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Abstract 

Background Taraxacum kok-saghyz Rodin (TKS) is a highly potential source of natural rubber (NR) due to its wide 
range of suitable planting areas, strong adaptability, and suitability for mechanized planting and harvesting. How-
ever, current methods for detecting NR content are relatively cumbersome, necessitating the development of a rapid 
detection model. This study used near-infrared spectroscopy technology to establish a rapid detection model for NR 
content in TKS root segments and powder samples. The K445 strain at different growth stages within a year and 129 
TKS samples hybridized with dandelion were used to obtain their near-infrared spectral data. The rubber content 
in the root of the samples was detected using the alkaline boiling method. The Monte Carlo sampling method (MCS) 
was used to filter abnormal data from the root segments of TKS and powder samples, respectively. The SPXY algo-
rithm was used to divide the training set and validation set in a 3:1 ratio. The original spectrum was preprocessed 
using moving window smoothing (MWS), standard normalized variate (SNV), multiplicative scatter correction (MSC), 
and first derivative (FD) algorithms. The competitive adaptive reweighted sampling (CARS) algorithm and the cor-
responding chemical characteristic bands of NR were used to screen the bands. Partial least squares (PLS), random 
forest (RF), Lightweight gradient augmentation machine  (LightGBM), and convolutional neural network (CNN) algo-
rithms were employed to establish a model using the optimal spectral processing method for three different bands: 
full band, CARS algorithm, and chemical characteristic bands corresponding to NR. The model with the best predic-
tive performance for high rubber content intervals (rubber content > 15%) was identified.

Result The results indicated that the optimal rubber content prediction models for TKS root segments and powder 
samples were MWS–FD CASR–RF and MWS–FD chemical characteristic band RF, respectively. Their respective R2

P
 , 

RMSEP, and  RPDP values were 0.951, 0.979, 1.814, 1.133, 4.498, and 6.845. In the high rubber content range, the model 
based on the LightGBM algorithm had the best prediction performance, with the RMSEP of the root segments 
and powder samples being 0.752 and 0.918, respectively.

Conclusions This research indicates that dried TKS root powder samples are more appropriate for constructing 
a rubber content prediction model than segmented samples, and the predictive capability of root powder samples 
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Introduction
Taraxacum kok-saghyz Rodin (TKS), commonly referred 
to as Russian dandelion or turquoise dandelion, is a 
plant of the Taraxacum genus in the composite family. 
It is highly tolerant of salt, cold, and drought, making 
it suitable for planting in a variety of regions. The roots 
of TKS are capable of synthesizing natural rubber (NR), 
which is mainly composed of cis-1,4-polyisoprene [1–3]. 
Reports indicate that the highest NR content in the roots 
of TKS can reach 27.89%, making it similar in structure 
and performance to Hevea brasiliensis, and even slightly 
higher in molecular weight than the NR of H. brasiliensis 
[4]. Thus TKS is one of the most promising rubber-pro-
ducing crops after H. brasiliensis. Now, H. brasiliensis, 
the primary source of NR, face challenges such as lim-
ited growth areas and susceptibility to South American 
leaf blight [5, 6], furthermore, political instability and 
economic fluctuations affect NR pricing and availability 
[7]. The global NR market, with was valued at $24 bil-
lion in 2016, was expected to grow to 16.5 million tons 
by 2023 and $68.5 billion by 2026 [8]. Therefore, there is 
an urgent demand to develop a secondary source of rub-
ber and the industrialization of TKS is a pressing require-
ment. Currently, the TKS industry is still in its nascent 
phase, with the NR content of artificially cultivated TKS 
is typically being low. Consequently, breeding initiatives 
is crucial for advancement of the current TKS industry. 
This breeding initiatives have a lot of necessitates on the 
content of NR content testing, however, existing meth-
ods for detecting NR content are often time-consuming, 
labor-intensive, or costly. Such as the alkali boiling [9], 
gravimetry [10], Soxhlet extraction [11–13], Nuclear 
magnetic resonance spectroscopy (NMR) [14, 15], accel-
erated solvent extraction (ASE) [16, 17], and pyrolysis gas 
chromatography (Py-GC) [18], etc. Therefore, there is an 
urgent need for a fast, accurate, and low-cost method to 
detect the NR content of TKS.

Near infrared spectroscopy (NIR) has experienced 
rapid development in recent years [19]. This technology, 
an organic integration of spectral measurement, com-
puter technology, and foundational measurement tech-
niques, offers unique advantages such as non-destructive 
testing and low analysis costs. It records the overtones 
and combination tones of the fundamental frequency 
vibrations of chemical bonds such as C–H, O–H, N–H, 

