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Abstract 

Background Salsola laricifolia is a typical  C3–C4 typical desert plant, belonging to the family Amaranthaceae. An effi-
cient single-cell system is crucial to study the gene function of this plant. In this study, we optimized the experimental 
conditions by using Box-Behnken experimental design and Response Surface Methodology (RSM)-Artificial Neural 
Network (ANN) model based on the previous studies.

Results Among the 17 experiment groups designed by Box-Behnken experimental design, the maximum yield 
(1.566 ×  106/100 mg) and the maximum number of viable cells (1.367 ×  106/100 mg) were obtained in group 12, 
and the maximum viability (90.81%) was obtained in group 5. Based on these results, both the RSM and ANN models 
were employed for evaluating the impact of experimental factors. By RSM model, cellulase R-10 content was the most 
influential factor on protoplast yield, followed by macerozyme R-10 content and mannitol concentration. For proto-
plast viability, the macerozyme R-10 content had the highest influence, followed by cellulase R-10 content and man-
nitol concentration. The RSM model performed better than the ANN model in predicting yield and viability. However, 
the ANN model showed significant improvement in predicting the number of viable cells. After comprehensive 
evaluation of the protoplast yield, the viability and number of viable cells, the optimal results was predicted by ANN 
yield model and tested. The amount of protoplast yield was 1.550 ×  106/100 mg, with viability of 90.65% and the num-
ber of viable cells of 1.405 ×  106/100 mg. The corresponding conditions were 1.98% cellulase R-10, 1.00% macerozyme 
R-10, and 0.50 mol  L−1 mannitol. Using the obtained protoplasts, the reference genes (18SrRNA, β-actin and EF1-α) 
were screened for expression, and transformed with PEG-mediated pBI121-SaNADP-ME2-GFP plasmid vector. There 
was no significant difference in the expression of β-actin and EF1-α before and after treatment, suggesting that they 
can be used as internal reference genes in protoplast experiments. And SaNADP-ME2 localized in chloroplasts.

Conclusion The current study validated and evaluated the effectiveness and results of RSM and ANN in optimizing 
the conditions for protoplast preparation using S. laricifolia as materials. These two methods can be used indepen-
dently of experimental materials, making them suitable for isolating protoplasts from other plant materials. The selec-
tion of the number of viable cells as an evaluation index for protoplast experiments is based on its ability to consider 
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both protoplast yield and viability. The findings of this study provide an efficient single-cell system for future genetic 
experiments in S. laricifolia and can serve as a reference method for preparing protoplasts from other materials.

Keywords Salsola laricifolia, Protoplasts, Response surface methodology, Artificial neural network, Number of viable 
cells

Background
Protoplast is a general term for a variety of substances in 
plant cells other than the cell wall removed, which has 
the totipotency as well as a part of the viability of ordi-
nary plant cells [1], and have been extensively utilized 
in various experiments, such as gene promoter screen-
ing, verification of exogenous gene function, subcellular 
localization of proteins, protein interactions and multi-
plex genome editing [2–5] Protoplast systems of model 
plants, such as Arabidopsis thaliana and Nicotiana taba-
cum, have been extensively used in gene function studies. 
However, it is important to note that due to the genetic 
variations among different plant protoplasts, these sys-
tems may provide inaccurate expression information for 
exogenous genes [6]. Therefore, in recent years, many 
non-model plants have also developed their own pro-
toplast preparation systems to verify and explore gene 
functions. Some examples include Apium graveolens, 
Camellia sinensis, Gossypium spp, Panicum virgatum, 
Populus tomentosa [7–12].

Protoplast preparation was influenced by plant mate-
rials, sampling locations, and growth time [13, 14]. The 
amount of protoplast yield in Oryza sativa callus was 
2.500 ×  106/g  FW through a 3  h enzymatic digestion. 
The digestion process involved the use of 1.50% cellu-
lase, 1.00% macerozyme, and 0.60 mol   L−1 mannitol [3]. 
In the case of Colobanthus quitensis leaves, enzymatic 
digestion for 3 h was carried out. The digestion solution 
contained 3.00% cellulase RS, 1.20% macerozyme R-10, 
1.50% viscozyme, and 0.50  mol   L−1 mannitol, result-
ing in a protoplast yield of 8.7 ×  105/g  FW [15]. Proto-
plasts were prepared using Camellia oleifera leaves and 
subjected to a 10  h digestion with 1.50% cellulase R-10, 
0.50% macerozyme R-10, and 0.25% snailase, resulting 
in a maximum yield of 3.500 ×  107/g FW [16]. However, 
the digestion time used for protoplast preparation of C. 
oleifera petals was reduced to 8 h, and the digestion solu-
tion contained 3.00% cellulase R-10, 1.00% macerozyme 
R-10, and 0.50 mol  L−1 mannitol, resulting in a maximum 
yield of 1.42 ×  106/100 mg [10]. Furthermore, the yield of 
protoplast preparation in Zea mays root was significantly 
increased by incorporating a buffer pretreatment step 
[17].

