0.936 0.938 0.986 0.937
(K) shanzha 0.971 0.972 0.992 0.971
(L) jingbanxia 1.0 0.985 1.0 0.992
(M) shuibanxia 0.979 1.0 1.0 0.993
(N) jiangnanxing 0.991 0.996 1.0 0.993

Fig. 8 The experimental results of the confusion matrix. The numbers from 0 to 13 correspond to different classes. The columns represent the predicted 
labels, the rows represent the true labels. The values corresponding to rows and columns have indicated the number of correct classes predicted from 
true data
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Comparison with different models
Multiple different ConvNets and state-of-the-art Trans-
former models are compared with ours, to verify the 
significance of the proposed method. Focalloss has been 
chosen as the loss function for all, including VGG [43], 
ResNet [44], DenseNet [45], EfficientNet [46], etc. Other-
wise, to reflect the significant effect on the computation 
cost, the frame per second (FPS) and floating-point oper-
ations per second (FLOPs) are computed. The compara-
tive experimental results are shown in Table 5.

As shown in Table  5, the proposed method has 
achieved the highest Top-1 accuracy, while CoAtNet 
had the lowest Top-1 classification accuracy of 93.58%. 
Compared to MAE, ours improved by 2.09%. Notably, 
CoAtNet displayed constraints in its feature-capturing 
capabilities, and ViT necessitated larger datasets by 
Transformer modules. The discriminative efficacy of 
these two models falls short in comparison to the others. 
Ours exhibits a higher FPS compared to the MAE, dem-
onstrating the small computation cost. Compared with 
ViT and CNN models, ours has a lower FPS speed due 
to its increased computational demands. ViT typically 
requires more computational resources to process input 
images, including patch segmentation, patch embed-
ding, and multi-layer Transformer modules. In contrast, 
CNN models leverage features such as local connections 
and parameter sharing, leading to higher computational 

efficiency during image processing. Additionally, ViT 
often necessitates longer training times and a greater 
number of parameters to achieve optimal performance, 
which consequently results in slower inference speeds. 
The experimental results of the confusion matrix for dif-
ferent models are shown in Fig. 10.

Analysis of experimental results
Different modules comparison
We conduct an ablation experiment to prove the avail-
ability of our model, that is, we compare the model 
performance by using different modules. For a fair 

Table 5 The Experimental classification results
Method Top-1 Accuracy (%) AUC (%) FPS FLOPs
VGG16 [43] 95.74 99.0 30.056 248.11
ResNet50 [44] 96.46 100 46.694 65.75
MobileNetsV2 
[45]

94.96 98.0 41.442 5.01

DenseNet169 
[47]

96.62 100 32.357 54.34

EffcientNet-B0 
[46]

96.57 100 33.126 0.22

ViT [37] 93.96 98.0 10.607 299.49
CoAtNet [48] 93.58 98.0 36.638 43.81
MAE [35] 96.64 100 11.08 301.35
Ours 98.73 100 11.176 316.53

Fig. 9 The experimental results of Receiver Operating Characteristic (ROC). The number from 0 to 13 corresponds to different classes. Based on the 
confusion matrix, ROC is computed to reflect the difference between the True Positive Rate and False Positive Rate. The range of ROC curve is between 
0 and 1 (1 is best, 0 is lowest)
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Fig. 10 The experimental results of a confusion matrix for different models. (A) VGG (B) CoAtNet (C) DenseNet (D) EffcientNet (E) MobileNets (F) ResNet 
(G) ViT (H) MAE

 



Page 12 of 18Tan et al. Plant Methods           (2024) 20:81 

comparison, we keep the remaining parameters and set-
tings unchanged. The comparative results are shown in 
Table 6.

The experimental results reveal that introducing con-
volution layers prior to the network leads to an enlarged 
receptive field surpassing the dimensions of the masked 
patches. Consequently, information leakage occurred, 
leading to a decrease in classification accuracy. Further-
more, it can be observed that the introduced classifica-
tion branches can lead to a 1.69% improvement over 
MAE. During training, the classification loss is added 
to compute for all labels, not just the masked labels. 

Supervised learning can enhance the integration of global 
features, and the ability to learn local-global features 
is strengthened. Additionally, the ablation experiment 
results demonstrate significant improvements achieved 
through pre-training weight.

