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Abstract 

Background More and more studies show that miRNA plays a crucial role in plants’ response to different abiotic 
stresses. However, traditional experimental methods are often expensive and inefficient, so it is important to develop 
efficient and economical computational methods. Although researchers have developed machine learning-based 
method, the information of miRNAs and abiotic stresses has not been fully exploited. Therefore, we propose a novel 
approach based on graph neural networks for predicting potential miRNA-abiotic stress associations.

Results In this study, we fully considered the multi-source feature information from miRNAs and abiotic stresses, 
and calculated and integrated the similarity network of miRNA and abiotic stress from different feature perspec-
tives using multiple similarity measures. Then, the above multi-source similarity network and association informa-
tion between miRNAs and abiotic stresses are effectively fused through heterogeneous networks. Subsequently, 
the Restart Random Walk (RWR) algorithm is employed to extract global structural information from heterogeneous 
networks, providing feature vectors for miRNA and abiotic stress. After that, we utilized the graph autoencoder based 
on GIN (Graph Isomorphism Networks) to learn and reconstruct a miRNA-abiotic stress association matrix to obtain 
potential miRNA-abiotic stress associations. The experimental results show that our model is superior to all known 
methods in predicting potential miRNA-abiotic stress associations, and the AUPR and AUC metrics of our model 
achieve 98.24% and 97.43%, respectively, under five-fold cross-validation.

Conclusions The robustness and effectiveness of our proposed model position it as a valuable approach for advanc-
ing the field of miRNA-abiotic stress association prediction.

Key points 

We propose an innovative approach based on multi-source similarity network fusion and graph autoencoder for pre-
dicting potential miRNA-abiotic stress associations.

We pioneer the application of graph neural networks in predicting miRNA-abiotic stress associations, achieving more 
accurate predictive performance than all known methods.

We also introduce a machine learning model based on multi-source similarity network fusion, showcasing its superi-
ority over existing machine learning-based models.
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Background
MicroRNAs (miRNAs) are naturally occurring non-cod-
ing molecules comprising endogenous single-stranded 
RNAs, typically ranging from 21 to 25 nucleotides in 
length. They are ubiquitous in diverse organisms, includ-
ing animals, green algae, plants, and viruses [1, 2]. miR-
NAs play a pivotal role in various fundamental biological 
processes [3], encompassing cell differentiation, develop-
ment, cell cycle, apoptosis, and more [2, 4, 5]. Extensive 
research has validated that miRNAs significantly regulate 
genes, exerting their biological functions by inhibiting or 
degrading mRNA post-transcription [2].

Moreover, a growing body of evidence underscores the 
critical involvement of miRNAs in the plant’s response 
to various abiotic stresses, enabling plants to adapt effec-
tively [6–9]. For instance, Zhou et al. utilized a microar-
ray platform to conduct comprehensive genome-wide 
profiling and analysis of miRNAs during different stages 
of rice development under drought stress. They observed 
significant down-regulation of 11 miRNAs and up-regu-
lation of 8 miRNAs in response to drought stress [10].

Researchers have identified miRNAs responsive to a 
range of abiotic stresses such as drought [10–17], cold 
[18–21], heat [22–24], light [25–31], salt [17, 32, 33], and 
oxidative stress [34–38] in various crop species. Wang 
et  al. [39], for example, discovered that miR398 expres-
sion was significantly suppressed under salt stress in cot-
ton. Xie et al. [40] reported down-regulation of miR408 
in cotton under drought stress using deep sequencing. 
Additionally, in Arabidopsis thaliana, miR169 expression 
was induced under salt stress [41], while miR398 expres-
sion was induced by UVB light but inhibited under salt, 
cold, and oxidative stress [35, 42].

The aforementioned studies collectively underscore 
the critical role of miRNAs in plant responses to diverse 
abiotic stresses. Identifying stress-responsive miRNAs in 
crops holds significant potential for developing stress-
resistant varieties. Furthermore, comprehending the 
intricate interplay between miRNAs and abiotic stress is 
vital for understanding how organisms respond to envi-
ronmental changes. Hence, employing suitable experi-
mental or computational methodologies to investigate 
the miRNA-abiotic stress associations is imperative.

Traditional experimental approaches for identifying 
potential miRNA-abiotic stress associations primar-
ily involve RT-PCR, cloning, RNA microarrays, north-
ern blots, next-generation sequencing (NGS), and deep 
sequencing technologies [43–45]. Additionally, several 
authoritative bioinformatics databases, such as Pnc-
Stress [46], PAS-miR [47], have been established to store 
miRNA-abiotic stress associations obtained through wet 
lab experiments and sequencing methods. However, 
these experimental and high-throughput sequencing 

techniques necessitate substantial financial investments 
and computational resources, rendering them less effi-
cient. Therefore, there is an urgent need to develop 
efficient and cost-effective computational methods to 
predict potential miRNA-abiotic stress associations.

The machine learning-based approach represents a 
prevalent computational method for predicting such 
associations. Over the years, researchers have conducted 
extensive research on this front. For instance, Meher 
et  al. [48] developed ASRmiRNA, a machine learning-
based prediction tool, which employs the PseKNC [49] 
method to extract features from miRNA sequences. Sub-
sequently, Support Vector Machines (SVM) are utilized 
to predict potential miRNA-abiotic stress associations, 
leveraging the obtained feature representations.

However, ASRmiRNA possesses certain limitations. 
Notably, it overlooks the contribution of abiotic stress 
information during association prediction, focusing 
solely on miRNA sequence information. This limita-
tion hampers its predictive performance. Additionally, 
ASRmiRNA treats the prediction as a binary classifica-
tion problem, providing no insight into the specific abi-
otic stress associated with a particular miRNA. Thus, a 
more precise prediction regarding the miRNA-abiotic 
stress association remains elusive.

In recent years, Graph Neural Networks (GNNs) have 
gained prominence in bioinformatics, exhibiting excep-
tional performance in association prediction problems. 
GNNs excel at learning topological information within 
graph structures, making them particularly effective for 
association prediction. For instance, Wang et al. [50] pro-
posed an algorithm based on Graph Convolutional Net-
works (GCN) to predict circRNA-disease associations. 
This algorithm utilizes FastGCN and the Penalty Attrib-
ute Forest (Forest PA) algorithm to predict potential 
associations between circRNA and disease. Li et al. [51] 
proposed a computational model called DeepCMI based 
on circRNA miRNA biomedical maps to predict potential 
circRNA miRNA associations. Wang et al. [52] proposed 
a computational method KGDCMI based on multi-
source information extraction and fusion to predict the 
interaction between circRNA and miRNA. Li et  al. [53] 
propose the PPAEDTI model, which uses the graph per-
sonalized propagation technique to predict drug-target 
interactions from the known interaction network. Simi-
larly, other models employing GNNs have made signifi-
cant strides in association prediction problems [53–55].

To overcome the limitations of ASRmiRNA and capi-
talize on the success of GNNs in association predic-
tion, we propose a novel method based on the fusion of 
multi-source similarity networks and graph autoencoder 
for predicting potential miRNA-abiotic stress associa-
tions. Our approach involves collecting and processing 
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miRNA-abiotic stress association data from the Pnc-
Stress database, constructing the miRNA-abiotic stress 
association matrix, and considering multi-source feature 
information from miRNA and abiotic stress. The method 
integrates similarity networks from various perspec-
tives, combining them to create the final miRNA-abiotic 
stress heterogeneous network. Subsequently, the RWR 
algorithm is employed to extract global structural infor-
mation from heterogeneous networks, providing feature 
vectors for miRNA and abiotic stress. These feature rep-
resentations facilitate the prediction of potential miRNA-
abiotic stress associations using an encoder-decoder 
model built upon the GIN model. The model exhibits 
superior performance compared to traditional machine 
learning models and commonly used graph neural net-
work models, making it a promising approach for precise 
miRNA-abiotic stress association prediction.