RSM (Response Surface Methodology) and ANN (Arti-
ficial Neural Network) models are commonly employed 
for data analysis and prediction in optimization 

experiments across various domains, such as food [18, 
19] and materials [20, 21]. The RSM model utilizes a sec-
ond-order polynomial model:

to study the relationship between one or more response 
variables and a number of independent variables, allow-
ing for intuitive analysis of the influence of experimental 
factors on the results [22, 23]. Central composite, Doe-
hlert and Box-Behnken are three main response surface 
design methods [24, 25] where Box-Behnken design is 
based on the multivariate optimization technique of 
three-level incomplete factorial design, which, due to 
its absence of axial points, helps to reduce the cost of 
the experiment and the number of experimental runs 
number of times, allowing experiments to be done more 
efficiently and economically [26, 27]. The ANN model 
is a machine learning technique that utilizes biological 
information to construct mathematical models for pre-
dicting the output of new datasets. Unlike RSM model, 
the ANN model does not require special experimental 
requirements or additional workload for its application 
[28]. Additionally, the ANN model often provides opti-
mality-seeking results that are more aligned with experi-
mental needs [29, 30] One of the most commonly used 
ANN models is the Back-Propagation Neural Network 
(BPNN), which adjusts the thresholds and weights in the 
opposite direction of the conventional method during the 
learning process [31, 32] The simultaneous use of RSM 
and ANN models can complement each other’s strengths 
to better analyze and predict data [33, 34].

Salsola laricifolia belongs to the family Amaranthaceae 
[35]. The genus Salsola encompasses a diverse range of 
photosynthetic evolutionary types [36–38] S. laricifo-
lia is classified as a type I  C3-C4 intermediate plant [39]. 
Studying the physiological and biochemical properties 
of this plant type, as well as its gene functions, is crucial 
for understanding the evolution of the  C4 photosynthetic 
pathway and the mechanism of photorespiration reduc-
tion [40–42]. Xi et al. [43] explored the preparation con-
ditions of protoplasts of S. laricifolia using the orthogonal 
method, and have preliminarily determined the influenc-
ing factors and experiment ranges. Although obtaining 
a maximum yield of protoplasts of 1.210 ×  106/100  mg 
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and viability of 85.00%, but the results was not stable, 
and could not satisfy the experimental needs. Therefore, 
in this study we employed the Box-Behnken experimen-
tal design and RSM-ANN model to optimize the prepa-
ration system of S. laricifolia protoplasts. Additionally, 
reference genes were chosen and the subcellular localiza-
tion of the NADP-malic enzyme gene 2 (SaNADP-ME2) 
was determined for the prepared protoplasts. These steps 
ensured the continuation of gene research.

Materials and methods
Experimental materials and growth conditions
S. laricifolia seeds were collected from Bole, Xinjiang, 
China, in October 2022 and stored in a refrigerator at 
4  °C. The seeds were soaked in sterile water for 1.5  h, 
followed by washing with a sodium hypochlorite solu-
tion (sterile water: sodium hypochlorite = 7: 3) for 7 min. 
During the washing process, the seeds were shaken well 
and rinsed 10–15 times with sterile water. After that, the 
seeds were treated with thiram (1 g of thiram dissolved 
in 20  mL of  ddH2O) for 30  s. Subsequently, the seeds 
were placed on a culture medium (1/2 MS + 15  g   L−1 
sucrose + 8 g   L−1 agar) and incubated in an artificial cli-
mate chamber. The chamber was maintained at a tem-
perature of 25  C for 14 h during the daytime and 18  C 
for 10  h during the nighttime. The light intensity was 
set at 6000 Lux. After 3  days of germination, healthy 
and uniform size of seedlings were selected and trans-
planted into plastic pots with dimensions of 8.50  cm 
(height) × 10.00 cm (inner diameter) for hydroponic cul-
tivation. The culture solution used was Hoagland’s nutri-
ent solution and changed every 3  days. The protoplast 
preparation experiment was conducted after 25 days.

