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Abstract 

Background Traditional method of wood species identification involves the use of hand lens by wood anatomists, 
which is a time-consuming method that usually identifies only at the genetic level. Computer vision method can 
achieve "species" level identification but cannot provide an explanation on what features are used for the identifica-
tion. Thus, in this study, we used computer vision methods coupled with deep learning to reveal interspecific differ-
ences between closely related tree species.

Result A total of 850 images were collected from the cross and tangential sections of 15 wood species. These images 
were used to construct a deep-learning model to discriminate wood species, and a classification accuracy of 99.3% 
was obtained. The key features between species in machine identification were targeted by feature visualization 
methods, mainly the axial parenchyma arrangements and vessel in cross section and the wood ray in tangential 
section. Moreover, the degree of importance of the vessels of different tree species in the cross-section images 
was determined by the manual feature labeling method. The results showed that vessels play an important role 
in the identification of Dalbergia, Pterocarpus, Swartzia, Carapa, and Cedrela, but exhibited limited resolutions on dis-
criminating Swietenia species.

Conclusion The research results provide a computer-assisted tool for identifying endangered tree species in labora-
tory scenarios, which can be used to combat illegal logging and related trade and contribute to the implementation 
of CITES convention and the conservation of global biodiversity.

Keywords Computer vision, Deep learning, Feature visualization, Image classification, Wood identification

Background
Illegal logging is the most profitable natural resource 
crime over the world. The financial value of illegal log-
ging and related trade is approximately $52 to $157 
billion per year [1]. Therefore, the international com-
munity has emphasized the Convention on International 
Trade in Endangered Species of Wild Fauna and Flora 
(CITES) to ban or restrict trade in endangered tree spe-
cies to combat illegal logging and related trade [2–6]. As 
of 2023, approximately 670 tree species have been listed 
in CITES Appendices because of their overexploitation. 
The main barrier to the implementation of CITES is the 
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definitive identification of traded timber and wood prod-
ucts, where forensic tools are urgently required [3, 7].

In the Neotropics (South and Central America and 
tropical Mexico), three commercially important species 
of Swietenia (Meliaceae) are listed in CITES Appendix II 
[8]. The wood of these three species are widely consid-
ered indistinguishable by wood anatomists [9, 10]. Dal-
bergia and Pterocarpus are two other important genera 
of Leguminosae, often referred to as rosewood tree spe-
cies [11], and most species from these genera are threat-
ened by illegal logging activities.

All Dalbergia species (except D. nigra which is listed in 
Appendix I) are listed in Appendix II, and for Pterocar-
pus spp., P. santalinus, P. erinaceus, P. tinctorius as well 
as Pterocarpus species that are from an African popula-
tion are also listed in CITES Appendix II. These woods 
are used for furniture, musical instruments, and hand-
crafts because of their beauty, workability, and moder-
ate resistance to corrosion, and are highly sought after by 
consumers worldwide [12, 13]. In the international trade 
of CITES-listed tree species, documents with fake names 
of similar species are often submitted to customs officials 
to avoid inspection. Consequently, the discrimination of 
CITES-listed tree species from their look-alikes is a key 
step in combating the illegal timber trade.

Wood anatomy is one of the most important methods 
for field wood identification [10, 14, 15], and is performed 
by observing various anatomical features using a hand 
lens in three orthogonal directions, i.e., cross, radial, and 
tangential [16]. However, wood identification is a diffi-
cult task that requires specialized anatomical knowledge 
and a wide range of interspecies and intraspecies simi-
larities [17]. This results in professional wood anatomists 
often requiring decades of specialized training to achieve 
genus-level identification. In contrast, computer vision 
can provide an economical alternative to human-based 
biological domain support for in situ screening of wood 
in trade, which is faster, does not require individual skill 
training and can yield species-level identification if suffi-
cient images covering intraspecific variation are available 
for model training.

Currently, computer vision is developing rapidly, and 
there has been a lot of work done in wood macro image 
classification [18–20]. In forensic wood identification, it 
is often necessary to provide identification keys, namely 
the features on which experts base their judgments. 
However, the deep-learning model is like a black box, 
which cannot provide the basis of judgment in classifi-
cation as a wood anatomist can. Although many studies 
have demonstrated that wood anatomy images coupled 
with deep learning can discriminate between wood spe-
cies and their look-alikes at the species level, the diagnos-
tic features extracted by this model remain invisible. In 

the context of wood identification, wood anatomists are 
not only interested in what the species is, but also want 
to know what anatomical features can accurately and effi-
ciently discriminate this species from their look-alikes.