and other hydrogen-containing groups in a molecule for 
qualitative or quantitative analysis [20], and has been 
extensively applied in sectors like medicine, food, and 
agricultural production [21]. Studies have successfully 
established prediction models for the NR content in Par-
thenium hysterophorus  L using NIR technology. Suchat 
et  al. [22] developed a PLS quantitative model for NR 
content in P. hysterophorus  L using standard normal-
ized variate (SNV), de-trending (DT), and derivative-
processed spectra, achieving an  R2 of 0.96. Taurines et al. 
[23] utilized SNV and derivative-processed spectra to 
establish a PLS model for NR content in P. hysteropho-
rus  L powder samples, with a predictive set  R2 of 0.95. 
Luo et al. [24] attempted preprocessing with smoothing, 
DT, SNV, and derivatives, creating a PLS model for NR 
content in P. hysterophorus L with a cross-validation set 
 R2 of 0.79. García-Martínez et  al. [25] preprocessed the 
spectra with smoothing, SNV, DT, and derivatives to 
establish a PLS model for NR content in P. hysteropho-
rus  L, achieving a cross-validation set  R2 of 0.9 and an 
relative percentage deviation (RPD) of 2.65. These find-
ings confirm that preprocessing methods like smooth-
ing, SNV, and derivatives can effectively remove some 
environmental errors in the spectra and enhance spectral 
features related to NR content. In 2022, Chen et al. [26] 
discovered that the NIR spectral range of the TKS roots 
contains characteristic bands with higher resolution of 
NR and successfully established a PLS prediction model 
for the NR content in fresh TKS roots, with a predictive 
set  R2 of 0.97. However, there are no reports in the litera-
ture on NR content prediction models for dry TKS roots.

This study aims to collect spectral data of TKS root 
samples treated with two different methods, namely root 
segment and powder, within the range of 850–2500 nm. 
By combining with stoichiometric methods and utiliz-
ing preprocessing techniques such as moving window 
smoothing (MWS), SNV, multiplicative scatter correc-
tion (MSC), and first derivative (FD), the study estab-
lishes a near-infrared spectral quantitative model suitable 
for rapid determination of NR content in TKS dry roots. 
This approach includes smoothing, SNV, and derivative 
processing, which have been previously employed in 
rubber content prediction models [22, 24], and MSC, a 
method similar to SNV, frequently used in the establish-
ment of spectral quantitative models [27]. Current rubber 

is superior to that of root segmented samples. Especially in the elevated rubber content range, the model formulated 
using the LightGBM algorithm has superior predictive performance, which could offer a theoretical basis for the rapid 
detection technology of TKS content in the future.

Keywords Near-infrared spectroscopy, Taraxacum kok-saghyz, Natural rubber, Rapid detection, PLS, RF, LightGBM, 
CNN



Page 3 of 16Chen et al. Plant Methods           (2024) 20:77  

content prediction models are predominantly linear, with 
PLS being the sole modeling algorithm applied in previ-
ous studies [22–26]. Therefore, in addition to PLS, this 
study incorporates three nonlinear modeling algorithms 
commonly used in quantitative model establishment: 
random forest (RF), lightweight gradient augmentation 
machine learning (LightGBM), and convolutional neu-
ral network (CNN), for comparison. The objective is to 
identify a more suitable algorithm for predicting rubber 
content in dry TKS roots, thereby providing technical 
support for the rapid and accurate determination of NR 
content in TKS and advancing the breeding work of TKS.

Materials and methods
Test materials
This experiment utilized 129 TKS samples of the K445 
strain, some of which were hybridized with other dan-
delion plants and harvested at various stages of growth 
throughout the year in 2023. All of the test samples 
were obtained from the TKS Planting Base of the Xinji-
ang Academy of Agricultural Sciences Comprehensive 
Testing Ground in Urumqi, Xinjiang, China, situated 
at 43.94691°N and 87.47567°E (Fig.  1). Upon collec-
tion, the TKS samples were processed within 48  h. The 

above-ground parts were removed using scissors, leaving 
only the roots, which were then cleaned to remove soil 
and other impurities. Subsequently, the roots were dried 
in an oven at 80  °C until completely moisture-free and 
stored individually in brown paper bags for preservation.

Collection of spectral information
The FOSS NIRS™ DS2500F SR (Fig. 2) spectrometer from 
Flowserve Company was utilized to collect diffuse reflec-
tance spectra of a sample. The spectral collection range 
was from 850 to 2500  nm, with a spectral resolution of 
0.5 nm. To examine the effects of different forms of TKS 
roots on the performance of spectral collection and pre-
diction models, two sample preparation methods were 
used: cutting and grinding. Initially, each sample was cut 
into small sections with a length of 5 mm and a diame-
ter of less than 5 mm. These root sections were then put 
through spectral collection. Afterward, the samples were 
soaked in liquid nitrogen and frozen for 1 min to embrit-
tle them, followed by grinding for 3 min using the JXFST-
PRP-CLN-48 frozen grinding machine from NetEason. 
The particle size of the ground powder was smaller than 
0.097 mm (capable of passing through a 180 mesh sieve). 
The powder samples were then sent to a spectrometer 

Fig. 1 Environmental satellite image around TKS Planting Base, along with TKS samples



Page 4 of 16Chen et al. Plant Methods           (2024) 20:77 

for spectral collection. Altogether, 129 samples were col-
lected for root segment and powder state spectra. To 
reduce errors caused by particle size factors, the sample 
inversion was repeated three times during spectrum col-
lection and the average spectrum was taken. Before spec-
tral collection, the instrument was preheated for at least 
an hour, and the spectra were scanned seven times each 
time, with a total of 3300 spectral points collected each 
time. After collection, the spectra were simplified and 
adjusted to spectral data with a wavelength resolution 
of 2  nm, with each sample spectrum consisting of 825 
wavelengths.