Reagent preparation
The reagents including mannitol, cellulase R-10, mac-
erozyme R-10 (Solarbio, Beijing, China), MES, BSA 
(Sangon Biotech, Shanghai, China) were used. The for-
mulations of pretreatment solution, enzyme digestion 
solution, W5 solution, WI solution, MMG solution 
and PEG solution were formulated as shown in Addi-
tional file 1: Table S1, and all solutions were sterilized by 
0.20 µm filter. The pretreatment and enzymatic digestion 
solutions were prepared for use now, and when prepared, 
MES and mannitol were added first, and then mixed in 
a 55  C water bath for 10 min, and then BSA,  CaCl2 and 
KCl were added sequentially after cooling down to room 
temperature; At last, cellulase and macerozyme were 
added. The PEG solution was required to be prepared for 
use now, and the W1 and MMG solutions could be stored 
in the refrigerator at 4  C for 1 week after preparation.

Experimental methods
Isolation and purification of protoplasts
The steps of protoplast preparation were referred to 
Wang et  al. [44] and Xi et  al. [43] with some modifica-
tions. Using 100 mg leaves were longitudinally dissected 
from the middle using a sterile scalpel in an ultra-clean 
bench, then cut into 2–3  mm segments and placed in 
a pretreatment solution for 30  min. Subsequently, the 
segments were transferred to a 5.00 mL centrifuge tube 
containing 1.00 mL of enzyme digestion solution (previ-
ously heated in a 50  C water bath for 1 min). After 4 h of 
enzyme digestion at 26  C for 40 r   min−1 avoiding light, 
the enzyme was gently inverted several times to fully 
release the protoplasts and placed on ice for spare time.

The W5 solution was pre-wetted on a 200 mesh sieve, 
after which the digest was filtered. The enzyme reaction 
was terminated by adding an equal volume of W5 solu-
tion to the enzyme filtrate (the pipette gun tip was cut 
with a 0.50 cm tip and the incision sharp filaments were 
removed over a flame), centrifuge the supernatant at 
300 rpm  min−1 for 2 min at 4  C and discard it, add 1 mL 
of W5 solution into the precipitate to resuspend the pro-
toplasts at the bottom, and then discard the supernatant 
after 10 min of static time on the ice; Add 2.00 mL of W5 
solution to resuspend the bottom protoplasts, leave on 
ice for 40 min, discard the supernatant, add 200 μL of W5 
to obtain the suspension of S. laricifolia protoplasts, and 
put it in the refrigerator at 4  C for spare. Protoplast yield 
was calculated using hemocytometer counting method. 
Evans blue staining solution (0.25%, W/V) was used to 
dip the protoplast suspension (ratio 2: 5) for 5 min to cal-
culate protoplast viability.

Box‑Behnken experimental design
A Box-Behnken design of experiments using Design-
Expert V8.0.6.1 software was used with protoplast 
yield ×  106/100  mg  (Y1) and viability %  (Y2) as response 
values, cellulase R-10 concentration % (W/V) as A, mac-
erozyme R-10 concentration % (W/V) as B and mannitol 
concentration (mol  L−1) as C. The factors in this experi-
ment were designed as three levels, A (1.00, 2.00, 3.00), B 
(0.50, 0.75, 1.00), and C (0.50, 0.60, 0.70). The number of 
viable cells was calculated by multiplying the protoplast 
yield with the viability results obtained.

Comparison of RSM‑ANN model
The results obtained from Box-Behnken design were 
analyzed by RSM and ANN models using Design Expert 
and Matlab R2023a, respectively, to evaluate the effect of 
model fitting and obtain the optimal values. The results 
of regression equations  Y1 and  Y2 obtained from the RSM 
model were plotted on the three-dimensional response 



Page 4 of 17Guo et al. Plant Methods           (2024) 20:52 

surface plots using Origin 2021. By examining the inter-
action density and steepness of the curves in the plots, 
the magnitude of the effect of experimental factors on 
the response values was assessed. Typically, a steeper 
response surface curve indicates a greater impact of the 
factor interaction on the response value, while a less 
steep curve suggests a smaller effect [45–47]. The ANN 
model was analyzed using BPNN. It comprised an input 
layer of three neurons, an output layer of one neuron, 
and a variable number of hidden neurons layer, and was 
trained using different learning algorithms to select the 
set with the best fitted data, and the results of the experi-
ments were used 70.00% for training, 15.00% for valida-
tion, and 15.00% for testing. The experimental optimums 
were solved by the simulation model of the BPNN using 
the GA in Matlab [48, 49].