Visualization of different models
To illustrate the differences between the MAE and ours, 
we conduct another experiment, that is, visualize results 
by using a Grad-CAM heat map. Through the compre-
hensive analysis of the activation distribution in the 
feature maps, we can identify that our model is more 
focused on regions of the image. The heat maps of the 
original images are shown in Fig. 11. Meanwhile, to ver-
ify the influence of lighting and shadowing on results, 
we conduct other experiments, that is, we select some 
images that contain lighting difference and shadowing 
differences, the results are shown in Figs. 12 and 13, and 
Fig. 14.

The second column shows the feature maps that are 
obtained without using pre-trained weights from MAE. 
The third column displays feature maps by using MAE, 
in this case, MAE is fine-tuned through pre-trained 
weights from ImageNet. The fourth column is the heat-
map for the proposed model in this paper. Figure  11. 

Table 6 The identification results of different ablation 
experiments
Method ImageNet 

pretrained
Top-1 Ac-
curacy (%)

AUC 
(%)

MAE [35] - 93.1 98.0
MAE [35] √ 96.64 100
MAE [35] + Conv - 92.50 98.0
MAE [35] + Conv √ 93.73 98.0
MAE [35] + Depthwise Conv [36] - 96.98 100
MAE [35] + Depthwise Conv [36] √ 97.79 100
MAE [35] + CLS branch √ 98.33 100
Ours √ 98.73 100

Fig. 11 The visualization of the different models for original data. The highlighted areas of the CAM heatmap represent the model considered most 
relevant to each class. The heat maps of each class are randomly selected. The first is the original image, the second is the no-pretrained MAE, the third is 
the pretrained MAE, and the last is ours
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shows a comparison of heat maps for original images. 
Figure 12. is the schematic comparison of heat maps for 
different lightings. Figure  13. is the comparison of heat 
maps for different types of images under multiple models 

in the case of shadowing. Figure 14. is the comparison of 
the heat maps for various models under different reflec-
tance and colors. Various methods exhibit diverse focal 
points within images. MAE tends to concentrate on 

Fig. 13 The visualization of the different models for different lighting and shadowing. The heat maps of each class are randomly selected

 

Fig. 12 The visualization of the different models for different color backgrounds. The heat maps of each class are randomly selected
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less pertinent regions around the target, with restricted 
attention. Conversely, our approach uniquely centers 
on the target of images, encompassing a wider area and 
showcasing heightened intensity. Simultaneously, for 
the visualization of different color backgrounds, differ-
ent lighting and shadowing, and different reflectance, our 
model still pays more significant attention to the target. 
Consequently, ours has higher accuracy. Furthermore, 

adopting the self-supervised Pretrained-Finetune train-
ing effectively boosts accuracy and reinforces the gener-
alization of the model.

Comparison of different iterations
To investigate the influence of different iterations. Thus, 
we examine the convergence of the model under different 
iterations. The experimental results are shown in Fig. 15.

Fig. 15 The experimental results of different iterations

 

Fig. 14 The visualization of the different models for different reflectance. The heat maps of each class are randomly selected
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Figure 15 points our model has a quicker convergence 
speed and achieves a higher accuracy of 98.73% by the 
175th epoch. In comparison, MAE achieves a lower accu-
racy of 96.64% after 400 epochs. Furthermore, it attains 
an accuracy of 95.58%, when MAE reaches 200 epochs. 
Ours has included a supervised classification branch, 
making it relatively easier to saturate the pre-trained 
model. Additionally, our method encompasses all the 
hyperparameters of MAE while introducing additional 
branches, thereby contributing to enhanced convergence 
speed and training accuracy.

Different optimizer comparison
Different optimization algorithms [49–53] may affect the 
speed of coverage, and leading model converges at differ-
ent local minima. Following existing paper experiences, 
we select AdamW [39] as our model optimizer. To further 
explore the effect of optimizer, we conducted an experi-
ment that used different optimizers, including Adam, and 
SGD. The comparison experimental results are shown in 
Fig. 16.

From the changes in loss and accuracy shown in 
Fig.  16, the convergence speed and the generalization 
performance of AdamW are significantly superior to the 
other two optimizers. AdamW introduces the concept of 
weight decay, which helps prevent overfitting by encour-
aging the model to utilize smaller parameter values. Con-
sequently, it encourages better generalization of unseen 
data. Additionally, weight decay is decoupled from the 
parameter update process, thereby enhancing optimiza-
tion stability and convergence.