Existing research has shown that vessel is the key fea-
ture for wood identification [19]. With the help of fea-
ture visualization, it can explore whether the key features 
recognized by intelligence methods are consistent with 
wood anatomists. Meanwhile, it is possible to explore 
the inherent features in wood species to determine the 
differences in wood anatomical features between simi-
lar species [21, 22]. Feature visualization will help wood 
anatomists to be more effective when conducting wood 
identification tasks in the field [19].

As two commonly used methods in computer vision, 
machine learning and deep learning have different work-
flows. Machine learning-based wood identification is 
an information-driven research field in which many 
researchers understand wood identification from a new 
perspective based on the knowledge of wood science. 
Machine learning methods require researchers to assem-
ble a dataset by gathering wood anatomical, chemical, or 
genetic information and then analyze it using unsuper-
vised or supervised models [23, 24]. This information 
can be collected in the form of images, videos, text, and 
measurements. Deep learning models can make use of 
image data to a greater extent over other types of data. 
Although deep-learning models can accurately identify 
wood species, interspecific differences in morphological 
features still need to be determined.

The purpose of this study was to reveal interspecific 
differences between similar tree species using computer 
vision methods. First, a dataset of slide images in the 
cross and tangential sections of 15 similar tree species 
was created and a deep-learning model was established. 
Feature visualization was then conducted to target the 
key differences between species in the image classifica-
tion. Then, the degree of importance of the vessels in 
the cross  sections of different wood species was deter-
mined using the manual feature labeling method. The 
model developed in this study provides a tool that can 
identify wood species quickly and visualize important 
features that can help anatomists complete identifica-
tion work more accurately and support effective CITES 
implementation.

Materials and methods
Data preparation
Fifteen species from Carapa, Cedrela, Dalbergia, Swart-
zia, Pterocarpus, and Swietenia were selected for this 
study and divided into four groups based on their ana-
tomical similarity (Table  1). Multiple wood specimens 
of the selected species were collected for sectioning [25] 
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and 2–3 images of the cross-or tangential sections of the 
heartwood were collected for each specimen. Images of 
4096 × 2160 pixels and 8-bit RGB in PNG format, repre-
senting 2.23 × 0.78  mm of tissue, were captured using a 
microscope at 5 × magnifications.

A total of 50–60 images per species were captured to 
cover the variability of the tree species as much as pos-
sible and ensure data balance for each species. Details 
of data collection for the selected tree species are listed 
in Table  1 and their anatomical features of each group 
are presented in Additional file  1: Table  S1. The images 
of Carapa guianensis, D. latifolia, and P. indicus were 
captured at both 2.5 × and 5 × magnifications to verify 
whether the visualization results were altered with image 
magnifications.

Image dataset construction and processing
Putting the original image of 4096 × 2160 pixels directly 
into the CNN model increases the burden of model 
training; thus, the patch sizes of 600 × 600, 800 × 800, 
1000 × 1000, 1200 × 1200, 1400 × 1400, 1600 × 1600, 
1800 × 1800, and 2000 × 2000 pixels were extracted from 
the original image to increase the size of the dataset 
[19], and a 20% repetition rate was left when the patches 
are extracted to ensure feature integrity. The extracted 
patches were divided into training and testing sets in a 
ratio of 8:2 and then fed into the deep-learning model 
ResNet152 for training, and the optimal test results were 
obtained after tuning the parameters. In terms of param-
eter tuning, the parameters such as learning rate, learning 

rate update strategy, image enhancement method, and 
maximum number of iterations were modified.

Vessel dataset introduction and processing
The classification of individual features of wood micro-
scopic images by manual annotation is typically per-
formed using an object-detection model that contains 
backbone networks, neck networks, detection heads or 
other components, such as YOLO (You Only Look Once) 
[26], SSD (Single Shot MultiBox Detector) [27] and Faster 
R-CNN (Region Convolution Neural Network) [28]. The 
network structure of Faster R-CNN is shown in Fig. 1.