After obtaining the models, their predictions were 
compared with the actual results, and several metrics 
were calculated to evaluate the goodness of fit of each 
model. These metrics included the correlation coefficient 
(R), the coefficient of determination  (R2), the root mean 
square error (RMSE), and the mean absolute percent-
age error (MAPE). A higher value of R and  R2 indicates a 
stronger correlation and better fitting ability of the model 
[50, 51]. Smaller values of RMSE and MAPE indicate a 
lower deviation and relative error between the predicted 
and actual values, indicating the higher accuracy in the 
model’s predictions [33, 52].

RNA extraction and gene expression analysis
After enzymatic digestion of protoplasts, the proto-
plasts were centrifuged at 300  rpm   min−1 for 2  min at 
4    C. RNA was extracted immediately after removing 
the supernatant using the MiniBEST Plant RNA Extrac-
tion Kit (Takara, Japan). The entire extraction process 
was performed on ice. Three sets of replicates were per-
formed for each experiment, and each set of replicates 
included three technical replicates. The quality of the 
total RNA was assessed using the NanoDrop 2000 Ultra-
Micro Spectrophotometer (Thermo, America). Sub-
sequently, the total RNA was reverse transcribed into 
cDNA using the  PrimeScript™ RT reagent kit with gDN-
AEraser kit (Takara, Japan). The resulting cDNA prod-
ucts were either used directly for quantitative Real-time 
Polymerase Chain Reaction (qPCR) or stored at – 20  C.

Referring to the study of Wen and Zhang [53], three 
housekeeping genes (18S rRNA, β-actin and EF1-α) 
were selected from S. laricifolia, and the comparison 
in expression of these genes between protoplasts and 
untreated leaves were analyzed by using qPCR. The 
qPCR primers for each housekeeping gene were in 
Additional file  1: Table  S2, and the reaction systems 
were provided in Additional file materials. The relative 

expression of each housekeeping gene was calculated 
using the formula Q =  E−ΔΔCt, where E represents 
the gene amplification efficiency, typically assumed 
to be two (100.00% efficiency). ΔCt is calculated as 
Ct (min)—Ct (sample), where Ct (min) is the lowest 
Ct value among all samples, and Ct (sample) is the Ct 
value of each sample [54, 55]. The data were subjected 
to two-sample anova and plotted using Origin.

Exogenous gene transformation
The pBI121-SaNADP-ME2 and pBI121-GFP null-
loaded E. coli strains were obtained from our labora-
tory and contained kanamycin resistance genes and 
GFP reporter gene. Refer to Ren et al. [56] for the pro-
cedure of protoplast transformation and improve it. 
Protoplasts were used as receptors and were first resus-
pended in 1  mL of MMG solution, then incubated on 
ice for 30  min and centrifuged at 300  rpm   min−1 for 
2  min to remove the supernatant. 600  μL of proto-
plast solution was pipetted into a 5 mL centrifuge tube. 
60  μL of pBI121-SaNADP-ME2-GFP plasmid vector 
was added to the bottom of the tube and the tube was 
gently flicked to mix the contents. The tube was then 
inverted several times to mix the 660 μL of PEG solu-
tion. The mixture was incubated in a dark environment 
at room temperature for 30 min, completing the trans-
formation process. The transformation reaction was 
stopped by adding a twofold volume of W5 solution. 
After centrifugation at 300  rpm   min−1 for 2  min, the 
supernatant was discarded. The protoplasts were then 
resuspended in 3 mL of WI solution and placed in cell 
culture chambers (Labselect, Beijing, China). They were 
incubated in the dark at room temperature for 16–24 h. 
A suitable amount of the transformed protoplasts was 
used for further analysis. Protoplasts transformed with 
pBI121-GFP empty load were used as a control. The 
images were captured using a laser confocal scanning 
microscope (Zeiss LSM 800, Jena, Germany) and pro-
cessed with Zen 2012 software. GFP and chlorophyll 
were excited using 488  nm and 633  nm laser lines, 
respectively, to observe GFP expression.