In summary, our contributions encompass proposing 
an innovative approach based on multi-source similar-
ity network fusion and graph autoencoder for predicting 
potential miRNA-abiotic stress associations. Our method 
comprehensively considers multi-source feature informa-
tion from miRNA and abiotic stress, leveraging various 
similarity networks to enhance predictive performance. 
We also introduce a machine learning model based on 
multi-source similarity network fusion, showcasing its 
superiority over existing machine learning-based models. 
Furthermore, our study pioneers the application of graph 
neural networks in predicting miRNA-abiotic stress 
associations, achieving more accurate predictive perfor-
mance compared to traditional machine learning models 
and commonly used graph neural network models. The 
robustness and effectiveness of our proposed model posi-
tion it as a valuable approach for advancing the field of 
miRNA-abiotic stress association prediction.

Materials and methods
Overview
In this research, we present a novel model rooted in the 
fusion of multi-source similarity network and graph 
autoencoder, aimed at predicting potential associations 

between miRNAs and abiotic stresses. The overarching 
model framework, as illustrated in Fig.  1, encompasses 
four fundamental modules: data collection and process-
ing, similarity calculation and integration, constructing 
the miRNA-abiotic stress heterogeneous network, and 
miRNA-abiotic stress association prediction.

In the initial module, which focused on data collection 
and preprocessing, we gathered established miRNA-abi-
otic stress associations from the PncStress database [46]. 
Following meticulous processing, a total of 823 miRNA-
abiotic stress association pairs were obtained, forming 
the basis for constructing the miRNA-abiotic stress asso-
ciation matrix.

The subsequent module, concerning similarity calcula-
tion and integration, fully accounts for multi-source fea-
tures of miRNAs and abiotic stress factors. We employed 
various similarity measures to calculate the similarity 
network for miRNA and abiotic stress from multiple 
perspectives, to comprehensively characterize the infor-
mation of miRNA and biotic stress. For miRNAs, this 
involved considering sequence similarity, functional 
similarity, and Gaussian interaction profile kernel (GIPK) 
similarity. Similarly, abiotic stress data was analyzed for 
semantic similarity and GIPK similarity. Following this, 
the disparate sources of similarity data were harmonized 
to derive the ultimate miRNA similarity network and abi-
otic stress similarity network.

In the module of constructing miRNA-abiotic stress 
heterogeneous networks, we combined the integrated 
miRNA similarity network, the integrated abiotic stress 
similarity network, and the miRNA-abiotic stress associ-
ation network to formulate a comprehensive heterogene-
ous network. To capture the network’s global structure, 
the RWR algorithm was employed. The RWR algorithm 
yielded steady-state matrices, which, in turn, facilitated 
the characterization of miRNA and abiotic stress nodes 
as feature vectors. Consequently, feature representations 
for miRNAs and abiotic stress were acquired.

Finally, in the miRNA-abiotic stress association predic-
tion module, our model was deployed to predict potential 
associations. The model is constituted of an encoder and 

Fig. 1 The workflow of our proposed model is delineated as follows: A Data Collection and Processing: We commence by gathering 
and meticulously processing miRNA-abiotic stress associations from the PncStress database, utilizing this curated dataset to construct 
the miRNA-abiotic stress association matrix. B Similarity Calculation and Integration: Leveraging the multi-source feature information in miRNA 
and abiotic stress, we employ various similarity measures to compute multiple similarity networks. These networks are then amalgamated 
to form an integrated miRNA and abiotic stress similarity network. C Constructing the miRNA-abiotic stress Heterogeneous Network: Next, we 
amalgamate the integrated miRNA similarity network, the integrated abiotic stress similarity network, and the miRNA-abiotic stress association 
network, culminating in the creation of a comprehensive miRNA-abiotic stress heterogeneous network. Subsequently, the RWR is deployed 
to glean meaningful node representations within the network. D miRNA-Abiotic Stress Association Prediction: In this crucial step, our model 
embarks on learning and reconstructing the miRNA-abiotic stress association network through the encoding and decoding processes. This iterative 
reconstruction enables us to deduce potential miRNA-abiotic stress associations with precision

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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decoder, with the encoder grounded in the GIN model. 
GIN is instrumental in effectively extracting the implicit 
topological properties within the graph and acquir-
ing an efficient representation of the graph’s structure. 
It employs a neighbor aggregation strategy, iteratively 
updating feature vectors of specific nodes by aggregat-
ing those of their neighbors. Subsequently, after multiple 
iterations, the encoder’s feature vectors were employed 
in reconstructing the miRNA-abiotic stress association 
matrix. This reconstruction formed the basis for predict-
ing potential miRNA-abiotic stress associations through 
our model.

miRNA‑abiotic stress associations
We curated a total of 1165 established miRNA-abiotic 
stress associations sourced from the PncStress database 
[46], which are succinctly summarized in Table  1. The 
database encompasses 4227 experimentally validated 
associations involving various non-coding RNAs, includ-
ing miRNAs, LncRNAs, and circRNAs, across 114 dis-
tinct plant species and in response to 48 biotic and 91 
abiotic stresses. We removed redundant associations and 
abnormal data with missing miRNA sequences from the 
obtained miRNA-abiotic stress association data based on 
the principles of data preprocessing.

After processing, we refined the dataset to comprise 
823 miRNA-abiotic stress associations, encompassing 
559 unique miRNAs and 55 distinct abiotic stresses. We 

further analyzed the composition of the dataset based on 
the number of associations under each species, as shown 
in Table  2. To obtain negative samples, we used the 
method proposed by Li et al. [51] in which negative sam-
ples were randomly sampled from the unlabeled samples.

We opted to employ an adjacency matrix to encapsu-
late the known miRNA-abiotic stress associations. In this 
matrix representation, denoted as A ∈ Rm× n , m signi-
fies the number of miRNAs, and n signifies the number 
of abiotic stresses. The value at position Aij is assigned as 
1 when miRNA mi correlates with abiotic stress sj , con-
versely, it is set to 0 if there is no association between 
the respective miRNA and abiotic stress. The adjacency 
matrix A ∈ Rm× n is described as:

Similarity calculation and integration
Abiotic stress semantic similarity
The paramount objective in calculating the semantic 
similarity of abiotic stress lies in acquiring an effec-
tive vector representation for each abiotic stress. To 
this end, we introduce the word2vec algorithm [56], 
a neural network-based word embedding technique 
renowned for its ability to map words into a high-
dimensional vector space. This mapping ensures that 
words sharing similar semantics are situated in closer 
proximity within the vector space. Specifically, Word-
2vec is a method used to assign a fixed-length real 
value vector V (m) ∈ Rm to any word w in a dictionary 
D , where V (m) represents the word vector of w and 
m is the length of the word vector. The collection of 
these vectors forms a word vector space, with each vec-
tor being considered as a point in space. The lexical or 
semantic similarity between words can be determined 

A
(

mi,sj
)

=

{

1 ifmi and sj have association

0 otherwise

Table 1 Summary of data

miRNA Stress Known 
associations

PncStress 721 55 1165

Used 559 55 823

Table 2 The distribution of association numbers under each species

Species Associations Species Associations Species Associations

Oryza sativa 189 Nicotiana tabacum 62 Brassica napus 41

Arabidopsis thaliana 81 Zea mays 49 Solanum lycopersicum 34

Populus trichocarpa 78 Glycine max 49 Triticum aestivum 30

Linum usitatissimum 24 Medicago truncatula 21 Phaseolus vulgaris 13

Physcomitrella patens 23 Gossypium hirsutum 20 Brassica rapa 10

Prunus persica 22 Hordeum vulgare 13 Brachypodium distachyon 7

Saccharum spp 6 Ricinus communis 4 Sorghum bicolor 3

Oryza rufipogon 5 Rehmannia glutinosa 3 Malus domestica 2

Glycine soja 4 Festuca arundinacea 3 Brassica campestris 1

Brassica juncea 1

Total 823
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by measuring the distance between their respective 
points.