To test the effect of the vessel on the accuracy of the 
trained model, it is necessary to ensure that the original 
variables are fixed, and only the vessel features of wood 
are input. Object detection was performed mainly by 
building a ResNet152 (consistent with the wood clas-
sification model), with the addition of a neck network 
and the inclusion of a detection head (e.g., YOLO Head) 
used to regress the bounding box. In the regression of 
the bounding box, although the same backbone network 
(ResNet152) was used for object detection, a neck net-
work such as the detection head (or RPN) would affect 
the detection results, which could not result in the quan-
titative analysis.

The labeling tool LabelImg [29] was used to label ves-
sels in the images, to eliminate the influence of, for exam-
ple, the neck network and the detection head. In the 
vessel dataset, the labeled vessels were directly cropped 
by means of image cropping to create a new image, which 
eventually composed a dataset of vessels of different tree 

Table 1 Protection level, number of wood specimens, and collected images for selected species

Class label Group Species Protection level Number of 
Specimens

Image quantity

Cross section Tangential 
section

Total

1 Group1 Carapa guianensis – 7 30 30 60

2 Cedrela fissilis CITES II 6 30 30 60

3 Cedrela odorata CITES II 10 30 30 60

4 Group2 Dalbergia latifolia CITES II 6 30 30 60

5 Dalbergia nigra CITES I 6 30 30 60

6 Dalbergia stevensonii CITES II 7 30 30 60

7 Dalbergia tucurensis CITES II 6 30 30 60

8 Swartzia madagascar – 5 25 25 50

9 Group3 Pterocarpus indicus – 6 30 30 60

10 Pterocarpus macrocarpus – 6 30 30 60

11 Pterocarpus soyauxii CITES II 5 25 25 50

12 Pterocarpus tinctorius CITES II 5 25 25 50

13 Group4 Swietenia humilis CITES II 9 25 25 50

14 Swietenia macrophylla CITES II 15 30 30 60

15 Swietenia mahagoni CITES II 12 25 25 50
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species, and then, the same neural network model was 
used to train and test the vessel dataset to obtain the final 
classification results. Thus, the process was simpler, and 
no remodeling was required. The classification was more 
accurate and the influence of other network structures 
on the result eliminated, which fundamentally solved the 
problem of incorrect detection.

The vessel dataset contained vessels from cross-sec-
tional images of the 15 tree species, and the details of the 
vessel dataset are shown in Additional file 2: Table S2. To 
balance the data, the dataset was processed before train-
ing, and for tree species with more vessel features, such 
as Carapa guianensis (455 vessel features) and Swartzia 
madagascar (798 vessel features), excessively duplicated 
vessels were removed. In addition, incomplete feature 
shots were inevitably present in the original images. 
Therefore, vessels with fewer than 50% missing areas 
were selected for retention.

ResNet152 model architecture
Research has shown that in deep-learning models, the 
deeper the network layer, the higher the accuracy of the 
model. ResNet [30] is currently one of the best-perform-
ing neural networks for image classification tasks. The 
ResNet network structure mainly refers to VGG19 and 
adds residual units on top, which solves the degradation 
problem that occurs with the deepening of the network 
models. ResNet152 was used for training and testing, 
thereby laying the foundation for feature visualization. 
The network structure of ResNet152 is shown in Fig. 2.

The residual units consist of three convolutional kernels 
(1 × 1, 3 × 3, and 1 × 1) and a jump connection, which can be 
expressed as Formula 1:

(1)yl = h(xl)+ F(xl ,wl)

3*3

Feature Map

Reshape Softmax Reshape Proposal ROIPooling

Bbox_pred

Softmax

cls_prob

Backbone

1*1

1*1

Region Proposal Networks(RPN)

Tangential section

Cross section

Input

Fig. 1 Faster R-CNN network model diagram, consisting of backbone and RPN network
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Fig. 2 ResNet Network Model Diagram
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where xl and xl+1 are the input and output of the lth 
residual unit, respectively, and each residual unit con-
tains a multilayer structure, as shown in Fig.  2. F  rep-
resents the residual network, h(xl) = xl is the identity 
mapping, and f  is the ReLU (Rectified Linear Unit) acti-
vation function, which can be represented by Formula 3, 
where x represents the input data.