Results
Analysis of protoplasmic preparation results
Seventeen groups of experiments were conducted 
using the Box-Behnken design, and the results obtained 
were presented in Table  1. Among the 17 groups, 
group 12 exhibited the highest yield with a value of 
1.566 ×  106/100 mg. Group 5 showed the highest viability 
at 90.81%, while group 12 had the maximum number of 
viable cells, reaching 1.367 ×  106/100 mg.
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RSM results analysis
RSM regression model analysis
The test results were analyzed using RSM to establish the 
response values  Y1 and  Y2 based on the experimental fac-
tors A, B, and C. Quadratic multinomial regression equa-
tions was obtained. The model evaluation indexes were in 
Table 2, and the detailed results of the model were pro-
vided in Additional file 1: Tables S3, S4.

Y1 = 6.119+ 1.815A− 4.626B− 18.608C

+ 0.436AB + 0.580AC− 0.887BC

− 0.633A
2
+ 3.269B

2
+ 15.650C

2

The yield model  (Y1) had an F-value of 105.270, indi-
cating highly significant level differences (p < 0.0001). 
The  R2 value was 0.993, and the signal-to-noise ratio was 
35.072, which was greater than 10, indicating that the 
model was sufficiently accurate and not easily affected 
by external disturbances. Additionally, the data had an 
acceptable level of variability, as evidenced by the range 
of 4% to 10% for the coefficient of variation (C.V. %). The 
viability model  (Y2) had an F-value of 21.080 (p = 0.0003), 
which was less than 0.010, indicating a significant model 
variance. The  R2 value was 0.964, and the signal-to-noise 
ratio was 18.012, indicating a high level of accuracy and 
resistance to external disturbances. Additionally, the 
C.V.% value was less than 4.00, suggesting a low degree of 
data variability in the model.

RSM model three‑dimensional result graph analysis
From Fig. 1a, b and c, it can be observed that the inter-
action effects of cellulase R-10 content (A) and mace-
rozyme R-10 content (B) were the most significant. The 
influence of A on protoplast yield  (Y1) was greater than 
that of B, which was manifested by the fact that the sur-
face intersecting AB was the steepest, and the contours 
intersecting with the A-axis were more densely packed 

Y2 = 18.883+ 13.360A + 49.779B− 186.192C

− 9.063AB + 7.010AC− 24.790BC

− 3.289A
2
− 13.194B

2
+ 150.865C

2

Table 1 Experimental results of three-factor, two-response-value Box-Behnken design test based on the preparation of protoplasts of 
Salsola laricifolia 

Group Cellulase R-10 
content (%)

macerozyme R-10 
content (%)

Mannitol 
concentration 
(mol·L−1)

Protoplast yield 
 (106/100 mg)

Protoplast 
viability (%)

Number of viable 
cells (yield*vitality)
(106/100 mg)

1 1.00 0.50 0.60 0.575 85.78 0.493

2 3.00 0.50 0.60 0.256 85.58 0.219

3 1.00 1.00 0.60 0.683 88.02 0.601

4 3.00 1.00 0.60 0.800 78.69 0.630

5 1.00 0.75 0.50 0.563 90.81 0.511

6 3.00 0.75 0.50 0.383 84.65 0.324

7 1.00 0.75 0.70 0.583 87.62 0.511

8 3.00 0.75 0.70 0.615 84.27 0.518

9 2.00 0.50 0.50 1.125 90.10 1.013

10 2.00 1.00 0.50 1.460 90.62 1.323

11 2.00 0.50 0.70 1.320 89.23 1.178

12 2.00 1.00 0.70 1.566 87.27 1.367

13 2.00 0.75 0.60 0.955 89.63 0.856

14 2.00 0.75 0.60 0.945 89.42 0.845

15 2.00 0.75 0.60 1.035 88.25 0.913

16 2.00 0.75 0.60 1.090 88.57 0.965

17 2.00 0.75 0.60 1.010 87.21 0.881

Table 2 Response surface model evaluation indexes

Evaluation metrics Protoplast yield 
model

Protoplast 
viability 
model

F-value 105.270 21.080

P-value  < 0.0001 0.0003

R2 0.993 0.964

R2 of experiment value 0.983 0.919

R2 of predicted value 0.976 0.815

Coefficient of variation (C.V. %) 5.46 0.98

signal-to-noise ratio 35.072 18.012
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than those of the B-axis (Fig. 1a), the interaction between 
A and mannitol concentration (C) had more significant 
effect on  Y1. A had a greater effect on  Y1 than C (Fig. 1b), 
where the surface was smoother and the contours inter-
secting the A-axis were denser than those of the C-axis. 
The interaction between B and mannitol concentration 
(C) had a significant effect, and B had a greater effect on 
 Y1 than C (Fig. 1c), where the surface was smoothest and 
the contours intersecting the B-axis were denser than 
those of the C-axis. Therefore, it can be concluded that 
the effects of the experimental factors A, B, and C on  Y1 
following the order of A > B > C. Additionally, the effect of 
the interaction between these factors on Y1 followed the 
order of AB > AC > BC.