Determination of NR content
This experiment employed the alkali boiling method to 
measure the NR content of TKS roots. This method has 
an impurity purity of 93.77% [9], thus it is likely to yield 
slightly higher results; however, this error is unlikely to 
significantly affect the breeding results.

To begin, the roots of TKS were dried and cut into 
small pieces of 0.5 cm. 0.5 g of the sample was placed in 
a glass test tube and 10 ml of 3% sodium hydroxide solu-
tion was added. The sample was then boiled in a water 
bath for 2 h. After the boiling bath, the sample was rinsed 

5–8 times with distilled water and 15 ml of distilled water 
was added for 5–10 min. The sample was then placed in a 
mortar, pressed, and rinsed to separate the NR from the 
roots. The cleaning solution was checked for any turbid-
ity and the rubber block was removed and squeezed dry. 
The sample was then placed in a 1% hydrochloric acid 
solution, neutralized for 5–10  min. The surface alka-
line substances generated by the reaction with sodium 
hydroxide solution were removed to stabilize the pH 
of the samples, and cleaned and dehydrated with 96% 
alcohol for 20–20  min, to facilitate easier drying, and 
phenomenon of rubber turning black can also be signifi-
cantly alleviated [28]. Finally, the sample was dried in an 
oven at 80 ℃ and the weight was recorded.

As seen in Table  1 and Fig.  3, the NR content of the 
sample ranged from 0 to 28.7%, with an average value 
of 10.49%. The presence of hybrid plants in the sample 
caused a large number of samples to have low content 
(NR content range of 0–5%).

Spectral data processing methods
This experiment used MATLAB 2019b to preprocess 
spectral data to improve the predictive performance 
of the model. Monte Carlo sampling (MCS) was used 
to remove any abnormal data from the sample set. This 
was due to the differences in the morphology, size, and 
particle size of the cut root segments and ground pow-
der samples, which caused a change in the optical path 

Fig. 2 FOSS NIRS™ DS2500F SR diffuse reflection near-infrared 
spectrometer (1 sample test bin covers 2 sample diffuse reflection 
test bin)

Table 1 Statistical table of NR content in the sample set

Sample number NR content (%)

Maximum Minimum Median Mean Standard deviation Coefficient of variation (CV)

129 28.70 0.00 10.64 10.49 7.76 73.97%

Fig. 3 Distribution of frequency of NR content in the sample set
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during the diffuse reflection process, resulting in poor 
spectral repeatability. To reduce spectral errors caused 
by environmental factors, MWS, SNV, MSC, and FD pro-
cessing were applied to the spectral data. MWS, which 
requires the selection of a window with a predefined size, 
moves across the spectrum and replaces the measured 
values at each wavelength point with the calculated aver-
age at the center wavelength of the window [29]. In this 
study, the spectral window size for MWS filtering was set 
to five spectral segments. MWS can reduce some noise 
in the spectrum, thereby reducing the impact of environ-
mental errors on the spectrum [30]. SNV and MSC are 
similar in algorithm; both standardize the spectral data. 
The main difference between them is that SNV uses spe-
cific spectral data to normalize each spectrum, while 
MSC uses data from the entire dataset to standardize 
the spectrum [31]. SNV can reduce interference caused 
by physical differences in samples [32, 33], and MSC can 
eliminate wavelength shifts caused by sample scattering 
[34]. Derivative is a commonly used spectral preprocess-
ing method in the establishment of rubber content pre-
diction models [22–26], FD algorithm has the advantage 
of eliminating baseline drift and stacking effects, improv-
ing spectral resolution, and effectively removing interfer-
ence from constant baselines and backgrounds [35].

The NR in TKS is a biopolymer composed of isoprene 
units (C5H8)n in a 1,4-cis configuration[36], which pos-
sess a few hydrogen functional group bands in the near-
infrared spectrum. However, due to environmental 
and other factors, there exist some noise bands in the 
near-infrared spectrum which can hinder the predic-
tive performance of the model. To address this issue, 
the competitive adaptive reweighted sampling (CARS) 
method [37] and the previously discovered character-
istic bands of NR of TKS [26] were employed to screen 
the spectra and reduce the dimensionality of the data, 
thus reducing the computational complexity and partial 
noise of the model and minimizing the risk of overfit-
ting. The constrained algorithm for regression variable 
selection (CARS) is a method that combines MCS with 
the regression coefficients of partial least squares (PLS) 
model for feature variable selection, mimicking the prin-
ciple of “survival of the fittest” from Darwin’s theory [37]. 
In the CARS algorithm, each iteration retains points with 
higher absolute weight of regression coefficients in the 
PLS model through adaptive reweighted sampling (ARS), 
discarding those with lower weights. A PLS model is then 
built based on the new subset. After multiple iterations, 
the wavelengths in the subset with the smallest root mean 
square error of cross-validation (RMSECV) are selected 
as characteristic wavelengths. CARS is commonly used 
as a spectral feature wavelength selection method for 
the establishment of spectral prediction models [27]. 