Training and prediction
The deep-learning model was trained using the train-
ing set and tested at each epoch using the test set. All 
patches were adjusted to 224 × 224 pixels for a total of 3 
channels, and the average value of each channel was cal-
culated from the entire image in the two datasets. A total 
of 400 patches were input into the model for each itera-
tion and subtracted from the mean. Then, the model is 
optimized using stochastic gradient descent (SGD) algo-
rithm to control overfitting, and the model was iterated 
through 100 cycles with an initial learning rate of 0.225 
and momentum of 0.9. A fixed-step decay was used, and 
the learning rates decayed to 0.0225 and 0.00225 when 
the number of iterations was 30 and 60, respectively.

Feature visualization
In the CNN model, the class activation map (CAM) 
shows discriminative image regions that help in classifi-
cation [31–33]. The last convolutional layer of the neural 
network contains the richest spatial and semantic infor-
mation; therefore, the CAM makes full use of the last 
convolutional layer features and replaces the later fully 
connected and softmax layers with a global average pool-
ing (GAP) layer, replacing the values of the entire feature 
map with the mean values of all pixels. Each feature map 
has a corresponding weight, and the weighted sum of the 
globally averaged pooled feature map provides the class 
activation thermodynamic diagram of the corresponding 
category and corresponding prediction scores.

Influence of different multiples
Previous studies trained microscopic images of the 
three sections and then identified the test images [1, 
34]. Here, we explored the impact of different multiples 
on identification results and feature visualization. This 
experiment selected the cross-sections of three spe-
cies, Carapa guianensis, D. latifolia, and P. indicus with 
2.5 × and 5 × images in the dataset to discuss the relation-
ship between shooting magnification and visualization 
results. These three tree species were selected because 

(2)xl+1 = f (yl)

(3)f (x) =

{

x,
a(ex − 1),

x > 0

x ≤ 0

images of different magnifications were collected under 
the same experimental conditions, enabling comparative 
analyses to be conducted. Both datasets were cropped to 
800 × 800 simultaneously. The overlap rate of each block 
patch was approximately 20%. Owing to the small num-
ber of training categories, the final accuracy was 100% 
after 100 iterations for the ResNet152 model.

Results and discussion
Identification results of ResNet152 and the accuracy 
against the patch size
Before training, different patch sizes were first extracted 
at a repetition rate of 20%, and the tree species were 
recognized using ResNet152. The accuracy is shown in 
Fig.  3. The highest classification accuracy (0.9932) was 
achieved with a patch size of 800 × 800 pixels. Although 
the ResNet152 classification accuracy was highest among 
the results, the 800 × 800 pixel patch size was too small 
to cover all the wood anatomical features. Therefore, the 
model was trained with a larger 1800 × 1800 pixel patch 
size for the feature visualization experiments. The results 
of four closely related species, P. indicus, P. macrocarpus, 
P. soyauxii, and P. tinctorius were selected for discussion.

This result demonstrates that ResNet152 can accu-
rately identify the selected tree species in the dataset. In 
existing study, CNN was used to identify cross-section 
microscopic images of 112 tree species, and the overall 
accuracy reached 95.6% [34]. Our study showed a rela-
tively higher accuracy despite the difference of the image 
datasets and models deployed.

The confusion matrix of the classification results when 
using the 800 × 800 patches are shown in Fig. 4. The num-
ber of misidentified patches of these species was less than 
one except for Swietenia mahagoni, Swietenia humilis, 
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Fig. 3 The classification accuracy against different patch sizes
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and Swietenia macrophylla. Three patches of Swietenia 
humilis were misidentified as Swietenia macrophylla. 
Two patches of Swietenia macrophylla were misidentified 
as Swietenia mahagoni and two patches were misidenti-
fied as Swietenia humilis. Only two patches of Swietenia 
mahagoni were misidentified as Swietenia macrophylla. 
Overall, the number of erroneous patch sizes in the test 
set was 17 with a classification accuracy of 99.32%.