Word2vec is widely adopted in the realm of natural 
language processing, including recommendation sys-
tems [57], machine translation [58], semantic simi-
larity computation [59], and text classification [60], 
consistently delivering noteworthy outcomes. In the 
field of association prediction, word2vec is also widely 
used. For example, Przybyszewski et  al. [61]. applied 
word2vec to predict the associations between miRNA 
and target, using the word2vec method to accurately 
encode RNA sequence information, combined with a 
graph neural network for classification, and achieved 
good prediction results. Zhang et al. [62]. predicted the 
associations between Drug and Target by using word-
2vec to represent the potential features of small com-
pounds and target proteins.

In our experiment, we utilize the word2vec algorithm 
to compute the semantic similarity among abiotic 
stresses. Specifically, we initially applied the word2vec 
algorithm to obtain an effective vector representation 
for each abiotic stress. In this context, we configure the 
vector dimension to be 100, thereby representing each 
abiotic stress as a vector of size 1 × 100. Subsequently, 
upon obtaining the vector representations, we employ 
the cosine similarity metric to quantify the similarity 
between abiotic stresses.

The cosine similarity metric yields values within the 
range of − 1 to 1, where a value approaching 1 signifies 
a higher degree of similarity between the two abiotic 
stresses. Conversely, a value of 0 implies a lack of sig-
nificant similarity between the two stresses. The calcu-
lation of cosine similarity is elucidated by the following 
formula:

where vector(si) represents the vector representation of 
abiotic stress si,vector(sj) represents the vector repre-
sentation of abiotic stress sj . Eventually, we obtained the 
semantic similarity network for abiotic stresses, which we 
will subsequently use to construct the final abiotic stress 
similarity network.

miRNA functional similarity
When two miRNAs share functional similarities, it is 
plausible that they are associated with diseases mani-
festing similar pathological phenomena or symptoms. 
Consequently, the functional similarity of miRNAs can 
be calculated and gauged by evaluating the similarity 
between the diseases with which they are associated [63, 
64]. In a parallel vein, akin to miRNAs with analogous 

Sem
(

si, sj
)

=
vector(si) · vector

(

sj
)

�vector(si)� ·
∥

∥vector
(

sj
)∥

∥

functions being linked to diseases with similar pheno-
types, distinct miRNAs may also display certain func-
tional resemblances when subjected to comparable types 
of abiotic stress. To quantify the functional similarity of 
miRNAs, we employed the methodology introduced by 
Wang et al. [65]. This method is often applied to measure 
the functional similarity between two entities in associa-
tion prediction. For example, Wang et al. [66]. used this 
method to calculate the functional similarity network of 
microbes in the association prediction between microbes 
and releases, and combined it with other similarity net-
works as the feature representation of microbes.

To accurately measure the functional similarity 
between two miRNAs, we need also to consider the con-
tributions from similar abiotic stress that are associated 
with these two miRNAs, respectively. Therefore, we initi-
ate by defining semantic similarities between an abiotic 
stress and a set of abiotic stresses:

Here we define st as an abiotic stress. ST  is defined as a 
group of abiotic stresses, that is, ST = {st1, st2, st3,... stj} . 
Subsequently, the functional similarity between miRNA 
m1 and m2 can be defined as:

ST1 represents the set of abiotic stresses associated with 
m1 , st1i represents an element of ST1 , m and n represent 
the amount of abiotic stresses associated with miRNA m1 
and miRNA m2 , respectively. Finally, we obtain the func-
tional similarity network of miRNAs, and then we will 
use it to construct the final miRNA similarity network.

miRNA sequence similarity
In our experimental approach, we utilized the Chaos 
Game Representation (CGR) [67] technique to convert 
the miRNA sequence into a vector representation. CGR is 
an iterative sequence mapping method renowned for its 
capacity to faithfully restore the original sequence infor-
mation of miRNA from coordinates, ensuring no loss of 
miRNA sequence data during the mapping process. Fur-
thermore, it can uniquely map the miRNA sequence to a 
two-dimensional plane by incorporating both positional 
and nonlinear information. The definition of the relative 
position of a nucleotide in the miRNA sequence on the 
plane is outlined as follows:

Here, L denotes the length of the miRNA sequence, 
while  Il represents the positional factor of the i-th nucle-
otide in the sequence, corresponding to the coordinates 

S(st, ST ) = max
1≤i≤j

(S(st, sti))

Func(m1,m2) =

∑

1≤i≤m S(st1i, ST2)+
∑

1≤j≤n S
(

st2j, ST1

)

m+ n

Tl= 0.5× (Tl - 1 + Il) l = 1,2,... L
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of the four vertices: A = (0,0), T = (1,0), C = (0,1), and 
G = (1,1). We initialize the starting point to be the 
center of the two-dimensional plane, represented as 
 T0 = (0.5,0.5).

Figure 2 delineates the workflow for calculating miRNA 
sequence similarity using CGR technology. In this experi-
ment, we employed CGR technology to encode the 
miRNA sequence, thereby obtaining an effective vec-
tor representation. Initially, we mapped the miRNA 
sequence onto a two-dimensional plane. Subsequently, 
we associated the relative position of each nucleotide on 
the two-dimensional plane with a frequency network of 
N × N , where N is set to 8. We then proceeded to con-
struct the vector representation of the miRNA sequence 
based on the information gleaned from the frequency 
network. The construction method is outlined as follows:

Xi and Yi represent the sum of abscissa and ordinate 
of all points in the i-th grid, respectively. In addition, we 
quantify the nonlinear information of the i-th grid using 
Zi . The definition is as follows:

Therefore, miRNA mi can be represented as the vector 
vector(mi) . Subsequently, we use the Pearson correlation 

vectori = (Xi,Yi,Zi)

Zi =
Numi −

∑N×N
j=1 Numj

N×N
√

1
N×N

∑N×N
k=1

(

Numk −

∑N×N
l=1 Numl

N×N

)2

Numi = number of points in i - th frequency network

coefficient to measure the similarity between vector(mi) 
and vector(mj) , and the calculation method is as follows:

where Cov(vector(mi), vector(mj)) represents the covari-
ance between vector(mi) and vector(mj) . σvector(mi) is the 
standard deviation of vector(mi) . Finally, we obtain the 
sequence similarity of miRNA based on the CGR tech-
nique. Subsequently, we will use it to construct the final 
miRNA similarity network.