However, this algorithm has not yet been applied to 
the selection of rubber wavelength characteristic wave-
lengths. This experiment will compare the wavelengths 
selected by the CARS algorithm with the characteristic 
wavelengths of NR discovered by previous researchers to 
identify a more suitable wavelength selection method for 
the establishment of prediction models for the content of 
NR in TKS.

Model building method
This study utilized Python 3.10 to create a model and 
employed four linear and nonlinear methods to forecast 
the NR content of TKS, including PLS, RF, lightweight 
gradient boosting machine (LightGBM), and CNNs.

PLS is a type of multiple linear regression model that 
amalgamates the benefits of three analysis techniques: 
principal component analysis, canonical correlation anal-
ysis, and multiple linear regression analysis. It resolves 
the issue of having more samples than variables in multi-
ple linear regression models and is effective when the var-
iables are highly linearly correlated. It has been used to 
construct an NR content prediction model for TKS fresh 
roots [26], displaying impressive predictive performance.

RF [38] and LightGBM [39] are both isomorphic 
ensemble learning algorithms based on decision trees. RF 
is a parallel structure utilizing bagging, where each deci-
sion tree is independent and the final prediction result is 
determined through voting on the constructed decision 
trees. LightGBM, proposed by Ke et al. [39] from Micro-
soft Research Institute in 2017, is a serial structure based 
on boosting. It is more efficient in terms of training, accu-
racy, and memory usage than other boosting frameworks 
such as GBRT and XGBoost due to the introduction of 
the gradient based one side sampling (GOSS) algorithm 
and exclusive feature binding (EFB) technology. GOSS 
reduces the number of data instances with small gradi-
ents, while EFB merges multiple mutually exclusive fea-
tures into one feature, thus achieving dimensionality 
reduction. In this study, when establishing the RF model, 
we set the number of decision trees (n_estimators) to 200 
and the maximum depth of the tree (max_depth) to the 
default value Noen, which allows the tree to grow natu-
rally. When establishing the LightGBM model, we set 
the learning rate (learning_rate) to the default value of 
0.1, the maximum depth of the tree (max_depth) to −1, 
which allows the model to automatically determine the 
maximum depth of the tree, and the maximum number 
of leaves (num_leaves) to 30.

CNNs are a widely utilized technique in data analy-
sis and are a prominent example of deep learning 
technology [40]. They are capable of analyzing one-
dimensional data [41–43] and are composed of con-
volutional layers, pooling layers, and fully connected 
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layers. Convolutional layers extract local feature infor-
mation from the input data by applying convolutional 
kernels to the spectral data, and multiple convolutional 
layers can be stacked to deepen the network structure 
and improve the model’s feature representation capabil-
ities. The pooling layer simplifies the model by reducing 
the dimensionality of the input features, while the fully 
connected layer connects the output of the previous 
layer to the desired target output, thus establishing a 
relationship between the extracted feature information 
and the target output.

This study establishes a CNN model based on the 
PyTorch framework. Since CNN has not yet been uti-
lized for the development of prediction models for NR 
content, there is a lack of reference for the optimal set-
ting of hyperparameters. Therefore, this experiment 
references the parameters set in the 1D-CNN regres-
sion model of other plants [44, 45] and makes adjust-
ments to design a 1D-CNN model structure suitable for 
the experimental data. The basic structure of the model 
is illustrated in Fig. 4. The model comprises one input 
layer, three hidden layers (one convolutional layer, one 
pooling layer, and one fully connected layer), and one 
output layer. The convolutional layer has a kernel size 
of 20 * 1, a stride of 10, and 16 kernels, which are used 
to extract various local features from the input data 
and obtain local abstract feature maps. The output data 
from the convolutional layer is passed to the pooling 
layer, where maximum pooling is applied with a kernel 
size of 3  * 1 and a stride of 1, further refining the fea-
tures and reducing the length of the output feature vec-
tors from the convolutional layer. The fully connected 
layer utilizes an MLP model, with the pooling layer’s 
output data being input into the fully connected layer, 
and the output data being the predicted value of NR. 
The model employs stochastic gradient descent (SGD) 
as the optimizer, with mean squared error (MSE) serv-
ing as the loss function. The learning rate for training 

the network model is set to 0.01, with 20,000 learning 
epochs, and ReLU is used as the activation function for 
all hidden layers.

Model evaluation method
The coefficient of determination  (R2), root mean square 
error (RMSE), and RPD are utilized to evaluate the pre-
dictive performance of the model. A higher  R2 and lower 
RMSE indicate better predictive performance [46]. In 
the detection of complex samples, it is typically accepted 
that an RPD > 2 is sufficient for initial screening, and an 
RPD > 3 indicates good predictive performance [47]. 
Ultimately, the evaluation parameters of the prediction 
model established by the full band and processed spectra 
are compared to identify the optimal method for model 
establishment. The calculation equations for  R2, RMSE, 
and RPD are as follows: Eq. (1), (2), and (3).