Similarly, as shown in Figs.  1d, 1e, and f, the experi-
mental factors on the protoplast preparation viability 
 (Y2) resulted in the order of the influence of B > A > C, the 
interaction between the factors on the degree of influ-
ence of  Y2 in the order of AB > BC > AC.

ANN result analysis
The mean square values, error values, and simulation 
effects of the ANN model were shown in Fig. 2. The yield 
model was optimized using the Levenberg–Marquardt 
algorithm with 18 hidden layers. The vitality model was 
optimized using the scaled conjugate gradient method 
with 17 hidden layers. The viable cell model was opti-
mized using the Levenberg–Marquardt algorithm with 
14 hidden layers.

The correlation coefficient of the yield model obtained 
after training the ANN model was 0.96736. The end-of-
training condition was met after 5 iterations, with a mean 
square error (MSE) of 0.045 (Figs. 2, 3a). The correlation 
coefficient of the ANN-viability model was 0.977, and the 
MSE of the ANN-viability model was 8.5388   e−05 after 
10 iterations, satisfying the end-of-training condition 
(Figs. 2, 3b). The correlation coefficient of the ANN-vital 
cell model was 0.995, and its mean square error was 0.003 
after four iterations, also satisfying the end-of-training 
condition (Figs. 2, 3c).

Comparison between RSM and ANN model fitting 
and prediction performance
Fitting effect of RSM, ANN
According to Fig. 4, the RSM yield and viability model 
had a better fit compared to the ANN yield and viabil-
ity model. The R and  R2 values of the RSM model were 
0.996, 0.992, and 0.982, 0.964 respectively, which were 
closer to 1 than the values of the ANN model. Addi-
tionally, the RSM model had smaller RMSE and MAPE 
values compared to the ANN model. However, the 
ANN model showed improved accuracy in predicting 

the number of live cells, with its R and  R2 values being 
second only to the best-fitting RSM yield model (Fig. 4, 
Table 3).

When analyzing only yield and viability, protoplast 
yield fluctuated greatly by changes in experimental con-
ditions, while viability fluctuated less. The coefficients 
of variation (C.V.%) of the actual and predicted values of 
protoplast yield were 42.203, 41.943 and 48.438, which 
were much larger than those of the actual and predicted 
values of viability, which were 3.428, 3.366, and 3.354 
(Fig. 4). Consequently, the RMSE and MAPE of the pre-
dicted values for yield were higher than those for viability 
predictions in Table  3, indicating a greater bias in yield 
prediction.

RSM, ANN model optimization and verification
The RSM model was used to solve for the optimal val-
ues under the conditions of simultaneous considera-
tion of the yield and viability. The results revealed that 
under the conditions of a cellulase R-10 content of 
1.86%, macerozyme R-10 content of 1.00% and manni-
tol concentration of 0.50 mol   L−1, the theoretical values 
for protoplast yield were 1.464 ×  106/100  mg and viabil-
ity was 90.81% (Table  4). GA was utilized for optimiza-
tion of ANN-yield model, ANN-viability model and 
ANN-viable cell number model respectively. ANN-yield 
model predicted a theoretical maximum protoplast 
yield of 1.625 ×  106/100  mg. This prediction was based 
on the following experimental conditions: 1.98% cellu-
lase R-10 content, 1.00% macerozyme R-10 content, and 
0.50  mol   L−1 mannitol concentration. Similarly, the via-
bility model predicted a theoretical maximum viability of 
96.29 based on experimental conditions including 1.65% 
cellulase R-10 content, 0.98% macerozyme R-10 content, 
and 0.53  mol   L−1 mannitol concentration. Additionally, 
the ANN viable cell number model predicted a theoreti-
cal maximum viable cell number of 1.342 ×  106/100  mg, 
which was based on 2.00% cellulase R-10 content, 1.00% 
macerozyme R-10 content, and 0.70  mol   L−1 mannitol 
concentration (Table  4). To validate these predictions, 
the predicted values, experimentally validated values, 
and relative errors of the results were calculated under 
the respective optimal conditions of the RSM and ANN 
models, and Table 4 was obtained.

