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Abstract 

Background Cotton accounts for 80% of the global natural fibre production. Its leaf hairiness affects insect resist-
ance, fibre yield, and economic value. However, this phenotype is still qualitatively assessed by visually attributing 
a Genotype Hairiness Score (GHS) to a leaf/plant, or by using the HairNet deep-learning model which also out-
puts a GHS. Here, we introduce HairNet2, a quantitative deep-learning model which detects leaf hairs (trichomes) 
from images and outputs a segmentation mask and a Leaf Trichome Score (LTS).

Results Trichomes of 1250 images were annotated (AnnCoT) and a combination of six Feature Extractor modules 
and five Segmentation modules were tested alongside a range of loss functions and data augmentation techniques. 
HairNet2 was further validated on the dataset used to build HairNet (CotLeaf-1), a similar dataset collected in two 
subsequent seasons (CotLeaf-2), and a dataset collected on two genetically diverse populations (CotLeaf-X). The main 
findings of this study are that (1) leaf number, environment and image position did not significantly affect results, (2) 
although GHS and LTS mostly correlated for individual GHS classes, results at the genotype level revealed a strong LTS 
heterogeneity within a given GHS class, (3) LTS correlated strongly with expert scoring of individual images.

Conclusions HairNet2 is the first quantitative and scalable deep-learning model able to measure leaf hairiness. 
Results obtained with HairNet2 concur with the qualitative values used by breeders at both extremes of the scale 
(GHS 1-2, and 5-5+), but interestingly suggest a reordering of genotypes with intermediate values (GHS 3-4+). Finely 
ranking mild phenotypes is a difficult task for humans. In addition to providing assistance with this task, HairNet2 
opens the door to selecting plants with specific leaf hairiness characteristics which may be associated with other 
beneficial traits to deliver better varieties.
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Background
A need for robust and quantitative phenotyping tools 
to tackle complex crop traits
Understanding and exploiting beneficial or detrimental 
crop properties (phenotypes, or traits) requires accurate 
and preferably quantifiable phenotyping methods. This 
is particularly important when these properties are dif-
ficult to measure and complex (i.e. influenced by genetic 
and environmental factors). In cotton, some impor-
tant properties are seedling emergence, canopy size and 

*Correspondence:
Vivien Rolland
vivien.rolland@csiro.au
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-024-01149-8&domain=pdf


Page 2 of 19Farazi et al. Plant Methods           (2024) 20:46 

architecture, radiation use efficiency, disease and insect 
resistance, fibre quality and fibre yield [1]. For all of these, 
a number of phenotyping methods are available, whether 
they are manual, visual, mechanical or digital.

A visual or manual method has the advantage of being 
independent of complex or expensive equipment. How-
ever, manual methods can be time consuming, labor 
intensive, induce repetitive strain injury, and be biased by 
the observer. For some phenotypes, only manual meth-
ods are available, which often limits the scale at which 
such observations can be made. Mechanical approaches 
are particularly useful for fibre quality and fibre yield 
[1]. Interestingly, in recent years an increasing number 
of digital methods to capture detailed plant informa-
tion have been developed, utilizing RGB cameras [2–8], 
hyperspectral sensors [9–11], thermal cameras [1, 12], 
and LiDAR-based sensors [13, 14]. These techniques 
offer unique advantages for characterizing various cot-
ton plant phenotypes, can be non-destructive, and enable 
higher throughput applications.

However, adoption of such methods at scale has been 
relatively limited. This can be explained by factors such 
as cost (including the requirement for specialized equip-
ment), speed, scalability, ease of implementation (e.g., 
access to code, super computers or graphical interface), 
or lack of demonstrated reproducibility in other experi-
mental set-ups or commercial breeding programs. For 
example, whilst LiDAR-based techniques facilitate the 
measurement of plant height, canopy structure, and bio-
mass by generating 3D representations of cotton plants, 
collecting such data requires robots [15] or rotary winged 
UAVs [16] which need to be manually or semi-autono-
mously navigated in the field for data collection. Uptake 
of a new method typically requires a significant improve-
ment in speed, cost, reproducibility, scalability, or an abil-
ity to provide novel insights worthy of the extra time/
money investment (e.g., a quantitative method rather 
than a qualitative one).

Leaf hairiness is a key trait in Cotton
Leaf hairiness, also called pubescence, is a good example 
of an important and complex genetic trait in need of an 
improved phenotyping method. Leaf hairiness is deter-
mined by the amount, type and distribution of hair-like 
cells called trichomes on the abaxial side (underside) 
of leaves. In cotton, this phenotype has been shown to 
impact the ability of the plant to resist different types 
of insect pests. Leaves with no or few hairs are suscep-
tible to boll weevil (Anthonomus grandis), cotton aphid 
(Aphis gossypii), Asiatic cottonworm (Spodoptera litto-
ralis), spotted bollworm (Earias fabia), green leafhopper 
and jassids (Empoasca spp), pink bollworm (Pectinophora 
gossypiella), tobacco budworm (Helicoverpa virescens) 

and several Lygus species, whilst those with a lot of hairs 
tend to be susceptible to silverleaf whitefly (Bemisia 
tabaci) [17, 18]. Interestingly, leaf hairiness also impacts 
fibre yield because of a genetic relationship between the 
development of trichomes on the leaf and of fibres (mod-
ified trichomes) on the developing seed. Lines with gla-
brous leaves (ie. without hairs) tend to have a decreased 
yield potential [19]. Conversely, high leaf hairiness can 
also negatively affect economic fibre value as mechanical 
harvesting of such varieties increases gin trash (the accu-
mulation of leaf matter, stalks and dirt in harvested mate-
rial) which in turn downgrades fibre colour and increases 
the amount of cleaning required prior to ginning [20]. To 
maximise insect resistance and minimise a deleterious 
effect on fibre yield and value, cotton breeders tend to 
select plants with an intermediate level of leaf hairiness.