Gaussian interaction profile kernel similarity for miRNA 
and abiotic stress
When two miRNAs are similar in their functions, they 
are often associated with similar types of abiotic stresses. 
In other words, similar miRNAs may exhibit similar 
functional expression patterns. Here, we can evaluate the 
similarity of miRNAs and abiotic stresses respectively 
using the Gaussian interaction profile kernel (GIPK) sim-
ilarity [68]. In association prediction, GIPK similarity is 
often used to calculate and characterize the feature infor-
mation of entities based on their association information. 
For example, Wang et  al. [66]. calculated and measured 
the GIPK similarity network of both microbe and dis-
ease based on microbe-disease association information, 
and fused this network with other types of similarity net-
works using a multi-source approach to fully characterize 
the feature information of the two entities.

Previously, we have defined the association matrix 
A ∈ Rm× n between miRNA and abiotic stress, On 
this basis, we define V (mi) and V (mj) , which repre-
sent the i-th row and j-th row of the association matrix 

Seq
(

mi,mj

)

=
Cov

(

vector(mi), vector(mj)
)

σvector(mi) · σvector(mj)

Fig. 2 Workflow for calculating miRNA sequence similarity based on CGR technology
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A ∈ Rm× n , respectively. Then the GIPK similarity 
between miRNA mi and miRNA mj can be defined as 
follows:

Similarly, the GIPK similarity between abiotic stress si 
and sj can be defined as:

where V (si) and V (sj) respectively represent the i-th 
column and j-th column of the association matrix 
A ∈ Rm× n . Finally, we obtained the GIPK similarity net-
work of miRNA and the GIPK similarity network of abi-
otic stress.

Integrated similarity for miRNA and abiotic stress
The final miRNA similarity network is obtained by inte-
grating the multi-source miRNA similarity network, 
which comprehensively considers the sequence similarity 
network, the functional similarity network and the GIPK 
similarity network. The calculation formula of the inte-
grated similarity network is as follows:

where Seq
(

mi,mj

)

, Func
(

mi,mj

)

 and GIPKM

(

mi,mj

)

 
represent miRNA sequence similarity network, miRNA 
functional similarity network and miRNA GIPK similar-
ity network, respectively. We use αi(i ∈ 1, 2, 3) to meas-
ure the contribution of different similarities, and here we 
set it to 1.

To create the final abiotic stress similarity network, we 
similarly integrate the multi-source similarity network of 
abiotic stress, which consists of the GIPK similarity net-
work and semantic similarity networks of abiotic stress, 
respectively. The following is the integrated similarity 
network calculating method:

where Sem
(

si, sj
)

 and GIPKS

(

si, sj
)

 respectively repre-
sent the semantic similarity network of abiotic stress and 

GIPKM

(

mi,mj

)

= exp
(

− γm
∥

∥V (mi) − V
(

mj

)
∥

∥

2
)

γm =
n

∑n
i=1 �V (mi)�

2

GIPKS

(

si, sj
)

= exp
(

− γm
∥

∥V (si)− V
(

sj
)
∥

∥

2
)

γs =
m

∑m
i=1 �V (si)�

2

MS
(

mi,mj

)

=
α1Seq

(

mi,mj

)

+ α2Func
(

mi,mj

)

+ α3GIPKM

(

mi,mj

)

α1 + α2 + α3

SS
(

si, sj
)

=
β1Sem

(

si, sj
)

+ β2GIPKS

(

si, sj
)

β1 + β2

the GIPK similarity network of abiotic stress. Here the 
weight parameter βi(i = 1, 2) is also set to 1. Finally, we 
obtained the integrated miRNA similarity network and 
the integrated abiotic stress similarity network.

Construct miRNA‑abiotic stress heterogeneous network
Using multiple similarity measurement methods, we cal-
culated the miRNA and abiotic stress respective simi-
larity networks from different perspectives in this study 
based on the multi-source feature information. These 
networks were then integrated to obtain the final similar-
ity networks for miRNA and abiotic stress. In addition, 
we also define the association matrix A ∈ Rm× n between 
miRNA and abiotic stress. In this section, we construct 
the miRNA-abiotic stress heterogeneous network H 
based on the above three networks, and the construction 
method is as follows:

where MS and SS represent the integrated miRNA simi-
larity network and the integrated abiotic stress similar-
ity network respectively. Subsequently, we use the RWR 
algorithm to learn the global structure information of 
heterogeneous networks. Through random network 
walking, the RWR algorithm mimics the process of infor-
mation transmission. The walker hops to the neighboring 
node with one probability and stays at the current node 
with another one at each step. The RWR technique can 

obtain the transition probability between nodes through 
numerous iterations and eventually arrive at the steady-
state matrix. The steady-state matrix can be regarded 
as a feature vector describing the importance and inter-
relationship of nodes in the network. By performing the 
RWR algorithm on the heterogeneous network, the prob-
ability vector obtained by RWR for node i at step t + 1 is 
calculated by the following formula:

where α is the restart probability, T is the probabil-
ity transition matrix of the heterogeneous network, pi 
is the n-dimensional initial feature vector, and pti is the 
n-dimensional feature vector of node i. With the steady-
state matrix generated by the RWR algorithm, we can 
describe each miRNA and abiotic stress node as feature 
vectors, which capture their position and importance in 

H =

[

MS A

AT SS

]

∈ R (m + n)×(m + n)

pt+1
i = (1− α)Tpti + αpi
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heterogeneous networks. By doing this, we are able to 
obtain the feature representations of miRNA and abiotic 
stress, which serve as a foundation for future association 
prediction.

miRNA‑abiotic stress association prediction
In our research, we constructed a miRNA-abiotic stress 
heterogeneous network by integrating the multi-source 
similarity network information of miRNA and abiotic 
stress. The RWR algorithm was used in our study to learn 
the topological structure of the heterogeneous network 
and obtain the feature representations of miRNA and 
abiotic stress. Subsequently, our model will then be used 
to predict potential associations between miRNA and 
abiotic stress. Our model comprises a decoder and an 
encoder specifically. The encoder is built on a GIN [69] 
model, which can efficiently extract implicit topological 
information from graphs and learn an efficient repre-
sentation of their structure. The feature vector of a node 
is iteratively updated and calculated using the nearby 
nodes’ feature vectors, according to the neighbor aggre-
gation approach. Additionally, GIN introduces a Multi-
Layer Perceptron (MLP) to learn and model an injective 
function for aggregating features. The feature vector of a 
node at the k-th layer in GIN can be represented as:

where h(k−1)
v  is the feature vector of node v at the 

(k–1)-th layer, and the feature vector of nodes at the 0-th 
layer is the input to our model, that is, the heterogene-
ous network. N (v) is the set of neighborhoods of node v. 
In addition, if there is any difference between the feature 
vector of a node or neighbors of a node, we introduce a 
learnable parameter ε to ensure that the feature vector of 
the node is also different. In addition, MLP(k) is a Multi-
Layer Perceptron, which can learn the unique mapping 
from 

(

1+ ε(k)
)

· h
(k−1)
v +

∑

u∈N (v) h
(k−1)
u  to h(k)v .

After iteratively updating the feature vectors of nodes 
in the encoder, we use a decoder to reconstruct the asso-
ciation matrix A′ between miRNA and abiotic stress. Our 
decoder is defined as follows:

where σ is a nonlinear activation function, and in this 
case, we use the sigmoid function. Z is the output of 
our encoder. Our model’s loss function, which calcu-
lates the difference between the predicted value and the 
actual value, is the cross-entropy function. The following 
defines the loss function:

h(k)v = MLP(k)





�

1+ ε(k)
�

· h(k−1)
v +

�

u∈N (v)

h(k−1)
u





A′
= σ

(

Z · ZT
)

where y represents the value of an element in the asso-
ciation matrix A ∈ Rm× n , that is, the true value. y′ rep-
resents the value of an element at the corresponding 
position in the reconstructed association matrix A′ , that 
is, the predicted value. Then, we use the Adam optimizer 
to minimize the loss function. After that, we can obtain 
potential associations between miRNA and abiotic stress 
based on the reconstructed association matrix generated 
by our model.