In the formula, is the true value of sample i, is the pre-
dicted value of sample i, and is the average value of sam-
ple i.

Results
Abnormal data deletion
MCS was employed to calculate the mean prediction 
error (MEAN) and standard deviation of prediction 
error (STD) for 129 TKS root segments and powder 
spectral sets. These two values were used to construct 

(1)R2
= 1−

∑n
i=1

(
yi − ŷi

)2
∑n

i=1

(
yi − yi

)2

(2)RMSE =

√∑n
i=1

(
yi − ŷi

)2

n

(3)RPD =

∑n
i=1

(
yi − yi

)2

RMSE

Fig. 4 Structure diagram of NR content model of TKS based on 1-D CNN
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a right-angle coordinate system and plot a scatter plot 
[48]. The thresholds for root segment samples and pow-
der samples were MEAN = 6.72%, STD = 2.49 and 
MEAN = 4.87%, STD = 2.00, respectively. As shown in 
Fig.  5, there were 4 root segment (Fig.5a) sample data 
and 12 powder (Fig.5b) sample data located outside 
the threshold segmentation line. PLS were applied to 
establish a prediction model for the data before and 
after removal, and cross validation was conducted. The 
results showed that the R2

CV and RMSECV of the TKS 
root segment and powder PLS models increased after 
data removal (Table 2), indicating that there were indeed 
anomalies in the data. Consequently, these data were 
removed, resulting in 125 root segment sample datasets 
and 117 powder sample datasets. Fig. 6 shows the origi-
nal near-infrared spectrum after removing abnormal 
data.

Division of sample set
The SPXY algorithm [49] was employed to partition 
the training set and validation set. This method is an 
improved version of the KS (Kolmogorov Smirnov) 
algorithm, as it calculates the Euclidean distance of the 
x-vector direction (i.e. spectral data) as well as the y-vec-
tor direction (i.e. the measured values of the samples) of 

different samples, and combines them through regulari-
zation for a more thorough assessment and separation of 
the dataset. After removing abnormal data from the root 
segment and powder samples, the training and validation 
sets were divided into 125 and 117 datasets, respectively, 
in a 3:1 ratio. As shown in Table 3, the root segment sam-
ple dataset was divided into 94 training set data and 31 
validation set data, while the powder sample was divided 
into 88 training set data and 29 validation set data.

Spectral data preprocessing
This experiment employed four distinct spectral pre-
processing techniques. Following data preprocessing, 
the SPXY algorithm was used to divide the training and 
validation sets. Using the training set data of root seg-
ments and powder samples, a PLS, RF, LightGBM, and 
CNN model were all established to predict the NR con-
tent in TKS roots. The validation set was used to calcu-
late the evaluation parameters of the model, the results of 
which are presented in Tables 4 and 5. The preprocessed 
spectral data improved the predictive performance in 
comparison to the unprocessed data.  RPDP was used to 
assess the predictive performance of the model, with the 
MWS-FD-RF model displaying the best results for root 
segment samples, with an  RPDP of 4.111; the best model 

Fig. 5 Monte Carlo outlier detection diagram of TKS root segment (a) and powder (b) sample

Table 2 Prediction effect of the PLS model before and after sample removal by MCS method

Sample status Monte Carlo culls 
numbers

Model evaluation parameter Principal 
component 
numberR

2
c

RMSEC R
2

CV
RMSECV

Root segment 0 0.835 3.147 0.724 3.605 8

4 0.885 2.557 0.814 2.867 8

Root powder 0 0.897 2.486 0.843 2.749 8

12 0.960 1.533 0.916 1.893 8
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for powder samples was the MWS-FD-CNN model, with 
an  RPDP of 5.717.

Feature wavelength screening
Competitive adaptive Reweighted sampling method (CARS) 
screened the wavelength
Figure. 7 and 8 represent the process of extracting NR 
characteristic wavebands from the near-infrared spec-
tra of rubber tree root segments and powder, respec-
tively, using the CARS algorithm with 50 Monte Carlo 
sampling iterations. From Fig.7a, it can be observed 
that with the increase in sampling iterations, the wave-
lengths with low contribution rates to the prediction 
performance of the rubber tree root segment spectral 
model are continuously being eliminated. Figure.7b 
shows that when the number of iterations reaches 
30, the root mean square error of cross-validation set 
(RMSECV) reaches the lowest point and then starts to 
rise, indicating that further sampling would eliminate 
the characteristic wavelengths of NR. Figure.7c depicts 
the relationship between the regression coefficients of 
wavelength variables and the number of sampling itera-
tions, with the best number of iterations marked by a 

vertical line composed of "*" at 30 iterations, resulting 
in the selection of 26 characteristic NR wavelengths, 
accounting for approximately 3.15% of the total wave-
length. Similarly, Fig.8a shows that with the increase 
in sampling iterations, low-contributing wavelengths 
are continuously being reduced. From Fig.8b, it can be 
seen that the RMSECV of the near-infrared spectrum 
of rubber tree root powder reaches the lowest point at 
27 iterations. The best number of iterations is indicated 
by a vertical line composed of "*" in Fig.  8c, resulting 
in the selection of 34 characteristic wavelengths, which 
account for 3.6% of the total wavelength.