Current qualitative phenotyping methods for Cotton leaf 
hairiness
In commercial breeding programs such as that of the 
Commonwealth Scientific and Industrial Research 
Organisation (CSIRO, for a review of the program refer 
to [1]) this phenotype has been qualitatively measured for 
the last 50 years by humans using a ‘look and feel’ method 
relying on the tactile perception of hairs and their reflec-
tion of sunlight [8]. Based on this approach, a leaf, a plant 
or a plot is assigned a score (Genotype Hairiness Score, 
GHS) on a non-linear scale ranging from 1 (glabrous) and 
5+ (pilose) similarly to that of Bourland et al. [21]. This 
scale contains 7 intermediate scores, namely 2, 3, 3/4, 4, 
4/4+ and 5. Typically, the GHS of the first fully expanded 
leaf (Leaf 3 from the top of the plant) from 6 plants from 
the same plot is estimated in the field by an expert and a 
global score is assigned to said plot based on these obser-
vations. Generally, genotypes with a leaf hairiness score 
between 3 and 4+ are selected for subsequent breeding 
steps. This method is qualitative, subjective and prone 
to inter- and intra-operator variability - even with highly 
trained human experts. Due to its reliance on sunlight 
reflection, this method is also not used on cloudy days.

To address this issue, Rolland and Farazi et al. [8] built 
HairNet, a deep learning model, that can mimic human 
experts scores with high accuracy and reproducibility 
from cotton leaf images. HairNet achieved an impressive 
accuracy of 89% per image and 95% per leaf on its asso-
ciated dataset (CotLeaf-1, available at [22]). Although 
HairNet is a robust model, it is still only qualitative and 
the accuracy of its predictions is limited by the qual-
ity and reliability of the ground truth annotations pro-
vided by human experts (ie. the level of hairiness of each 
genotype). To address this limitation, there is a need for 
a tool to quantify leaf hairiness from images. Attempts 
have been made to quantify hairiness in Arabidopsis 
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thaliana, Soybean (Glycine max), Spring Wheat (Triti-
cum aestivum) [23–26]. However, these methods rely on 
specialised imaging techniques (e.g., 3D X-ray computed 
tomography, 3D confocal laser scanning microscopy), 
and/or require time consuming and destructive sample 
preparation. Additionally, none of these exploit recent 
advances in deep learning. Of note is a recent paper in 
Cotton (Gossypium hirsutum) which uses deep learning 
to detect trichomes on leaves [27]. However, this method 
only detects trichomes on a small part of the edge of a 
leaf and relies on the use of a black background which 
limits its value to understand leaf hairiness across a leaf 
and at scale.

HairNet2, a quantitative phenotyping tool for Cotton leaf 
hairiness based on deep learning
In this paper, it was hypothesized that leaf hairiness 
could be quantified from images using deep learn-
ing. To that end, the previously published CotLeaf-1 
dataset (Fig.  1, Tables  1 and 3) was leveraged to cre-
ate an annotated leaf trichome dataset called AnnCoT 

(Tables 1 and 4). AnnCoT was used to build a modular 
HairNet2 model composed of a feature extractor and 
a segmentation module (Fig.  2) to output a quantita-
tive hairiness metric called Leaf Trichome Score (LTS) 
(Tables 5 and 6, 7 and Fig. 3). Two new image datasets 
were generated for this study (CotLeaf-2 and CotLeaf-
X, Table  1) to compare LTS and GHS across leaves, 
growth environments and years (Figs. 4, 5 and 6). Based 
on the results of these experiments, a new LTS-based 
genotype ranking was proposed (Fig. 7). HairNet2 was 
further validated by analysing the distribution of its 
LTS values across years (Fig.  8) and by comparing its 
performance to that of human experts ranking images 
according to their hairiness (Fig. 9). To our knowledge, 
HairNet2 is the first quantitative tool to measure leaf 
hairiness at scale. It will enable accurate leaf hair phe-
notyping, which is central to both understanding the 
complex genetics underpinning this trait as well as 
untangling its effect on insect resistance and fibre yield. 
Ultimately this tool will be deployed in breeding pro-
grams to develop better cotton varieties.

Fig. 1 Description of the leaf locations at which images were taken in the CotLeaf-1 (A), CotLeaf-2 (B), and CotLeaf-X (C) datasets
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Methods
Datasets
CotLeaf-1, CotLeaf-2 and CotLeaf-X datasets are sum-
marized in Table  1 and Fig.  1 and details about their 
design, acquisition and composition are described 
below.

CotLeaf‑1: Cotton Leaf Surface Images dataset 2019‑21
CotLeaf-1 was published as part of [8] and is pub-
licly available at [22]. It consists of 13,597 leaf surface 
images of 2560× 1920 px, from 27 de-identified geno-
types covering the full gamut of hairiness scores as 
shown in Table 2.

CotLeaf‑2: Cotton Leaf surface images dataset 2021‑23
The Cot-Leaf-2 data set was collected from plants grown 
at Narrabri, NSW Australia under field (FD) and glass-
house (GH) conditions in 2021-22 (Y3) and only FD con-
ditions in 2022-23 (Y4). The same suite of 27 genotypes 
in the Cot-Leaf-1 data set was studied.

Field experiments Plants of the 27 genotypes were 
established in the summer growing seasons of 2021-22 
and 2022-23 at the Australian Cotton Research Institute 
(ACRI, −30.21, 149.60), 22  km north-west of Narrabri 
New South Wales, Australia. Seeds of each genotype were 
planted on the 23rd of October 2021 (Y3) and the 19th of 
November 2022 (Y4), at planting density of 10–12 plants 
 m-2 in rows spaced at 1 m. Each genotype was grown in a 
single 13 m row.