Results and discussion
Experimental setup and evaluation metrics
We used the K-fold cross-validation method in our experi-
ment to assess the model’s performance. In K-fold cross-
validation, all known miRNA-abiotic stress association data 
are randomly divided into K equal subsets, one of which is 
utilized as the test set and the remaining K-1 subsets as the 
training set. The average of the K test results is used as the 
evaluation result after this process is repeated K times with 
a different subset being used each time as the test set. Here,  
the K value is set to 5. The benefit of using cross-validation 
to evaluate a model is that it can better evaluate the gener-
alization ability of the model and provide an assessment of 
model stability.

Since AUPR and AUC can indicate the performance of 
the model at various thresholds, they were utilized as the 
primary evaluation metrics in this work. Additionally, we 
also used other threshold-based evaluation metrics such as 
F1 score, accuracy, recall and so on. The following are the 
relevant mathematical formulas:

where TP, FP, TN, and FN represent true positives, false 
positives, true negatives, and false negatives, respectively. 
AUC refers to the area under the curve of the Receiver 
Operating Characteristic (ROC) curve, which quantita-
tively reflects the model’s performance measured based 
on the ROC curve. The abscissa of the ROC curve repre-
sents the False Positive Rate (FPR), and the ordinate rep-
resents the True Positive Rate (TPR). TPR and FPR are 
calculated as follows:

L = −
1

N

∑

y log y′ + (1− y) log(1− y′)

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1_score =
2TP

2TP+ FN+ FP
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The abscissa of the PR curve represents the model’s 
recall, and the ordinate represents the model’s preci-
sion. AUPR stands for the area under the PR curve. The 
larger the area under the PR curve, the better the perfor-
mance of the model. In addition, our model has several 
important hyperparameters, such as the initial learning 
rate lr, the node embedding dimension of encoder layer 
1 hidden1, the node embedding dimension of encoder 
layer 2 hidden2, and the dropout rate of nodes dropout. 
We explored various iterations of these parameters and 
carried out numerous experimental confirmations. We 
selected the optimal parameter combination as lr = 0.001, 
hidden1 = 256, hidden2 = 128, and dropout = 0. The 
details of parameter adjustment are shown in Table 3.

Performance comparison with different prediction 
methods
In order to assess the performance of our model in pre-
dicting potential miRNA-abiotic stress associations, we 
first compared it to several common traditional machine 
learning models. Since graph structure data cannot 
be utilized directly to train machine learning models, 
we also offer machine learning models based on multi-
source similarity network fusion to guarantee the consist-
ency of training data and the rationality of comparison. 
Specifically, we performed the following processing: we 
concatenated the miRNA similarity network MS with the 
abiotic stress similarity network SS to form the feature 
vector of miRNA-abiotic stress pairs. For example, we 
concatenated the i-th row of the miRNA similarity net-
work MS with the j-th row of the abiotic stress similar-
ity network SS to form the feature vector for the miRNA 
mi and abiotic stress sj pair. These feature vectors are the 

TPR =
TP

TP+ FN

FPR =
FP

FP+ TN

inputs for the machine learning model, and the five-fold 
cross-validation is used to assess the model’s perfor-
mance. All parameters of the models have been adjusted 
to the optimal level, and the tuning details are shown 
in Table  4. Table  5 and Fig.  3 present the findings.The 
bold value is the maximum value of the column. SVM 
performed the best in machine learning, with improve-
ments of 1.73% and 3.5% in AUPR and AUC compared 
to RF, respectively. Compared to KNN, it has increased 
by 1.68% and 2.68%, respectively. This indicates that 
SVM has the best performance and robustness among 
all machine learning models. Our approach outperforms 
SVM, the top-performing classical machine learning 
model, by 2.09% in terms of AUPR. Our model performs 
similarly to SVM in terms of AUC, with a 0.1% improve-
ment. Our model surpasses SVM in terms of F1 score and 
precision by 1.67% and 4.03%, respectively, despite SVM 
having a 0.73% slightly greater recall than our model. This 
suggests that our model can maintain a high recall while 
achieving higher precision and F1 score. As a result, we 
think that our model performs better than SVM. Addi-
tionally, our approach also has outperformed more than 
conventional machine learning models in terms of vari-
ous evaluation indicators. We believe that our model per-
forms better in predicting potential miRNA-abiotic stress 
associations than conventional machine learning models 
when all of these aspects are taken into account.

In order to further evaluate the performance of our 
model, we compare it with several common graph neu-
ral network models at present. Specifically, we choose 
GraphSAGE [70], GCN [71], and GAT [72] as the encod-
ers, respectively, of our model and utilize the same 
decoder as our model to compare the performance of 
several graph neural network models through fivefold 
cross-validation on the same dataset. Table 5 and Fig. 3 
present the findings. Our model outperformed Graph-
SAGE, which has the best performance among other 
graph neural networks, in terms of the AUPR and AUC 
indices, respectively, by 0.98% and 1.31%. In terms of F1 
score, it improved by 1.47% compared to GraphSAGE. 
In addition, our model achieved improvements of 2.19% 
and 2.11% in specificity and precision, respectively. This 
indicates that our model can more accurately identify 
positive class samples and reduce misjudgment of nega-
tive class samples, and thus demonstrate the high robust-
ness of our model. Our model improved by 3.3% and 
4.37% when compared to GCN. Although GAT and GCN 
both produced comparable outcomes, neither model 
outperformed ours. Additionally, our model performs 

Table 3 The details of parameter adjustment

Parameter Description Search scope Best

Learning-rate The initial learning rate 
of optimizer

{0.001,0.002,0.005
,0.01,0.02,0.05}

0.001

Hidden1 The embedding dimension 
of layer 1

{16,32,64,128,256} 256

Hidden2 The embedding dimension 
of layer 2

{16,32,64,128,256} 128

Dropout The dropout rate of nodes {0,0.2,0.4,0.5} 0
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better than commonly used graph neural network mod-
els in various evaluation measures. This suggests that our 
model performs best at identifying potential associations 
between miRNA and abiotic stress.

Learning graph-structured data, such as social net-
works and financial networks, primarily involves learning 
effective representations of the graph structure. Graph 
Neural Networks (GNNs) are an effective framework for 
graph representation learning. GNN follows the neigh-
borhood aggregation scheme, where the representation 
vectors of nodes are calculated by recursively aggregat-
ing and transforming the representation vectors of their 
neighbors. The Weisfeiler-Lehman test (WL test) [73], 
like GNN, aggregates the feature vectors of a particular 
node’s neighbors to iteratively update the node’s feature 
representation. The WL test is a reliable test with good 
computing efficiency. The key reason why the WL test 

is so powerful is its injective aggregation update mode, 
which can map different node neighborhoods to differ-
ent feature vectors. Xu et al. [69] demonstrate that GNN 
is at most as powerful as the WL test in distinguishing 
graph structures, and further point out that if a GNN and 
WL test are equivalent in distinguishing or representing 
graph structures, then it is required that the aggrega-
tion scheme of GNN is highly expressive and can model 
injective functions. In the GIN model, a Multi-Layer Per-
ceptron (MLP) is used to learn and model an injective 
function that combines neighbor features by the univer-
sal approximation theorem. This enables GIN as effective 
at identifying and resembling graph structures as WL 
tests in comparison to other graph neural network mod-
els that simply employ simple mean aggregation or sum 
aggregation. Our experimental findings also show that 
GIN performs better than other graph neural networks 