From Table  4, the relative errors between the predic-
tion results and the actual results using RSM and ANN 
models were less than 5.00%, indicating a high degree of 
confidence in the prediction results of both models [57]. 
Considering the protoplast yield, viability and viable cell 
number, the ANN yield model predicted the optimal 
results, and the validation resulted in a protoplast yield of 
1.550 ×  106/100 mg, the viability of 90.65% and a viable cell 
number of 1.405 ×  106/100  mg, which corresponded to the 
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preparation conditions of 1.98% cellulase R-10 content, 
1.00% macerozyme R-10 content and 0.50  mol  L−1 man-
nitol concentration. When compared to the RSM model 

prediction validation results (1.470 ×  106/100  mg, 89.73%, 
1.319 ×  106/100 mg), the indicators showed improvements of 
5.44%, 1.03%, and 6.52% respectively. Figure 5 demonstrates 

Fig. 2 Artificial neural network (ANN) model simulation effect. It displays the training, verification, test and all data fitting for each model. The fitting 
effect is represented by correlation coefficient (R). a represents the yield model, b represents the viability model, and c represents the viable cell 
model

Fig. 3 Artificial neural network (ANN) model mean square error (MSE) effect plot. The top shows the number of ANN model epochs 
when the minimum MSE is obtained for validation data. a represents the yield model, b represents the vigor model, and c represents the viable cell 
model

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Fig. 4 Comparison of experimental values with predicted values of response surface methodology (RSM), artificial neural network (ANN) models. a 
for protoplast yield, b for protoplast viability
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the results of the protoplast preparation under these 
conditions.

Reference gene stability analysis
The  A260/A280 and  A260/A230 ratios of RNA in both pro-
toplasts and untreated leaves of S. laricifolia were 
approximately 2.00, which satisfied the requirements for 
subsequent experiments. The relative expression of the 
three housekeeping genes in both protoplasts and leaves 
was shown in Fig. 6. There was no significant difference 
in the expression of β-actin and EF1-α pre-and post-
treatments. However, there was a significant difference 
in the expression of 18SrRNA (p < 0.05), indicating that it 
could not be used as an reference gene in the protoplast 
experiment.

Results of protoplast transformation
The results of the transformation of S. laricifolia pro-
toplasts using the pBI121-SaNADP-ME2 plasmid vec-
tor were shown in Fig.  7, where fluorescence signals 
of GFP and chlorophyll were detected respectively at 
500–530 nm and 650–750 nm after excitation at 488 nm 
and 633  nm. The protoplasts transformed with pBI121-
SaNADP-ME2 plasmid vector could observe green 
fluorescence of GFP protein in chloroplasts (Figs.  7a, b, 
c, d), while protoplasts imported with empty plasmid 
only emitted green fluorescence in cytoplasm, with no 
obvious fluorescence in chloroplasts (Figs.  7e, f, g, h). 
The protoplast cells that were successfully transformed 
appeared transparent and had a regular shape without 
any breakage.

Discussion
In this study, we utilized RSM and ANN models to pre-
dict the best preparation conditions for S. laricifolia pro-
toplasts. Our findings revealed that the Box-Behnken 
design test provided the necessary data for our analysis. 
The RSM model demonstrated a better fit compared to 
the ANN model (Table 3). However, the final protoplast 
preparation conditions were determined using the ANN-
yield model (Table 4). Because the amount of protoplast 
yield was fluctuated more when changing experimen-
tal conditions compared to protoplast viability, leading 

to the fact that protoplast yield tends to be more deter-
minative of the number of viable cells (Table  3, Fig.  4). 
Although the ANN-yield model produced a viability 
value of 90.65%, slightly lower than the predicted value 
of the ANN-viability model (90.81%), the final number of 
viable cells obtained was 1.405 ×  106/100 mg, which was 
the highest value (Table  4). As a result, the preparation 
conditions predicted by the ANN-viability model were 
chosen as the final conditions. Compared to the previ-
ous experimental results of S. laricifolia protoplasts [41], 
the protoplast yield increased by 28.10%, the protoplast 
viability increased by 6.65%, and the number of viable 
cells increased by 36.61%. Furthermore, when compared 
to the best results before the ANN treatment (Table 1), 
there was an additional increase of 3.87% in the proto-
plast viability and 2.78% in the number of viable cells.