The study region is semi-arid, characterised by mild 
winters, hot summers and summer-dominant rainfall 
patterns. The region has an annual average precipita-
tion of 646  mm [28]. The soil of the site is a uniform 
grey cracking clay (USDA soil taxonomy: Typic Hap-
lustert; Australian soil taxonomy: Grey Vertosol). Plant 
available soil water to 1.2 m at the site is between 160 
and 180 mm [29]. The soil at ACRI is generally 60–65 
per cent clay fraction, of low drainage rate [30], pH 
range of 8.0–8.8, and low in organic matter and nitro-
gen [31].

Nitrogen was applied as urea approximately 12 weeks 
before planting at a rate of 240  kg N  ha-1. Experiments 
were planted following an 11-month fallow period which 
was preceded by a winter wheat crop. Management for 

Table 1 Detailed Comparison of CotLeaf-1, CotLeaf-2 and CotLeaf-X Datasets. These three datasets differ in terms of season (Year, 
Y), growing environment (GH: Glasshouse, FD: Field), leaf number (L3 or L4), planting location, number of genotypes (see Table 2) 
or populations (A or B) imaged, total number of images, image location (see Fig. 1), presence/absence of multiple images per leaf, 
hairiness scale, and how hairiness scores were attributed

Characteristics CotLeaf-1 CotLeaf-2 CotLeaf-X
[8, 22] (this study) (this study)

Year (Y) Y1, Y2 Y3, Y4 Y3

Environment GH, FD GH (Y3 only), FD FD

Leaf number 3, 4 3 3

Location Narrabri, Canberra Narrabri Narrabri

Num. of Genotypes (G) or Populations (P) 27 (G) 27 (G) 2 (P)

Num. of Images 13597 810 5049 (A:3276, B:1773)

Image Loc. First, Middle, Last First First, Blade

Multiple images/leaf Yes No Yes (Pop. A)
No (Pop. B)

Genotype hairiness
Scale (GHS)

{’1’, ’2’, ’3’, ’3/4’, ’4’,
’4/4+’, ’4+’, ’5’, ’5+’}

{’1’, ’2’, ’3’, ’3/4’, ’4’,
’4/4+’, ’4+’, ’5’, ’5+’}

(Pop. A)
{’0’, ’1’, ’2’, ’3’, ’4’, ’5’},
(Pop. B)
{’2’, ’3’, ’4’, ’5’, ’5.5’}

Score attributed by Genotype Genotype Individual image

Table 2 De-identified genotypes and their associated genotype 
hairiness scores (GHS)

GHS De-identified genotype

1 ’pink’, ’red’, ’azure’

2 ’charcoal’

3 ’scarlet’, ’indigo’, ’purple’

3/4 ’white’, ’opal’, ’ebony’, ’bronze’

4 ’amber’, ’emerald’, ’copper’, 
’yellow’, ’orange’

4/4+ ’teal’, ’beige’, ’green’, ’violet’

4+ ’crimson’, ’cyan’, ’blue’, ’gray’

5 ’turquoise’

5+ ’brown’, ’black’
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all field experiments followed current high-input com-
mercial practices: fully irrigated conditions with careful 
weed and insect control [32]. Plants were furrow irrigated 
every 10–14 d (approximately 1 ML  ha-1 applied at each 
irrigation) from December through to March, according 
to crop requirements. Each experiment was managed 
according to its individual requirements for irrigation 
and pest control, with all plots receiving the same man-
agement regime.

Glasshouse experiment Plants were grown in temper-
ature-controlled glasshouses at the Australian Cotton 
Research Institute (ACRI). About 15 seeds of each gen-
otype were sown in 8  L plastic pots filled with soil on 
the 7th of November 2021. The soil was obtained from 
cotton fields at ACRI (see above). To improve the nutri-
ent status of the potting mix 10 g of  MULTIgro® (Incitec 
Pivot Fertilizers, Melbourne, Australia) basal fertiliser 
was dissolved into the soil before planting.  MULTIgro® 
contains the nutrients N, P, K, S, and Ca at 13.1, 4.5, 7.2, 
15.4, and 2.4 percent, respectively. A 10  mm layer of 
sand was added to the surface of the pots to reduce sur-
face evaporation and assist in seedling emergence. Once 
emerged seedlings had reached the three-leaf stage, pots 
were thinned to three plants per pot. Plants were grown 
at 18 °C night and 32 °C during the day, under natural 
light conditions.

Leaf selection and imaging During the 2021-22 season, 
leaf samples from these plants were collected on the 10th 
of January 2022 for the field experiment (at 11 weeks), 
and 11th of January 2022 for the glasshouse experiment 
(at 9 weeks). During season 2022-23, leaf samples from 
these plants were collected on the 23rd of January 2023 
for the field experiment (at 9 weeks). For all these, Leaf 
3 was harvested from 10 plants per genotype, placed in 
a paper bag and imaged the same day using the same 
protocol and equipment as in [8, 22]. Unlike in Cot-
Leaf-1, for CotLeaf-2 only one image was collected per 
leaf, along the central midvein and corresponding to the 
’first image’ in CotLeaf-1 as shown in Fig. 1. The abaxial 
side of leaves were imaged at a magnification of about 
31x with a portable AM73915 Dino-lite Edge 3.0 (AnMo 
Electronics Corporation, Taiwan) microscope equipped 
with a RK-04F folding manual stage (AnMo Electronics 
Corporation, Taiwan) and connected to a digital tablet 
running DinoCapture 2.0 (AnMo Electronics Corpora-
tion, Taiwan). The exact angle of the mid-vein in each 
image was not fixed. However, either end of the mid-vein 
was always cut by the left and right borders of the field of 

view, and never by the top and bottom ones. This dataset 
comprises 810 images.

CotLeaf‑X: Cotton Leaf Surface Images dataset with eXpert 
labels
Plant genotypes and growth conditions Two cotton pop-
ulations called A and B, were selected for their heterogene-
ous leaf hairiness, with population A being generally less 
hairy than population B. Both populations were planted 
in the summer growing season of 2021-22 at ACRI. Seeds 
of each genotype were planted in a field on the 23rd of 
October 2021 at a planting density of 10–12 plants/m2 in 
rows spaced at 1 m. Each genotype was grown in a single 
13 m plot.