Rubber chemical characteristic bands in TKS
Polyisoprene, the main component of NR, has charac-
teristic wavelengths in the near-infrared spectrum of 
TKS roots, which range from 1100–1250  nm, 1550–
1760 nm, and 2100–2400 nm[26], and account for 40% 
of the total wavelength (Fig. 9). This band contains the 
characteristic wavelengths of the –CH, –CH2, and –
CH3 functional groups in cis polyisoprene [50, 51], 
which can enhance the accuracy of model prediction.

Fig. 6 Original spectra of TKS roots segment (a) and powder (b) after removal of abnormal data

Table 3 Statistical data of NR content of TKS in sample set divided by SPXY method

Sample status Sample set Sample size NR content (%)

Maximum Minimum Mean Standard 
deviation

Root segment Training set 94 28.70 0 10.67 7.47

Validation set 31 20.77 0 9.30 7.83

Root powder Training set 88 28.70 0 10.77 7.65

Validation set 29 19.43 0 8.25 7.54
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Optimal model screening
Evaluation of prediction performance of different models
The optimal preprocessing scheme for each modeling 
method was used separately, and a model was established 
after band screening to predict the data in the validation 
set. The evaluation parameter results of different models 
are presented in Tables 6 and 7, and the scatter plots of 
predicted and measured values of different models are 
shown in Figs. 10 and 11. After wavelength screening, the 
upper limit of the model’s prediction performance was 
improved. Among them, the MWS-FD-CASR-RF model 
had the best prediction performance for TKS root seg-
ment samples, with an  RPDP of 4.498 from 4.111. The 
MWS-FD-Chemical Characteristic Band-RF model had 
the best prediction performance for powder samples, 
with an  RPDP of 5.461 to 6.845.

Evaluation of prediction performance of different models 
with high NR content intervals
Although the evaluation parameters of the Light-
GBM prediction model for TKS root segments and 
powder samples are not particularly impressive com-
pared to other models, the scatter plots of predicted 
and measured NR content values (Figs.  10, 11) demon-
strate that the validation set of this model has superior 

predictive performance in the high content range (NR 
content > 15%). As TKS breeding necessitates the selec-
tion of individuals with higher NR content from a large 
number of plants. As shown in Table  8, the RMSEP of 
the LightGBM model for the root segment samples in 
the range of high NR content was calculated to be 0.752, 
which is lower than the RMSEP of PLS, RF, and CNN, 
all of which are greater than 2. Similarly, the RMSEP of 
the LightGBM model for root powder sample was 0.918, 
which is the lowest prediction root mean square error in 
the high NR content range among the four models. Con-
sequently, in practical breeding work, the collaboration 
of multiple models is more beneficial for screening sam-
ples with high NR content.

Discussion
The RF model demonstrates the best performance, when 
Comparing the prediction performance of the entire 
spectrum interval for root segment and powder mod-
els using  RPDP as the evaluation criterion. In the Com-
parison to the widely utilized linear model PLS in the 
establishment of NR content prediction models used by 
previous researchers, RF represents superior prediction 
performance, this suggests that RF may be more suitable 
for establishing NR content models in TKS. For both root 

Table 4 Evaluation parameters of different models of NR content for the raw NIR spectral data of the TKS roots segment and different 
pre-treated spectral data

Modeling method Spectral processing 
method

Training set Validation set RPDP

R
2
c

RMSEC R
2

P
RMSEP

PLS None 0.881 2.562 0.868 2.796 2.757

MWS 0.898 2.375 0.887 2.588 2.978

MWS-SNV 0.882 2.514 0.904 2.320 3.230

MWS-MSC 0.880 2.533 0.886 2.538 2.958

MWS-FD 0.896 2.291 0.929 2.192 3.757

RF None 0.932 1.938 0.732 3.993 1.930

MWS 0.935 1.896 0.747 3.874 1.989

MWS-SNV 0.965 1.360 0.908 2.272 3.298

MWS-MSC 0.966 1.352 0.919 2.139 3.510

MWS-FD 0.971 1.199 0.941 2.003 4.111

LightGBM None 0.876 2.620 0.806 3.391 2.273

MWS 0.880 2.573 0.809 3.368 2.288

MWS-SNV 0.975 1.152 0.920 2.124 3.529

MWS-MSC 0.977 1.112 0.926 2.035 3.688

MWS-FD 0.987 0.796 0.918 2.357 3.494

CNN None 0.935 1.960 0.911 2.348 3.283

MWS 0.931 1.973 0.915 2.293 3.362

MWS-SNV 0.938 1.833 0.938 2.031 3.690

MWS-MSC 0.939 1.804 0.913 2.227 3.370

MWS-FD 0.975 1.123 0.938 2.059 4.000
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segment and powder models, the most effective spectral 
preprocessing method is found to be MWS-FD. The main 
difference between FD and MSC/SNV lies in FD’s FD’s 
more proficient augmentation of spectral characteristics. 