Table 4 The details of parameter adjustment

Parameter Search Scope Best Parameter Search Scope Best
GraphSAGE GAT 

Learning-rate {0.001,0.002,0.005,0.01,0.02,0.05} 0.001 Learning-rate {0.001,0.002,0.005,0.01,0.02,0.05} 0.001

Hidden1 {16,32,64,128,256} 256 Hidden1 {16,32,64,128,256} 256

Hidden2 {16,32,64,128,256} 128 Hidden2 {16,32,64,128,256} 128

Dropout {0,0.1, 0.2,0.4,0.5} 0 Dropout {0,0.1, 0.2,0.4,0.5} 0.1

Num_neighbors {1,2,4,5,6,8,10} 5 Num_heads {1,2,3,4,5,6,7,8,9,10} 2

Parameter Search scope Best Parameter Search scope Best
GCN SVM

Learning-rate {0.001,0.002,0.005,0.01,0.02,0.05} 0.001 Kernel {’linear’, ’poly’, ’rbf’, ’sigmoid’} Rbf

Hidden1 {16,32,64,128,256} 256 C Range(50,150) 100

Hidden2 {16,32,64,128,256} 128 Gamma {’scale’, ’auto’} Scale

dropout {0,0.1,0.2,0.4,0.5} 0

Parameter Search scope Best Parameter Search scope Best
KNN RF

n_neighbors Range(1,50) 8 n_estimators Range(150,250) 220

Weights {’uniform’, ’distance’} Distance Criterion {"gini", "entropy"} Gini

Algorithm {’auto’, ’ball_tree’, ’kd_tree’, ’brute’} Auto

Table 5 Performance of different models in predicting miRNA-abiotic stress associations under five-fold cross-validation

F1, F1 score; ACC, accuracy; RE, recall; SPE, specificity;PRE, precision, Bold indicates the maximum value of the column

Model AUPR AUC F1 ACC RE SPE PRE

GIN 0.9824 0.9743 0.9495 0.9499 0.9453 0.9544 0.9545
GraphSAGE 0.9726 0.9612 0.9348 0.9347 0.9368 0.9325 0.9334

GCN 0.9494 0.9306 0.8882 0.8913 0.8639 0.9186 0.9143

GAT 0.9136 0.9127 0.8843 0.8837 0.8870 0.8803 0.8822

SVM 0.9615 0.9733 0.9328 0.9320 0.9526 0.9117 0.9142

KNN 0.9447 0.9464 0.8652 0.8548 0.9364 0.7751 0.8052

RF 0.9442 0.9383 0.8478 0.8478 0.8568 0.8376 0.8400
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as the encoder for predicting potential miRNA-abiotic 
stress associations. This also explains why our model out-
performs previous graph neural networks at predicting 
possible associations between miRNA and abiotic stress.

Ablation experiment
Analysis of ablation studies of similarity network
In this research, we combined data from multiple similar-
ity networks of miRNA and abiotic stress, creating a het-
erogeneous network of miRNA and abiotic stress as the 
model’s input. In this section, we perform ablation exper-
iments to confirm the contribution of different similarity 
networks to our model. Specifically, we constructed five 
sets of experiments, one by one deleting the similarity 
networks of "Seq", "Func", "GIPKm", "Sem", and "GIPKs" 
to verify the contribution and importance of different 
similarity networks. We built heterogeneous networks as 
input for our model based on these five various combina-
tion strategies, and we used five-fold cross-validation to 
assess how the performance of our model was affected by 
the various similarity networks. Each group received the 
identical training methods as those outlined in "Experi-
mental setup and evaluation metrics" section.

Table  6 presents the experimental results.The bold 
value is the maximum value of the column. We can see 
that when removing the miRNA sequence similarity net-
work, the performance of the model decreased by 1.65% 
and 1.13% on the AUPR and AUC metrics, respectively. 
Similarly, when removing the miRNA functional simi-
larity network, the performance of the model decreased 
by 1.08% and 1.65% on AUPR and AUC metrics, indicat-
ing that both the miRNA sequence similarity network 

and functional similarity network can improve the per-
formance of our model. When removing abiotic stress 
semantic similarity networks, the model performance 
decreased by 0.97% and 1.45% on the AUPR and AUC 
indicators, respectively. In addition, we can observe that 
in the two experiments that removed GIPK similarity, the 
performance of the model decreased the most, reaching 
2%. This indicates that the GIPK similarity network can 
significantly improve the performance of our model in 
predicting miRNA-abiotic stress associations. In addi-
tion, the model performed the best when integrating five 
similarity networks.

In conclusion, the results conclusion, the results of 
the ablation experiment demonstrate that each similar-
ity network can significantly enhance the performance 
of our model, demonstrating the efficacy of the method 
of integrating multi-source similarity networks. Differ-
ent similarity networks contribute to the performance of 
our model to varying degrees, with the GIPK similarity 
network making the largest contribution to the enhance-
ment of performance.

Analysis of ablation studies of known associations
The number of known miRNA-abiotic stress associa-
tions is indeed an important factor that can significantly 
impact the predictive performance of a model. To delve 
deeper into the influence of the number of associations 
on our model’s performance, we conducted an abla-
tion experiment, randomly selecting varying numbers of 
association data from the known miRNA-abiotic stress 

Fig. 3 Performance of different models in predicting miRNA-abiotic stress associations (a) Receiver operating characteristic (ROC) curves 
under fivefold cross-validation (b) Precision-recall (PR) curves under fivefold cross-validation
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association dataset according to certain proportions. 
The goal was to evaluate how different numbers of asso-
ciations affect the model’s performance. Specifically, we 
started with a total of 823 known pairs of miRNA-abiotic 
stress associations and constructed datasets with 600, 
400, and 200 pairs of associations by randomly reduc-
ing the number of associations by a quarter each time. 
Additionally, a dataset with 300 pairs of associations was 
added for a more comprehensive evaluation. The impact 
of association numbers on our model’s performance was 
assessed using five-fold cross-validation.

The experimental results, as presented in Table 7, dem-
onstrate a gradual decline in the model’s performance 

as the number of known miRNA-abiotic stress associa-
tions decreases.The bold value is the maximum value of 
the column. Even when there were only 200 associations, 
the AUPR and AUC metrics of our model reached 0.9443 
and 0.8881, respectively, outperforming the best-per-
forming GraphSAGE model among other graph neural 
network models. This indicates that our model can still 
achieve remarkable performance even with a small num-
ber of associations. Furthermore, when only 100 pairs of 
associations were added, our model exhibited a 1.61% 
increase in AUPR and a 3.27% increase in AUC, while 
GraphSAGE saw only a 0.09% increase in AUPR and a 
0.92% increase in AUC. This suggests that our model can 
make more efficient use of associations to predict poten-
tial miRNA-abiotic stress associations.

In summary, the ablation experiments clearly illustrate 
that the number of known miRNA-abiotic stress associa-
tions has a significant impact on our model’s performance. 
Reducing the number of known associations results in a 
decrease in predictive performance. However, even when 
associations are limited, our model remains highly effec-
tive. Additionally, our model demonstrates a more sub-
stantial performance improvement with the addition of 
a small number of associations, highlighting its ability to 
effectively leverage associations for prediction.