Leaf selection and  imaging Leaf samples from these 
plant populations were collected on the 2nd and 6th of 
March 2022 (at 19 weeks, first open boll stage). Leaf 3 was 
harvested from 10 plants per genotype. Imaging was per-
formed as described above with the following distinctions 
(Fig. 1C):

• for population A, two images were collected per leaf: 
one along the central midvein as in CotLeaf-2, and 
one on the leaf blade.

• for population B, one image was collected per leaf: 
along the central midvein as in CotLeaf-2. This data-
set comprises 3276 images for population A and 1773 
for population B.

Visual scoring of  images by  human expert A human 
expert scored all CotLeaf-X images using arbitrary ordinal 
scales ( 0− 5 for population A and 2− 5.5 for population 
B), where higher numbers corresponded to images with 
more trichomes.

AnnCoT: Annotated Cotton Trichome dataset
Image selection A subset of the CotLeaf-1 dataset ([22]) 
was used to develop the Annotated Cotton Trichome 
(AnnCoT) dataset. Specifically, the first image Fig. 9 of Leaf 
3 and Leaf 4 from each genotypes with hairiness scores 
between 1 and 5 grown in both environments (Glasshouse 
and Field) during Year 1 (season 2019-20) and Year 2 (sea-
son 2020-21) were used. Images from genotypes with a 
5+ genotype hairiness score were not annotated because 
they were too hairy for humans to confidently annotate. 
As a result, a total of 1250 images were annotated and 
their distribution across genotypes and hairiness classes 
is shown in Table 3
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Trichome spline annotation The above-mentioned 
images were annotated by humans tasked to trace each 
trichome with the exception of those only fully overlap-
ping with the midvein. This decision was made because it 
was difficult to distinguish white trichomes on the white 
midvein from light reflection or damage. Annotations 
were stored as splines instead of pixel level segmenta-
tion masks at the original image resolution. This allowed 
for a more flexible and continuous representation of tri-
chomes and provided two important methodological 
advantages. Firstly, spline annotations were stored as a set 
of control points manually placed by annotators on each 
trichome and processed into segmentation masks when 
needed, which was less expensive than storing segmenta-
tion masks themselves. Secondly, resizing a segmentation 
mask of thin hair-line structure such as trichomes would 
have introduced serious artefacts (e.g., breaking up long 
annotations, or merging nearby annotations into a single 
structure) due to interposition techniques (e.g., linear, 
cubic, nearest, area). Spline annotations offer the advan-
tages of being ‘transformable’ to any image resolutions by 
calculating new control points for the target image reso-
lution. The transformation operation is inexpensive and 
ensures that the original shape is preserved regardless of 
the resizing dimensions.

Through this process, 1250 images and their associ-
ated trichomes annotated as splines were used to gener-
ate the Annotated Cotton Trichome (AnnCoT) dataset. 
To develop HairNet2, the AnnCoT dataset was split into 
train, validation and test as shown in Table 4.

Problem formulation and model development
The task of trichome quantification from cotton leaf 
images was decomposed into two distinct components, 
segmentation and quantification, each addressing a spe-
cific aspect of the problem.

Trichome segmentation
The first challenge was to accurately identify and delin-
eate trichomes present in cotton leaf images. This was 
formulated as a binary image segmentation task aiming 
to partition an input image I into two distinct regions: 
trichomes (foreground) ( F  ) and non-trichomes (back-
ground) ( B ). Let M represent the binary segmentation 
mask, which assigns a binary label mxy ∈ {0, 1} to each 
pixel coordinate (x, y) in the image. Here, mxy = 1 indi-
cates that the corresponding pixel belongs to the fore-
ground region, while mxy = 0 indicates the background 
region. The objective was to estimate the optimal binary 
segmentation mask M∗ that accurately captured the fore-
ground and background regions in the input image. The 
binary image segmentation problem can be mathemati-
cally expressed as:

given that mxy ∈ {0, 1} for all (x, y) in the image.
While the segmentation mask shares the same dimen-

sions as its corresponding leaf image, it is considerably 
sparser due to the vast difference between the number 
of trichome pixels and background pixels. Storing these 
masks in their uncompressed form would be an inef-
ficient use of storage space. To optimize this, a protocol 
was adopted that stored only the row and column indi-
ces of non-zero values, which represent trichome pixels. 
This method greatly minimized the storage requirements 
for the segmentation masks and facilitated faster loading 
and processing of the segmentation data for subsequent 
analyses.

Quantification of segmented trichomes
To quantify segmented trichomes, a metric termed Leaf 
Trichome Score (LTS) was introduced. LTS was calcu-
lated based on the ratio of pixels segmented as trichomes 
over the total number of pixels in the image. Given the 
sparse nature of trichomes in most images, a scaling 
factor of 1000 was introduced to make the score more 

(1)M∗ = arg min
M

E(M)

Table 3 Detail of the number of genotypes and images for each 
hairiness class in the AnnCoT dataset. GHS: Genotype hairiness 
score

GHS # Images # Genotypes

1 152 3

2 40 1

3 160 3

3/4 180 4

4 238 5

4/4+ 200 4

4+ 240 4

5 40 1

5+ 0 0

Total 1250 25

Table 4 Size of the AnnCoT dataset training, validation, and test 
splits

Dataset # Images

Train (65%) 812

Val (15%) 187

Test (20%) 251

Total 1250
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interpretable and to scale it to a meaningful range for 
comparison. Mathematically, it can be expressed as:

with NS denoting the number of pixels segmented as tri-
chomes and NT  represents the total number of pixels in 
the image. The higher the LTS, the higher the number of 
trichome pixels in an image.

Model architecture
Feature extractor module
Feature extractors from the following family of models 
were tested in this study:

– VGG [33] is one of the legacy deep CNNs that 
remains relevant due to its simplicity and effective-
ness in image classification tasks. Various depths of 
VGG were explored, and VGG19 with batch normal-
ization was used for experimentation in the feature 
extractor module.