Upon the application of the FD, the spectral informa-
tion related to NR content is significantly enhanced, and 
the model’s prediction performance was improved. This 
aligns with the findings of Luo [24]. The performance of 

Table 5 Evaluation parameters of different models of NR content based on raw NIR spectral data of TKS roots powder and different 
pretreatment spectral data

Modeling method Spectral processing 
method

Training set Validation set RPDP

R
2
c

RMSEC R
2

P
RMSEP

PLS None 0.958 1.570 0.960 1.492 4.970

MWS 0.957 1.571 0.959 1.493 4.966

MWS–SNV 0.959 1.524 0.964 1.425 5.307

MWS–MSC 0.955 1.592 0.960 1.520 4.975

MWS–FD 0.968 1.345 0.956 1.696 4.776

RF None 0.943 1.823 0.815 3.194 2.322

MWS 0.945 1.784 0.800 3.316 2.236

MWS–SNV 0.981 1.041 0.956 1.580 4.787

MWS–MSC 0.979 1.105 0.956 1.588 4.761

MWS–FD 0.989 0.781 0.966 1.484 5.461

LightGBM None 0.923 2.109 0.745 3.744 1.981

MWS 0.923 2.111 0.770 3.560 2.083

MWS–SNV 0.985 0.910 0.964 1.427 5.297

MWS–MSC 0.985 0.910 0.946 1.761 4.294

MWS–FD 0.990 0.763 0.960 1.630 4.970

CNN None 0.975 1.246 0.968 1.381 5.371

MWS 0.974 1.250 0.966 1.397 5.308

MWS–SNV 0.982 0.999 0.969 1.406 5.376

MWS–MSC 0.981 1.057 0.971 1.384 5.462

MWS–FD 0.989 0.798 0.970 1.417 5.717

Fig. 7 Process of CARS screening the spectral characteristic wavelength of TKS roots segment samples
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the three types of wavelengths (full wavelength, CARS-
screened wavelengths, and characteristic wavelengths 
identified by previous researchers) varies among different 
models, primarily due to significant differences in model 
algorithms. Different model structures are suited to dif-
ferent wavelength selection methods, and selecting the 
most suitable band screening method for the model in 
practical applications can maximize the model’s effective-
ness. The study finds that the prediction performance of 
the powder sample model is superior to that of the un-
milled root segment samples. This is mainly because the 
rough surface and uneven size control of the un-milled 
samples lead to much higher environmental errors in 

Fig. 8 Process of selecting the characteristic wavelength of TKS roots powder by CARS

Fig. 9 NR characteristic wavelength interval of near infrared 
spectrum of TKS root after FD

Table 6 Effects of different wavelength screening methods on the performance of TKS roots segment sample prediction model

Modeling method Optimal spectral 
processing

Wavelength screening method Training set Validation set RPDP

R
2
c

RMSEC R
2

P
RMSEP

PLS MWS-SNV Full band 0.896 2.291 0.929 2.192 3.757

CARS 0.867 2.605 0.929 2.169 3.761

Chemical characteristic band 0.889 2.436 0.932 2.009 3.832

RF MWS-FD Full band 0.971 1.199 0.941 2.003 4.111

CARS 0.974 1.143 0.951 1.814 4.498

Chemical characteristic band 0.974 1.175 0.941 1.866 4.127

LightGBM MWS-SNV Full band 0.977 1.112 0.926 2.035 3.688

CARS 0.928 1.930 0.796 3.270 2.212

Chemical characteristic band 0.971 1.207 0.881 2.392 2.897

CNN MWS-FD Full band 0.972 1.194 0.946 1.915 4.301

CARS 0.914 2.097 0.935 2.159 3.777

Chemical characteristic band 0.929 1.955 0.934 1.990 3.870



Page 12 of 16Chen et al. Plant Methods           (2024) 20:77 

Table 7 Effects of different wavelength screening methods on the performance of TKS roots powder sample prediction model

Modeling method Optimal spectral 
processing

Wavelength screening method Training set Validation set RPDP

R
2
c

RMSEC R
2

P
RMSEP

PLS MWS-SNV Full band 0.959 1.524 0.964 1.425 5.307

CARS 0.951 1.531 0.960 1.429 5.019

Chemical characteristic band 0.954 1.643 0.975 1.122 6.342

RF MWS-FD Full band 0.989 0.781 0.966 1.484 5.461

CARS 0.988 0.816 0.970 1.361 5.814

Chemical characteristic band 0.988 0.809 0.979 1.133 6.845

LightGBM MWS-SNV Full band 0.985 0.910 0.964 1.427 5.297

CARS 0.956 1.597 0.923 1.988 3.608

Chemical characteristic band 0.980 1.091 0.932 1.855 3.835

CNN MWS-FD Full band 0.989 0.798 0.970 1.417 5.717

CARS 0.939 1.872 0.971 1.435 5.515

Chemical characteristic band 0.980 1.072 0.974 1.280 6.054

Fig. 10 Optimal model of PLS (a), RF (b), LightGBM (c) and CNN (d). Scatter plot of measured and predicted NR content in TKS roots segment 
samples
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spectral acquisition, resulting in poor model perfor-
mance. Taurines et al. [23] also observed the same phe-
nomenon when establishing the NR prediction model 
for P. hysterophorus L. When comparing the prediction 
performance of the high content interval (NR > 15%) 