After modeling the ANN model using the number of 
viable cells, the fitting effect of the ANN model was sig-
nificantly improved, with R, and  R2 were next only to 
the best-fitting RSM-yield model, and the relative error 
between the experimental validation results and the 
predicted results was also less than 5.00% (Tables  3, 4). 
Therefore, it is recommended to consider the number of 
living cells when using the ANN model to optimize the 
results of protoplast preparation. This consideration, 
along with the analysis of protoplast yield and viability, 
can help obtain predicted results that align more closely 
with experimental expectations. With the further appli-
cation of deep learning in cell research, studies have 
been conducted to identify dead/surviving cells directly 
using convolutional neural networks [58], which makes it 
possible to count the number of living cells more easily. 
Additionally, the fitting ability of RSM and ANN mod-
els varies depending on the predicted objects [33, 52, 
59–61]. Therefore, when different materials are used and 
steps are taken to prepare protoplasts, they need to be 
evaluated in detail with specific evaluation indexes and 
experimental data.

In this study, the expression differences of three house-
keeping genes (18sRNA, EF1-α, and β-actin) before and 
after the preparation of pine leaf pigweed protoplasts. 
were shown in Fig. 6. We optimized the protoplast prepa-
ration system and identified suitable internal reference 

Table 3 Evaluation of response surface methodology (RSM), artificial neural network (ANN) model based on statistical indexes

R correlation coefficient, R2 coefficient of determination, RMSE root mean square error, MAPE mean absolute percentage error

Statistical indexes RSM-yield RSM-viability ANN-yield ANN-viability ANN-number 
of viable cells

R 0.996 0.982 0.967 0.977 0.994

R2 0.992 0.964 0.935 0.955 0.989

RMSE 0.034 0.005 0.110 0.006 0.035

MAPE/% 2.825 0.478 8.274 0.595 2.009
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genes to avoid any potential alteration of their expres-
sion in the pigweed protoplasts, which could affect the 
results of subsequent experiments. Housekeeping genes 
are essential for maintaining minimum cellular func-
tions and are generally considered to be stably expressed 
[62–65] However, their expression may be altered to var-
ying degrees under different adverse conditions. Unlike 
β-actin and EF1-α, the expression of 18sRNA selected in 
this experiment were found to be unstable and unsuitable 
for use as endogenous genes after the preparation pro-
cess of S. laricifolia protoplasts (Fig.  5), this aligns with 
the findings of a previous study that investigated the suit-
ability of these genes as endogenous genes in S. laricifolia 
leaves under drought stress [53].

Conclusions
In this experiment, Box-Behnken design method with 
RSM-ANN model was used to optimize the prepara-
tion conditions of protoplasts of S. laricifolia, these 
methods are not commonly used in previously simi-
lar studies. To validate the methodology, a series of 

experiments were conducted, including transient gene 
conversion and internal reference gene analysis. After 
considering the protoplast yield, viability and num-
ber of viable cells, the ANN yield model predicted the 
best results, and the experimental validation protoplast 
yield of 1.550 ×  106/100  mg, viability of 90.65%, and a 
number of viable cells of 1.405 ×  106/100  mg. Corre-
sponding preparation conditions were 1.98% cellulase 
R-10, 1.00% macerozyme R-10, 0.50  mol  L−1 manni-
tol. Furthermore, β-actin and EF1-α were identified 
as internal reference genes in protoplast experiment. 
The experiments also demonstrated that, in addition 
to protoplast yield and viability, the number of viable 
cells (yield × viability) can serve as an evaluation index 
for predicting protoplast experiments using RSM and 
ANN. This index not only considers the viability and 
yield of protoplasts simultaneously but also aligns 
better with the requirements of subsequent genetic 
experiments.

Fig. 5 Results of the preparation of protoplasts of Salsola laricifolia under the optimal preparation conditions. To enhance visualization 
of protoplasts, a and b were captured using blood counting plates (25 × 16) as a background under a microscope (10 × 40). Additionally, 
the protoplast concentrations in b were diluted by a factor of two
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Fig. 6 Relative expression of the three housekeeping genes (a, b, c represent 18SRNA, EF1-α, and β-actin, respectively) in the protoplasts and leaves 
of Salsola laricifolia. * represents significant differences (p < 0.05)
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Table S3. Regression analysis of response surface yield and vitality mod-
els, *, **, and *** indicate significant differences at the p < 0.05, p < 0.01, 
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