– ResNet [34] introduced the concept of skip con-
nections to deal with the vanishing gradient prob-
lem and allowed neural networks to substantially 
increase depth. It is one of the most widely used fea-
ture extractors in production because of its robust-
ness and scalability, with varying depth offerings. 
ResNet18 and ResNet50 were tested in this study.

– SENet [35] utilizes Squeeze-and-Excitation (SE) 
blocks that perform adaptive re-calibration of chan-
nel-wise features, allowing the model to weigh spa-
tial features based on the channel descriptors. This 
imparts a form of channel-wise attention on the 
model. SE-ResNet50 (ResNet50 fused with an SE 
block to improve performance) was tested in this 
study.

– RegNet [36] models offer uniform structures across 
networks, resulting in simple and regularized 
designs. Such networks are developed via automated 
exploration of the architecture design space. Reg-
NetX64 was used in this study.

– EfficientNet [37] uses compound scaling of network 
depth, width, and resolution, and employs depth-
wise separable convolutions. EfficientNet-B5 variant 
was used in this study.

Segmentation module
The following segmentation models were experimented 
with in this study:

(2)LTS =
NS × 1000

NT

– UNet [38] is a widely-used segmentation architec-
ture known for its symmetrical U shaped encoder-
decoder structure with skip connections that assist in 
retaining spatial details. The architecture was origi-
nally designed for biomedical image segmentation, 
however it has been quite successful in domain-spe-
cific applications where general purpose segmenta-
tion models like Mask-RCNN [39], YOLO [40] have 
been sub-optimal.

– UNet++ [41] is an advanced variant of UNet that 
introduces nested and skip connections, providing a 
series of segmentation maps of different depths. This 
design improves the ability of the model to segment 
objects of various shapes and scales, which is rel-
evant when looking at thin hair-like structures as in 
this study.

– DeepLabv3 [42] introduces atrous convolutions with 
up-sampled filters and a ’Multilevel Atrous Spatial 
Pyramid Pooling’ (ASPP) operation. This approach 
has proven effective in capturing multi-scale context 
by utilizing multiple dilation rates and providing a 
more comprehensive contextual understanding. It is 
relevant in the context of trichome segmentation.

– LinkNet [43] is an efficient and lightweight archi-
tecture designed for semantic segmentation tasks. 
It employs an encoder-decoder structure where 
the encoder is based on a pre-trained classification 
network. The decoder integrates skip connections 
to combine low-level and high-level feature maps, 
resulting in a detailed segmentation map.

– Multi-path Aggregation Network (MANet) [44] 
focuses on effectively capturing multi-scale features 
by employing multi-path aggregations. By adjusting 
the receptive field, the model demonstrates robust 
performance across physical scales.

Data augmentation
The following data augmentation techniques were 
employed in this study:

– Resizing: to reduce memory constraints and ensure 
images had the dimensions required to be fed to the 
feature extraction module, they were resized to lower 
dimensions, typically 512× 512 pixels. It is impor-
tant to note that segmentation masks were directly 
drawn at the resized image dimension, rather then 
the original size, to avoid undesirable artifacts and 
discontinuity in the masks.

– Random Flip: this operation involved a combined 
random vertical and horizontal flip, ensuring that the 
model would be invariant to the orientation of leaf 
patterns.
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– Random Crop: this step involved cropping random 
sections of each image at smaller resolutions than 
the original image. This was performed to teach the 
model to recognize trichomes regardless of their 
position and scale in an image. The corresponding 
masks were identically cropped to maintain consist-
ency.

Loss functions
In this study, the following loss functions were tested:

– Binary Cross-Entropy (BCE) Loss. This loss is one of 
the default choices for binary image segmentation 
tasks. It is an intuitive fit as each pixel of the segmen-
tation map is treated as an individual binary classifi-
cation instance.

– Dice Loss. This loss is derived from the Sørensen-
Dice coefficient, and it is also a common choice for 
binary and multi-class segmentation tasks. It is par-
ticularly relevant here because trichomes pixels were 
expected to be less common than background pixels 
and this loss function deals well with class imbal-
ances as it places emphasis on the accurate classifica-
tion of minority classes.

– Jaccard (IoU) Loss. This loss is also useful for its 
robustness against class imbalances as it measures 
the similarity between predicted and ground truth 
segmentation masks, making it particularly relevant 
for the problem at hand in this study.

– Focal Loss. This loss has also proven effective to 
address class imbalances in object detection. By 
down-weighting well-classified examples, it forces 
the model to focus on challenging image regions 
which is essential for detecting and segmenting intri-
cate structures such as trichomes.

Accuracy metrics for model evaluation
Intersection over Union (IoU) and F1-score were used to 
evaluate the segmentation performance of our HairNet2 
model.

Intersection over Union (IoU)
IoU was defined as the ratio of the intersection area 
between the predicted segmentation mask P and the 
ground truth mask G , over the union area of the two 
masks. Mathematically, this can be expressed as

(3)IoU =
Area(P ∩ G)

Area(P ∪ G)

F1‑Score
The F1 score was used to evaluate segmentation perfor-
mance. F1 provides a balance between precision and 
recall, offering a comprehensive insight into the accuracy 
of the segmentation. The F1 score is given by:

Where the precision and recall are defined as: 
precision = |P ∩ G|/|P| and recall = |P ∩ G|/|G| 
with P being the predicted segmentation mask and G the 
ground truth mask.