Only two Dalbergia images were incorrectly identi-
fied in the confusion matrix of the classification results. 
Simultaneously, within the Pterocarpus genus, spe-
cies exhibit similar characteristics. P. tinctorius and P. 
soyauxii are listed in CITES Appendix, while the other 
two species are not listed in CITES Appendix. Therefore, 
obtaining more accurate identification results is neces-
sary to combat illegal logging. Only two cases of images 
of Pterocarpus were identified incorrectly in the classifi-
cation results. And one case of CITIES-listed P. soyauxii 
was incorrectly identified as non-CITES P. macrocarpus.

The features of the macroscopic images were sig-
nificantly similar, thus, it is difficult for deep-learning 

models to determine the differences between the fea-
tures of different species. By contrast, the features of 
the microscopic images were finer, and the differences 
between tree species can be represented by pixels. As 
a result, deep-learning models can easily reach correct 
identifications. Although differences can be identi-
fied through traditional wood anatomy, deep-learning 
methods are automatic and timesaving.

Identifying similar features using quantitative wood 
anatomy data coupled with machine learning analysis 
has become a common method, making it easier to dis-
tinguish key features among species. However, current 
studies have only focused on improving accuracy and 
has not been able to explain the specific features used 
for classification [34]. This study demonstrates that the 
combination of deep learning with microscopic images 
yields better performance [14, 35] and further provides 
the explanation deep-learning classification results by 
feature visualization.

Fig. 4 Classification result confusion matrix
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Feature visualization
Although the classification accuracy of the patch size of 
800 × 800 pixels was the highest among the classifica-
tion results of ResNet152, considering that the patch 
size of 800 × 800 pixels was too small to cover all wood 
anatomical features, the model trained with a patch 
size of 1800 × 1800 pixels was selected for the feature 
visualization experiments. The results of four closely 
related species, namely P. indicus, P. macrocarpus, P. 
soyauxii, and P. tinctorius were selected for discussion. 
The results are shown in Fig. 5.

P. indicus and P. macrocarpus have similar anatomical 
features; specifically, the vessel diameter of P. indicus 
is always larger than P. macrocarpus [36]. According to 
Insidewood [37], the axial parenchyma arrangements 
of all Pterocarpus species are aliform banded and ter-
minal. The ray widths and heights of P. indicus and P. 
macrocarpus showed few differences, compared with 
those of P. soyauxii and P. tinctorius. The wood rays of 
P. indicus and P. macrocarpus can be considered simi-
lar to those of P. soyauxii and P. tinctorius. Both groups 
can be classified based on the width and height of the 
wood rays [15].

As shown in Fig. 5, the key features of the four species 
of P. indicus, P. macrocarpus, P. soyauxii, and P. tincto-
rius are shown in the cross section as axial parenchyma 
arrangements near the vessel and in the tangential sec-
tion as the distribution of wood rays. This indicates that 
the results of feature visualization were consistent with 
the results of traditional wood anatomy. Some key fea-
tures are lost during model training as the input images 
undergo a down-sampling process. The classifier did not 
visualize all features, including the vessels, axial paren-
chyma, and wood rays, which may affect the feature 
results.

Visualization results for different multiples
Although our previous study conduct feature visualiza-
tion of deep learning models with macroscopic images of 
Dalbergia and Ptercarpus species, images from different 
multiples were not tested, which is especially important 
for microscopic images [19]. The visualization results 
for Carapa guianensis (Fig.  6), showed different multi-
ples had no effect on activated features, specifically for 
the axial parenchyma arrangements near the vessels. The 
computer considered the arrangement of the axial paren-
chyma as the main factor for identification, with vessels 
also having some influence on the identification results. 
Based on this result, we consider that using 5 × images 
are much better because they can balance the number of 
images with the field of view and ensure the integrity of 
the organizational features within the image.

Identification results of the vessel dataset
As shown in Fig. 7, the vessel dataset was modeled, the 
performance of the network was evaluated, and the 
final confusion matrix was obtained with an average 
precision of 83.15% for each tree species. Only Car-
apa guianensis and Swartzia madagascar had higher 