between root segment and powder models using RMSE 
as the evaluation criterion, LightGBM’s RMSE is lower 
than that of the other models, but its prediction perfor-
mance across the entire interval is not ideal. Therefore, 
future research can focus on integrating multiple types 

Fig. 11 Optimal model of PLS (a), RF (b), LightGBM (c) and CNN (d). Scatter plot of measured and predicted NR content in TKS root powder samples

Table 8 RMSEP statistical table of optimal modeling methods for different models with high gum content (NR content > 15%)

Sample category Modeling method Optimal spectral 
processing

Optimal wavelength screening 
method

RMSEP

Root segment PLS MWS–FD Chemical characteristic band 2.087

RF MWS–FD CARS 2.022

LightGBM MWS–MSC Full band 0.752

CNN MWS–FD Full band 2.289

Root powder PLS MWS–SNV Chemical characteristic band 1.496

RF MWS–FD Chemical characteristic band 1.170

LightGBM MWS–SNV Full band 0.918

CNN MWS–FD Chemical characteristic band 1.577
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of models. Currently, commonly used ensemble learning 
algorithms include Stacking, proposed by Wolpert [52]. 
This ensemble strategy is a heterogeneous serial learner 
that integrates various different types of models into an 
overall system, leveraging the strengths of each model. 
Employing this algorithm in future research may fur-
ther optimize the prediction performance of NR content 
models.

Currently, the majority of near-infrared spectroscopy-
based NR content prediction models have predomi-
nantly focused on P. hysterophorus L. as the subject of 
study [22–25]. Notably, Chen et  al. [26] have contrib-
uted to the domain by generating a predictive model 
for NR content in TKS. Chen et al. utilizing fresh roots 
of TKS, which encompassed a rubber content ranging 
from 0.21% to 13.82%, they acquired spectral data via a 
portable spectrometer and developed a PLS prediction 
model. The model exhibited the R2

P value of 0.97 and the 
 RPDP of 5.90. When compared against the  RPDP crite-
rion, the prediction efficacy of the root segment model 
established in this study appears inferior to that of the 
fresh root model proposed by Chen et al. Conversely, the 
powder sample model demonstrated a relatively superior 
prediction capability. Considering the divergent meth-
odologies employed in the actual measurement of NR 
content and model development, it would be premature 
to deduce the superiority of fresh roots or dry roots for 
the precise determination of NR content. Nonetheless, 
both quantitative models boast RPDP values significantly 
exceeding 3, categorizing them as outstanding predic-
tive tools and rendering them suitable for the demands of 
TKS breeding endeavors. Furthermore, the two distinct 
near-infrared detection methodologies can serve as com-
plementary approaches. The NR content prediction in 
fresh roots is apt for on-site rapid assessments, whereas 
dry roots and powder samples mitigate spectral data dis-
tortions caused by inconsistent moisture levels and other 
variables, making them more appropriate for large-scale 
screenings where the freshness of samples is not guaran-
teed. The adoption of diverse near-infrared spectroscopy 
detection methods stands to facilitate advancements in 
the TKS industry and breeding activities.

Conclusion
This article investigates the NR content of TKS dry roots 
of different growth times by detecting their NR content 
and collecting spectral data of their dry root segments 
and powder states. Four spectral preprocessing methods 
and four modeling methods are compared, and the opti-
mal models for predicting the NR content of TKS root 
segments and powder were identified as MWS-FD-RF 
and MWS-FD-CNN respectively. Additionally, the best 
wavelength selection for each model was determined by 

comparing the full band, CARS algorithm, and the chem-
ical characteristic wavelengths of NR in TKS. The MWS-
FD-CASR-RF model was found to have an R2

P , RMSEP, 
and  RPDP of 0.951, 1.814, and 4.498 respectively for the 
root segment sample, while the MWS-FD chemical char-
acteristic band RF model had an R2

P , RMSEP, and  RPDP of 
0.979, 1.133, and 6.845 respectively for the powder sam-
ple. The  RPDP of both models was greater than 3, indicat-
ing excellent predictive performance. The powder sample 
had higher R2

P ,  RPDP, and lower RMSE compared to the 
root segment sample, indicating better performance of 
the powder prediction model. Furthermore, the RMSEP 
of the LightGBM model for TKS root segments and 
powder samples reached 0.752 and 0.918 respectively in 
the range of more than 15% NR content, suggesting that 
combining multiple models is likely to be more suitable 
for practical applications.
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