Results and discussion
Using the CotLeaf-1 and AnnCoT datasets to build HairNet2
This study made use of the publicly available CotLeaf-1 
dataset which served to build the qualitative leaf hairi-
ness classification model HairNet ([8, 22]). This dataset 
consists of 13,597 cotton leaf images collected over 2 sea-
sons: 2019-20 (also referred to as year 1 or Y1) and 2020-
21 (year 2 or Y2). In Y1, 10 genotypes were grown in the 
field and in the glasshouse with 9 genotypes common 
between the two environments. In Y2 this was expanded 
to 27 genotypes grown in the field and glasshouse. Dur-
ing these seasons multiple images were taken on two 
leaves per plant (Leaf 3, also called L3, and Leaf 4, or L4). 
For details on this dataset refer to Material and Methods 
as well as Fig. 9, Table 1 and Rolland et al [8, 22].

A subset of 1250 images of CotLeaf-1 representing all 
Genotype Hairiness Scores (GHS) with the exception of 
5+ were annotated by humans to provide ground-truth 
of trichomes on leaf surfaces (Table 3). This dataset was 
used to train the various HairNet2 architectures using 
the ’Train/Validation/Test’ splits shown in Table 4.

Selecting the optimal HairNet2 architecture
HairNet2 was build around two key modules: a feature 
extractor and a segmentation module Fig. 2.

The purpose of the feature extractor network was 
to extract visual and salient features from the input 
(leaf images). It learns to capture both low-level vis-
ual details, such as edges and textures, and high-level 
semantic information, enabling it to produce meaning-
ful representations of leaf structures. In this study, 6 
pre-trained CNN-based feature extractors were tested, 
namely VGG19-bn, ResNet18, ResNet50, EffNet-B5, 
RegNetX-064 and SE-ResNet50 [33–37]. These models 
were pre-trained on the ImageNet dataset [45], a very 
large-scale dataset specifically designed for image clas-
sification task. Using pre-trained models for the feature 
extractor module presented two significant benefits. 
Firstly, pre-trained weights provided a robust foun-
dational knowledge, improving the model’s ability to 

(4)F1 =
2× (precision× recall)

(precision+ recall)



Page 9 of 19Farazi et al. Plant Methods           (2024) 20:46  

generalize from limited data as is the case here. Sec-
ondly, the model was able to extract more meaningful 
features and improve the model’s ability to segment 
very thin (single or a couple of pixels wide) hair-like 
structures. The pre-trained models were then opti-
mized for our dataset to exploit their ability to extract 
hierarchical features from complex visual data.

Image features were then fed to a segmentation mod-
ule. This module used encoded feature maps generated 
by the encoder together with the ground-truth seg-
mentation mask to produce a pixel-wise segmentation 
mask for an leaf image by classifying each pixel into 
’trichome’ and ’background’. The segmentation mod-
ule consisted of an encoder pathway that captured the 
context and spatial information through down-sam-
pling operations, followed by a decoder pathway that 
utilized skip connections to recover spatial details. The 
segmentation models tested in this study were Unet 
[38], Unet++ [41], DeepLabv3 [42], MANet [44] and 
LinkNet [43]. The segmentation module is trained from 
scratch for our proposed AnnCoT dataset.

Selecting the best feature extractor and segmentation 
module pair
The modular nature of HairNet2 meant that various com-
binations of feature extractors and segmentation mod-
ules needed to be tested to identify the optimal network 
architecture. Intersection over Union (IoU) and F1 scores 
provide valuable insights into the overall performance of 
binary segmentation algorithms and were used as evalu-
ation metrics. As shown in Table  5, of the 30 combina-
tions tested the best performance was achieved with the 
VGG19-bn feature extractor combined with either the 
MANet (IoU: 0.6303 , F1 score: 0.7586 ) or the LinkNet 
(IoU: 0.6268 , F1 score: 0.7545 ) segmentation modules. 
The fact that VGG19-bn performed better than deeper 
or more complex feature extractors may be explained by 
two factors. Firstly, a simple architecture like VGG19-bn 
may have been more effective at capturing texture and 
fine details, which is crucial for segmenting thin struc-
tures like trichomes. Secondly, batch normalization may 
have helped stabilise the learning process to better gener-
alise, which is critical when the dataset is not very large. 
The VGG19-MANet and CGG19-LinkNet combinations 
were therefore selected for further analysis.

Fig. 2 Architecture of the HairNet2 Model. Images were captured using the Image Acquisition (A) protocol described in [8]. The Feature Extraction 
Module (B) processes input images to derive essential visual features that capture the intricacies of leaf surfaces. The resulting distilled features are 
fed into the Segmentation Module (C), which differentiates trichomes from cotton leaf surface and produces a segmentation mask. The Outputs 
(D) consist of two parts: the predicted segmentation mask that highlights trichomes and a Leaf Trichome Score (LTS) quantifying the leaf hairiness 
and calculated from the segmentation mask

Table 5 Performance evaluation for different feature extractor and segmentation module combinations. The table displays 
Intersection over Union (IoU) and F1 scores for various module pairs to identify the best performing pairs for trichome segmentation. 
Cells in grey value represent the tow top-performing combinations 

Segmentor→ Unet Unet++ DeepLabv3 MANet LinkNet

Feat. Extractor ↓ IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

VGG19-bn 0.6152 0.7467 0.6065 0.7369 0.4401 0.5834 0.6303 0.7586 0.6268 0.7545
ResNet18 0.5433 0.6807 0.5677 0.7029 0.3893 0.5366 0.5491 0.6847 0.5078 0.6494
ResNet50 0.5615 0.6986 0.5703 0.7035 0.4317 0.5809 0.5332 0.6659 0.5738 0.7083
EffNet-B5 0.5719 0.7090 0.5761 0.7131 0.4219 0.5871 0.5453 0.6819 0.5530 0.6928
RegNetX-064 0.6109 0.7426 0.6003 0.7331 0.4266 0.5763 0.5680 0.7022 0.5941 0.7296
SE-ResNet50 0.5416 0.6796 0.5762 0.7110 0.4202 0.5695 0.5682 0.7053 0.5576 0.6957
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The effect of data augmentation on selected module pairs

To improve the generalization capabilities of HairNet2, 
reduce over-fitting and improve inference robustness, 
different types of data augmentation such as resizing, 
cropping and flipping were employed (Table 6).