Performance analysis of the model under different number 
of encoder layers
The number of encoder layers in the model plays a cru-
cial role in determining its predictive performance. 
In our study, we constructed the encoder of our model 
based on GIN, which updates the vector representations 
of nodes by iteratively aggregating neighbor information. 
The number of GIN layers in the encoder can have a sig-
nificant impact on how effectively node information is 
aggregated, which, in turn, affects the model’s predictive 
performance. To evaluate the impact of different encoder 
layer numbers, we conducted experiments and presented 
the results in Fig. 4A using fivefold cross-validation.

Table 6 Results of similarity network ablation experiment using five-fold cross-validation

Bold indicates the maximum value of the column

Network AUPR AUC F1 ACC RE SPE PRE

Seq Func GIPKm Sem GIPKs

✗ ✓ ✓ ✓ ✓ 0.9659 0.9603 0.9279 0.9277 0.9301 0.9253 0.9257

✓ ✗ ✓ ✓ ✓ 0.9716 0.9578 0.9269 0.9280 0.9125 0.9435 0.9434

✓ ✓ ✗ ✓ ✓ 0.9691 0.9572 0.9247 0.9256 0.9149 0.9362 0.9352

✓ ✓ ✓ ✗ ✓ 0.9727 0.9598 0.9329 0.9338 0.9228 0.9447 0.9435

✓ ✓ ✓ ✓ ✗ 0.9670 0.9508 0.9252 0.9265 0.9064 0.9466 0.9461

✓ ✓ ✓ ✓ ✓ 0.9824 0.9743 0.9495 0.9499 0.9453 0.9544 0.9545

Table 7 Results of the ablation experiment with the associated 
number under five-fold cross-validation

Bold indicates the maximum value of the column

Models Known associations AUPR AUC 

GIN 200 0.9443 0.8881

300 0.9604 0.9208

400 0.9665 0.9324

600 0.9716 0.9548

823 0.9824 0.9743
200 0.9415 0.8852

300 0.9424 0.8944

GraphSAGE 400 0.9504 0.9043

600 0.9606 0.9356

823 0.9726 0.9612
200 0.8933 0.8138

300 0.9010 0.8327

GCN 400 0.9135 0.8503

600 0.9227 0.8839

823 0.9494 0.9306
200 0.8832 0.8256

300 0.8919 0.8345

GAT 400 0.8910 0.8675

600 0.9009 0.8937

823 0.9136 0.9127
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The findings indicate that the model performs best in 
terms of AUPR and AUC metrics when the number of 
encoder layers is set to 2. When the number of encoder 
layers is 1, the model’s performance is lower than with 
2 layers. This suggests that a smaller number of encoder 
layers may not efficiently capture the vector representa-
tion of nodes in the network.

Surprisingly, when the number of encoder layers 
exceeds 2, the model’s performance rapidly declines. This 
can be attributed to the structure of the miRNA-abiotic 
stress interaction network, where information related to 
specific miRNAs and abiotic stresses is primarily found 
in limited node neighborhoods. Information in close 
neighborhoods typically represents data directly relevant 
to the node, whereas information from distant neighbor-
hoods may include irrelevant or misleading data. As a 
result, with more encoder layers, the model aggregates 
information from distant neighborhoods, leading to mis-
leading information in the feature vectors of nodes and 
subsequent degradation in predictive performance.

It’s important to note that in our initial experiments, 
we encountered training difficulties when the number 
of encoder layers exceeded 4. In these cases, both AUPR 
and AUC metrics sharply dropped to 0.5. Consequently, 
we did not consider the scenario with more than 4 
encoder layers.

In summary, the number of encoder layers in our 
model significantly impacts its predictive performance. A 
moderate number of layers, such as 2, appears to be the 
most effective choice, as it allows the model to capture 
essential information while avoiding the introduction of 
misleading data from distant neighborhoods.

Performance analysis of the model under different 
embedding dimensions
The node embedding dimension at each layer of the 
encoder is a critical factor influencing the predictive 

performance of our model. In this section, we delved into 
understanding the impact of varying node embedding 
dimensions on the predictive performance of our model. 
Specifically, we explored different combinations of embed-
ding dimensions for the two layers of the encoder, ranging 
from 16 to 256. we conducted a total of nine experiments 
to assess the predictive performance based on these 
combinations.

The findings indicated that the best predictive perfor-
mance, in terms of both AUPR and AUC metrics, was 
achieved when encoder layer 1 had an embedding dimen-
sion of 128 and encoder layer 2 had an embedding dimen-
sion of 256. This suggests that this particular combination 
allowed the model to effectively learn and represent the 
features of nodes in the miRNA and abiotic stress interac-
tion network, as well as their neighborhoods.

Furthermore, the results showed a gradual decline in 
predictive performance as the embedding dimensions in 
each layer decreased. This decline can be attributed to the 
encoder’s inability to effectively learn the feature informa-
tion of the nodes in the miRNA and abiotic stress interac-
tion network and the nodes in their neighborhood when 
the embedding dimensions are low.

Interestingly, the predictive performance of the model 
declined when the embedding dimension combination 
for both layers was (256, 256) compared to the combina-
tion of (128, 256). This could be due to the encoder learn-
ing redundant miRNA and abiotic stress features when the 
embedding dimension is excessively high, ultimately affect-
ing the model’s prediction performance.

Taking these findings into account, we choseto select 
the combination of encoder layer 1 having an embedding 
dimension of 128 and encoder layer 2 having an embed-
ding dimension of 256, as it yielded the best predictive per-
formance for our model.

Fig. 4 Performance of the model with different experimental parameters
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Performance analysis of the model under different 
aggregator types
In the aforementioned investigation, we systematically 
discussed several critical parameters concerning our 
encoder architecture. We have concluded that our model 
achieves optimal performance in predicting potential 
miRNA-abiotic stress associations when employing a 
two-layer encoder with specific configurations: the first 
encoder layer embedding dimension is set to 128, and 
the second encoder layer embedding dimension is set to 
256. Furthermore, we emphasized the significance of the 
aggregation type within the encoder, as it significantly 
influences the predictive efficacy of our model by amal-
gamating neighboring node information. The diverse 
aggregation types manifest distinct aggregation effects. 
To elucidate this, we conducted experiments utilizing two 
primary aggregation types "Mean" and "Sum" and con-
sidered various combinations thereof. Consequently, we 
structured four experimental groups denoted as (mean, 
mean), (sum, sum), (mean, sum), and (sum, mean), where 
the first value denotes the aggregation type of the first 
encoder layer, and the second value denotes the aggre-
gation type of the second encoder layer. The impact of 
these distinct aggregation types on the predictive perfor-
mance of our model was meticulously assessed via five-
fold cross-validation, the results of which are presented 
in Fig.  4C. Notably, our model demonstrated superior 
predictive performance in forecasting potential miRNA-
abiotic stress associations when employing the "Mean" 
aggregation type for the first encoder layer and the "Sum" 
aggregation type for the second encoder layer. Addition-
ally, we observed that when both layers of the encoder 
employed either "Mean" or "Sum" aggregation types, 
utilizing "Sum" for both encode layers resulted in dimin-
ished prediction performance. This observation suggests 
that the "Mean" aggregation type facilitates a more effec-
tive acquisition of node vector representations within 
the interaction network between miRNA and abiotic 
stress. Conversely, adopting the "Sum" aggregation type 
for both encode layers may fail to capture crucial infor-
mation about the miRNA-abiotic stress interaction net-
work. We further noted that the predictive performance 

of the model was least favorable when the first encoder 
layer employed the "Sum" aggregation type while the 
second encoder layer employed the "Mean" aggregation 
type. One plausible explanation for this is that the first-
layer neighborhood of a node contains directly relevant 
information to the node, and an encoder with the "Sum" 
aggregation type may inadequately discern the most per-
tinent information within this neighborhood. On the 
other hand, when the second encoder layer adopts the 
"Mean" aggregation type, the node features gleaned by 
the first encoder layer are averaged with the information 
from nodes in the second-layer neighborhood. However, 
this averaging process may lead to the loss of intricate 
details in node features learned by encoder layer 1, ulti-
mately resulting in suboptimal predictive performance of 
the model. Consequently, our conclusive determination 
advocates the adoption of the "Mean" aggregation type 
for the first encoder layer and the "Sum" aggregation type 
for the second encoder layer.