Different parameter selections
We conduct comparative experiments by selecting differ-
ent batch sizes and learning rates. By adjusting the values 
of input hyperparameters, we evaluate the influence of 

input parameters on the output parameters. The experi-
mental results are shown in Tables 7 and 8.

Considering the GPU memory, the batch sizes are set 
to 8, 16, and 32 respectively. In fairness, the remaining 
parameters remain unchanged. From Table 7, it is inter-
esting to see that when we set the batch size to 16 and 32, 
the accuracy is the same. However, when the batch size 
is set to 8, although the accuracy is the highest (with 0.2 
surpassed), the training time is the longest. Therefore, to 
balance the relationship between training speed, general-
ization ability, and memory consumption, we ultimately 
choose a batch size of 32.

Similarly, to measure the impact of the learning rate, 
we select different learning rates such as 1e-3, 1e-4, and 
1e-5, the results are shown in Table 8. As we can see, a 
small learning rate leads to slow convergence, thus result-
ing in the lowest accuracy at the same epoch. When we 
select a larger learning rate 1e-3, it has higher accuracy.

Different datasets and performance trade-offs
Chinese medicinal blossom dataset
The blossom images of traditional Chinese medicinal 
herbs were captured by Google search. The images were 

Table 7 The identification results of different ablation 
experiments
batch sizes Top-1 Accuracy (%)
8 98.92
16 98.73
32 98.73

Table 8 The identification results of different ablation 
experiments
learning rates Top-1 Accuracy (%)
1e-3 98.19
1e-4 97.53
1e-5 96.28

Fig. 16 The comparison of experimental results of different iterations
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divided into 12 categories, including (1) syringa, (2) 
bombax malabarica, (3) michelia alba, (4) armeniaca 
mume, (5) albizia julibrissin, (6) pinus massoniana, (7) 
eriobotrya japonica, (8) styphnolobium japonicum, (9) 
prunus persica, (10) firmiana simplex, (11) ficus religi-
osa and (12) areca catechu. The total number of images 
acquired is 12,538 [54]. The comparative results based on 
our model are shown in Table 9.

From the quality comparison, we can see our method 
exhibits better classification accuracy when compared to 
MAE. And it maintains the highest accuracy than other 
mainstream methods.

Medicinal leaf dataset
This dataset comprises 30 different species of medicinal 
herbs including Santalum album, Muntingia calabura, 
Plectranthus amboinicus, Brassica juncea, etc [55]. Each 
species consists of 60 to 100 high-resolution images. The 
classification results obtained by our model are shown in 
Table 10.

The results show that traditional convolutional neu-
ral networks which are traditional CNN methods have 
limited classification performance on this dataset. In 
contrast, our method demonstrates a clear advantage, 
surpassing MAE by 0.54%.

Conclusion
CMPs are practiced and refined with a history of 
exceeding thousands of years for both health-protective 
affection and clinical treatment in China. However, the 
confusion by different processed conditions and culti-
vation environments affected clinical safety and medi-
cation efficacy are reported. The physicochemical and 
biological methods are high professional threshold and 
inefficient. Furthermore, manual-based identification 
methods are cumbersome and time-consuming. Thus, 
the visual feature-based approach is an increased inter-
est in the advantages of being fast, accurate, and non-
invasive. In this paper, a visual multi-varieties CMPs 
image dataset is constructed. Then, a random local data 
enhancement preprocessing method is proposed to 
enrich the feature representation for imbalanced data 
by random cropping and random shadowing. A novel 
hybrid supervised pre-training network is proposed to 
expand the integration of global features within MAE 
by incorporating a parallel classification branch. It can 
effectively enhance the feature capture capabilities by 
integrating global features and local details. Besides, 
the newly designed losses are proposed to strengthen 
the training efficiency and improve the learning capac-
ity, based on reconstruction loss and classification loss. 
Extensive experiments are performed on our data-
set as well as the public dataset. Experimental results 

demonstrate that our method has the best accuracy of 
98.73%, which is superior to the state-of-the-art meth-
ods. Ours can transfer massive general knowledge to 
enhance feature capture capabilities, and to address 
the challenges of overfitting, end-to-end training dif-
ficulties in deep learning-CMPs. Moreover, it holds 
significant real-world applications value and benefits 
the development of accurate identification of medical 
plants.
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