When using resizing (RS) alone, VGG19-MANet with 
a resizing to 768× 768 px produced the highest per-
formance (IoU: 0.6472 , F1 score: 0.7710 ) over smaller 
(512px) or higher (1024px) resizing strategies. Interest-
ingly, when resizing was combined with random crop-
ping (RC1536), model performance declined slightly, 
suggesting that aggressive cropping followed by resizing 
may have eliminated or distorted some crucial infor-
mation. The addition of random flipping (RF) to resiz-
ing, especially RS768+RF, showed the best results with 
VGG19-MANet (IoU: 0.6670 , F1 score: 0.7877 ) and con-
firmed the value of introducing beneficial variability to 
the dataset. When random cropping, resizing, and flip-
ping were combined, a decline in model performance 
was evident across all models, with a significant drop in 
VGG19-MANet with ‘RC1536+RS1024+RF’. This high-
lighted that while individual or dual augmentation tech-
niques can benefit the model, combining multiple data 
augmentation strategies introduced excessive variability 
in the data distribution, which did not translate in bet-
ter generalization. While data augmentation generally 
enhances model robustness, it is essential to strike a bal-
ance to avoid over-complicating the input data. In the 
case of HairNet2, the highest performance was obtained 
with VGG19-MANet and a combination of resizing to 
768× 768 px followed by random flipping (‘RS768+RF’), 
with an IoU of 0.6670 and a F1 score of 0.7877.

Optimizing HairNet2

Given the nuances associated with segmenting intri-
cate hair-like structures, and to further facilitate gen-
eralization of HairNet2 it was important to select an 
optimal loss function. The VGG19-MANet model with 
’RC768+RF’ augmentation was subjected to four distinct 
loss functions: Dice, Jaccard, BCE, and Focal. The Dice 
loss performed better than all others loss functions tested 
with an IoU of 0.6640 and a F1 score of 0.7841 on the Val-
idation set, and an IoU of 0.6879 and a F1 score of 0.7991 
on the Test set.

This VGG19-MANet architecture with ’RC768+RF’ 
data augmentation and Dice loss function was therefore 
selected as the optimal model design, with the resulting 
model adopted as the final HairNet2. When run 5 times 
HairNet2 showed consistent performance, with a mean 

IoU of 0.66± 0.01 and a F1 score of 0.78± 0.008 on the 
Validation set. Similarly, for the test set the mean IoU and 
F1 scores were 0.68± 0.005 and 0.79± 0.003 , respec-
tively. This consistency, denoted by the narrow range of 
results, underscores the reliability of the HairNet2 model.

HairNet2 efficiently detects leaf trichomes
The output of HairNet2 is a Leaf Trichome Score (LTS) 
which captures the quantity of pixels classified as belong-
ing to trichomes in a given image (for details, refer to 
Material and Methods). Given that image size was con-
stant, an increasing LTS corresponds to a more hairy leaf 
surface. Although IoU and F1 scores are standard met-
rics to evaluate the performance of segmentation tasks, 
in this instance it has limitations. This is because of 
the nature of trichomes, which are long and thin struc-
tures. For example, if HairNet2 was able to segment 10 
trichomes of the right length in an image that indeed 
contained 10 trichomes but was misplacing them on the 
image, the IoU could be zero whilst the LTS would be 
accurate. Another example on the same image could be 
a situation where HairNet2 was able to segment the 10 
trichomes properly according to location and length but 
was consistently doubling their width, the IoU would also 
be affected whilst the effect on LTS would be consistent 
across the same dataset, thereby not being problematic.

For these reasons, it was important to quantitatively 
and qualitatively interpret the performance of Hair-
Net2 on the AnnCoT human annotations (ie human 
LTS) (Fig.  3). Quantitatively, HairNet was found to 
report slightly higher LTS values than human annotators 

Table 6 Comparison of the effect of various data augmentation 
techniques on the performance of the top two module pairs. 
Data augmentation methods tested here are: image resizing 
(RS) to 512 x 512 px (RS512), 768 x 768 px (RS768), 1024 x 1024 
px (RS1024); random cropping (RC) to 1536 x 1536 px; random 
flip (RF). The best performing model + data augmentation pair is 
highlighted in grey value 

Data Augmentation VGG19-LinkNet VGG19-MANet

IoU F1 IoU F1

RS512 0.6268 0.7545 0.6303 0.7586
RS768 0.6232 0.7489 0.6472 0.7710
RS1024 0.6283 0.7568 0.6390 0.7669

RC1536+RS512 0.5797 0.7133 0.5969 0.7295
RC1536+RS768 0.5851 0.7180 0.5895 0.7220
RC1536+RS1024 0.5401 0.6750 0.5839 0.7184

RS512+RF 0.6466 0.7716 0.6467 0.7705
RS768+RF 0.6666 0.7872 0.6670 0.7877
RS1024+RF 0.6382 0.7649 0.6390 0.7671

RC1536+RS512+RF 0.6128 0.7427 0.6177 0.7877
RC1536+RS768+RF 0.6102 0.7404 0.5727 0.7037
RC1536+RS1024+RF 0.5601 0.6975 0.5416 0.6805
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generated (Fig. 3A and B). This could be due to a num-
ber of factors including the generation of false positives 
(ie. trichomes detected by HairNet2 which did not exist), 
segmentation of longer trichomes (e.g., correct number 
of trichomes but length overestimated), segmentation 
of thicker trichomes (e.g., correct number of trichomes 
but thickness overevaluated), or the detection of tri-
chomes which had been missed by human annotators. 
Close qualitative inspection of a range of images showed 
than HairNet2 did not significantly generate false posi-
tives and did not overevaluate trichome length (Fig. 3C). 
Whilst a small increase in segmented trichome width was 
hard to assess in this case it is a possibility. However, it 
was evident that a number of trichomes that HairNet2 
was able to pick up had been missed by human annota-
tors (Fig.  3C) which is at least a partial explanation for 
the slightly higher LTS values observed with HairNet2 
than with humans.