Case study
We collected the additional 714 pairs of miRNA-abiotic 
stress associations from the PAS-MIR database [47] 
and used the same data preprocessing method as in the 
response to Comment d. Subsequently, we further vali-
dated the performance of our model from two aspects. 
Firstly, we conducted five-fold cross-validation using this 
dataset to evaluate the performance of our model and the 
results are shown in Table 8 and Fig. 5. The AUPR metric 
and AUC metric reached 0.9732 and 0.9588, respectively. 
This indicates that our model has good performance in 
predicting the miRNA-abiotic stress association.

On the other hand, we compiled the top 10 miRNAs 
associated with common abiotic stresses (cold, drought 
and heat) based on the predicted results of our model, as 
shown in Table 9.

Cold stress is one of the common abiotic stresses 
that affect temperate seed crops and may have serious 
impacts on plant development and growth, including 
reduced yield and death [74, 75]. When studying candi-
date miRNAs related to cold stress, it was discovered that 
the top 9 miRNAs have been experimentally confirmed 

Table 8 Performance of our model in predicting miRNA-abiotic stress associations under five-fold cross-validation

Fold AUPR AUC F1 ACC RE SPE PRE

0 0.9804 0.9734 0.9507 0.9509 0.9474 0.9544 0.9541

1 0.9628 0.9450 0.9183 0.9211 0.8877 0.9544 0.9511

2 0.9723 0.9565 0.9274 0.9316 0.8737 0.9895 0.9881

3 0.9686 0.9455 0.9165 0.9211 0.8667 0.9754 0.9724

4 0.9818 0.9737 0.9522 0.9531 0.9340 0.9722 0.9711

Average 0.9732 0.9588 0.9330 0.9355 0.9019 0.9692 0.9674
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to exhibit changes in expression under cold stress. For 
example, based on high-throughput sequencing results, 
researchers conducted qRT-PCR validation and observed 
that the expression level of osa-miR167, ranked fifth, 
was up-regulated under cold stress [76]. Furthermore, 
RT-qPCR results demonstrated that the eighth-ranked 
tae-miR159 was significantly up-regulated under cold 
stress. The results of the Northern Blot analysis further 
confirmed the significant up-regulation of this miRNA at 
different time points, with peak expression observed at 6 
hpt and 48 hpt, respectively [77].

Drought stress is a significant environmental fac-
tor that impacts crop yield through changes in plant 
development, metabolism, and gene expression. The 
top 10 miRNAs among candidate miRNAs related to 
drought stress have been experimentally confirmed to 
exhibit changes in expression under drought stress. For 
instance, researchers have discovered that the first and 
third-ranked gma-miR166b and gma-miR169d were 
significantly up-regulated in expression under drought 
stress by combining deep sequencing technology with 
in-depth bioinformatics analysis [78]. The fifth-ranked 
ath-miR319c has been validated to be down-regulated in 
Arabidopsis through Northern Blot analysis [18], whereas 
the ninth-ranked ath-miR395c is up-regulated [18].

Heat, often combined with drought stress, leads to 
yield losses and reduced food quality [79]. Among the 
top 10 miRNAs predicted by our model to be related 
to high temperature, all of them have been validated by 
relevant literature. This shows that our model can accu-
rately predict miRNAs associated with heat stress. For 
example, Lu et  al. [80] used northern blot analysis with 
probes containing complementary sequences to analyze 

expression levels in the leaves, phloem, and developing 
xylem of Populus. It was confirmed that the expression 
of ptc-miR1444, ptc-miR827, ptc-miR530a, ptc-miR482, 
ptc-miR1450 and ptc-miR1447 ranked 1, 2, 3, 6, 7, and 
10 were significantly down-regulated. Among them, ptc-
miR1447 and ptc-miR827 showed higher response to 
heat stress.

Copper is an essential mineral for the healthy growth 
and development of plants. Among the candidate miR-
NAs associated with Copper (Cu) deficiency stress, ptc-
miR398 is ranked first, and studies have confirmed that 
its expression level is down-regulated with increasing Cu 
concentration in the culture medium [81]. Additionally, 
researchers conducted RNA blot analysis and observed 
that the expression levels of ath-miR398b, ath-miR398c, 
and ath-miR398a, ranked third, fifth, and sixth, respec-
tively, were up-regulated [82].

Conclusion
An increasing body of research underscores the piv-
otal role that microRNA (miRNA) plays in orchestrat-
ing plant responses to diverse abiotic stresses. In light of 
this, our study proposes a method predicated on multi-
source similarity network fusion and graph autoencoder 
to predict potential associations between miRNA and 
abiotic stress. Initially, we constructed a miRNA-abiotic 
stress association matrix founded on the miRNA-abiotic 
stress association data. Subsequently, we comprehen-
sively accounted for multi-source feature information 
concerning miRNA and abiotic stress, calculating sim-
ilarity networks for miRNA and abiotic stress from 
diverse perspectives employing multiple similarity met-
rics. These calculated multi-source similarity networks 

Fig. 5 Performance of our model using PAS-MIR dataset under five-fold cross-validation (a) Receiver operating characteristic (ROC) curves (b) 
Precision-recall (PR) curves under five-fold cross-validation
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were integrated. Following integration, we fused the 
resultant miRNA similarity network, the integrated abi-
otic stress similarity network, and the miRNA-abiotic 
stress association matrix to construct a heterogeneous 
network capturing miRNA-abiotic stress associations. 
We applied the RWR to learn node representations 
within the network, thus obtaining feature represen-
tations for miRNA and abiotic stress. Ultimately, our 
model facilitated the prediction of potential miRNA-
abiotic stress associations. The model comprises an 
encoder and a decoder. The encoder is constructed on 
the GIN model, known for efficiently learning represen-
tations of graph structures. The decoder, on the other 
hand, reconstructs the miRNA-abiotic stress association 
matrix based on the miRNA-abiotic stress feature vec-
tor learned by the encoder. Subsequently, potential asso-
ciations between miRNA and abiotic stress are inferred 
based on the reconstructed association matrix gener-
ated by our model. Despite the impressive performance 
exhibited by our model, it is important to acknowledge 
its limitations. Notably, the feature information about 
abiotic stress has not been exhaustively explored, and 
the fusion of multi-source similarity networks is based 
on a simple weighted method. In the future, we intend 

to develop a novel similarity network fusion method. 
Additionally, we aspire to comprehensively consider 
the feature information of abiotic stress from diverse 
perspectives, encompassing a wider array of biologi-
cal entities such as genes, targets, etc., to construct a 
heterogeneous network that encompasses a broader 
spectrum of entities and associations. This expansion 
will enhance our model’s capacity to predict potential 
miRNA-abiotic stress associations.
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 2 ath-miR408 PMID: 18,408,011 7 bna-miR399 PMID: 20,388,194
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