Fig. 5 Feature visualization results of Pterocarpus. A, B P. indicus 
in tangential section and cross section; C, D P. macrocarpus 
in tangential section and cross section; E, F P. soyauxii in tangential 
section and cross section; G, H P. tinctorius in tangential section 
and cross section. The yellow circles represent vessels that were 
not activated by the model. The red dashed circles represent axial 
parenchyma near the vessels were activated by the model. The 
white circle represents wood ray in tangential section were actvated 
by the model
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Fig. 6 Visualization Results of Carapa guianensis, D. latifolia and P. indicus at different multiples. A Carapa guianensis at 2.5 × ; B Carapa guianensis 
at 5 × ; C D. latifolia at 2.5 × ; D D. latifolia at 5 × ; E P. indicus at 2.5 × ; F P. indicus at 5 × . The yellow circles represent vessels that were not activated 
by the model. The red dashed circles represent axial parenchyma near the vessels were activated by the model
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classification accuracies of 94.51% and 97.48%, respec-
tively, indicating that the model could identify these 
species only by vessels. This suggests that vessel fea-
tures have a greater influence on species identification.

In contrast, the classification accuracies of Swiet-
enia humilis, Swietenia macrophylla, and Swietenia 
mahagoni were 64.13%, 68.48%, and 72.88%, respec-
tively, indicating the relatively small influence of ves-
sels. Interestingly, the vessels of all three Swietenia 
species were similar. Although it had low classification 
accuracy, none of the Swietenia species were identified 
as Pterocarpus, Dalbergia, Cedrela, Carapa, or Swart-
zia, and the differences among these three species were 
small. It also confirms the conclusion that “the wood of 
the Swietenia species cannot be separated anatomically 
with any degree of certainty” [38]. For similar species of 
Carapa guianensis and Cedrela odorata, only two cases 
of test examples existed in the dataset, where Cedrela 
odorata was incorrectly identified as Carapa guianen-
sis, and for these species, the model could differentiate 
based on the vessels.

Among the four species of Dalbergia, the classification 
accuracies for D. latifolia and D. stevensonii were lower 
(73.47% and 66.67%, respectively). However, within the 
same genus, there were fewer misidentifications, with 
only D. latifolia and D. stevensonii being more easily 
misidentified. This indicates that the vessels are one of 
the main identification features of Dalbergia. This result 
is consistent with “main wood anatomical features acti-
vated by the model for Dalbergia species were mainly 
vessel groupings” [18].

Among the four species of Pterocarpus, the classifica-
tion accuracy of the vessel data was relatively high com-
pared to that of Dalbergia, all of which were greater than 
80%. However, there were few misidentifications among 
these four species. This indicates that vessels are one of 
the main features of Pterocarpus, which is consistent 
with “the deep-learning model was more sensitive to the 
axial parenchyma arrangement than to the vessel group-
ings and other anatomical features” [19].

Except for the three Swietenia species, Dalbergia lati-
folia, and Dalbergia stevensonii, the accuracy of vessel 

Fig. 7 Confusion matrix diagram of vessel dataset. The different color boxes represent tree species that belong to Group 1–4
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classification for the remaining 10 species ranged from 
83.76 to 97.48%, and only a few examples of misidentified 
species, indicating that for these 10 species, vessel fea-
tures had a greater influence on wood identification but 
could not be used as a final basis for discrimination.

Conclusion
Traditional in  situ screening of wood species relies on 
wood anatomists using hand lenses, which is a time-con-
suming method that usually identifies only to the genus 
level, whereas existing intelligent classification methods 
fail to provide a basis for judgments. In this study, we 
developed a deep-learning model to identify microscopic 
images of similar tree species and screen the key features 
among these species. Images of 15 species were collected 
from the cross and tangential sections of wood speci-
mens, and the ResNet152 model trained on the images 
achieved a classification accuracy of 99.3%, indicating 
a more accurate overall performance than that of wood 
anatomists. The key features between species were tar-
geted by class activation maps, and the results showed 
that the key features were axial parenchyma arrange-
ments near the vessel in the cross-sectional images, and 
the distribution of wood rays was shown in the tangential 
section. In species identification, it has been proven that 
different magnifications do not affect species identifica-
tion or visualization. Moreover, the degree of importance 
of vessel features in cross-sectional images for different 
species in depth model identification was determined, 
and the results showed that vessels were among the main 
features of Dalbergia, Pterocarpus, Swartzia, Carapa, 
and Cedrela. The research results provide a computer-
assisted tool for identifying endangered tree species and 
present visible identification results for judgment, which 
can be used to combat illegal logging and related trade 
and contribute to the implementation of CITES regula-
tions and the conservation of global biodiversity.
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