Overall, these results highlight the high level of accu-
racy of HairNet2, both in terms of LTS and its ability to 
find the vast majority of trichomes of the right length and 
in the right location.

Analysis of LTS variations across leaves, image positions 
and years
Having demonstrated the strong ability of HairNet2 to 
segment leaf trichomes opened the door to revisit the 
CotLeaf-1 dataset for which images had been classi-
fied by HairNet based on the Genotype Hairiness Score 
(GHS) provided by breeders. In Rolland et al. ( [8]), the 
authors had demonstrated that the GHS classification 
performance of HairNet was largely independent of leaf 
identity (L3 vs L4, Fig. 4A), or the number/position of the 
images used for classification (First vs All in HairNet, fur-
ther subdivided here into First, Middle, and Last; Fig. 4B).

In both L3/L4 and First/Middle/Last comparisons, LTS 
values increased with GHS with the notable exception of 
a notable dip at GHS 4 (Fig. 4C and D). Whilst the abso-
lute values between Field and Glasshouse were slightly 
different, within a given environment both L3 and L4 

exhibited very similar patterns, noting that L4 returned 
slightly lower LTS values (Fig.  4C). Additionally, image 
location did not affect LTS with the possible exception 
of 5 and 5+ classes grown in the field where the First 
image showed a higher LTS than Middle and Last images 
(Fig. 4D). These results are in line with those presented in 
the HairNet study [8] and suggest that the First image of 
L3 is a robust compromise between accuracy and higher 
throughput.

To investigate whether the LTS dip in GHS 4 was due 
to seasonal factors the CotLeaf-1 dataset was comple-
mented with CotLeaf-2, a new dataset collected over 
the two following seasons (21–22, Y3, and 22–23, Y4; 
Table  1). Based on conclusions of Fig.  4, to create this 
new dataset the same 27 genotypes were grown in the 
Field (Y3 and Y4) and the glasshouse (Y3), but only the 
First image on L3 was collected (Table  1). The analysis 
of the L3 First images in both CotLeaf-1 and CotLeaf-2 
revealed that field and glasshouse environment exhib-
ited a comparable relationship between LTS and GHS 
in any given year (Fig. 5). In the Glasshouse, the LTS dip 
at GHS 4 was obvious in Y2 (Fig. 5B), whilst in Y1 and 
Y3 the LTS did not significantly increase between GHS 
3 and 4 (Fig. 5A and C). In the field, the LTS dip at GHS 
4 was observed every year with an additional LTS dip at 
GHS 4+ in Y3 and Y4 (Fig. 5A–D). When all years were 
combined the LTS dip at GHS 4 was detected in both 
field and glasshouse (Fig. 5E). This observation suggests 
that intermediary GHS classes 3 to 4+ may not reflect an 
ordinal increase in LTS.

To investigate the cause of this discrepancy, the same 
data was investigated at the genotype level (Fig.  6). 
Because Y1 only had 10 genotypes per environment 
there were very few genotypes with the same GHS class. 
Notably, that year the two genotypes with GHS of 4+ 
(blue and gray) showed radically different LTS values in 
either environment (Fig.  6A). This was also observed in 
Y2, Y3, and when all three years were combined (Fig. 6B 
to E). Interestingly, genotypes with a GHS of 4/4+ also 
exhibited high LTS variations, whilst those with a GHS 

Table 7 HairNet2 model accuracy on the Validation and Test splits of the AnnCoT dataset. These results were obtained by running the 
model 5 times, with the values denoted as ’mean ± range’ 

tseTnoitadilaV

Model Loss IoU F1 IoU F1

VGG19-MANet
RC768+RF

Dice 0.6640 0.7841 0.6879 0.7991
Jaccard 0.6472 0.7710 0.6575 0.7983
BCE 0.6572 0.7787 0.6866 0.7961
Focal 0.6539 0.7749 0.6783 0.7905

HairNet2 Model 0.66± 0.01 0.78± 0.008 0.68± 0.005 0.79± 0.003
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Fig. 3 Comparison of LTS from human annotations with HairNet2 predictions on the 251 images of the AnnCoT Test split. The scatter plot (A) 
and the violin plot (B) show that HairNet2 tended to return higher LTS than human annotators. This was not due to the detection of false positives 
but more likely to the detection by HairNet2 of trichomes which had been missed by human annotators (C, red: human annotations, green: 
HairNet2 predictions). It is also possible that HairNet2 annotations were slightly wider than human annotations but this could not be quantified
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between 3 and 4 showed LTS variation within a relatively 
narrow range.

HairNet2 allows to redefine leaf hairiness rankings
Based on these observations, a new LTS-based genotype 
order was proposed for the glasshouse (Fig. 7A) and the 
field (Fig. 7B), respectively. These new ordering of geno-
types were fairly similar between both environments and 
suggest that the correlations between a low LTS and a 
low GHS (1–2), and between a high LTS and a high GHS 
(5, 5+) are very strong as these genotypes were located 

at both extremes of the LTS-based rankings. However, 
the LTS-based order for genotypes with intermediate 
GHS values (3 to 4+) was significantly different to its 
GHS-based counterpart. For example, in the LTS-based 
rankings gray (GHS 4+) was in the lower half and ebony 
(GHS 3/4) was in the top third in either environment 
(Coloured arrows in (Fig. 7A and B). Because the values 
used in Fig. 7 were average LTS for each given genotype, 
the distribution of LTS values withing the 10 genotypes 
common to Y1, Y2 and Y3 was further investigated 
and showed acceptable variations, suggesting that LTS 

Fig. 4 Effect of leaf number (A, C) and image location (B, D) on LTS predictions across GHS classes for both Glasshouse (GH) and Field (FD) 
conditions. These plots highlight that the overall trend of LTS increasing with GHS was not affected by leaf number or image position. However, 
a noticeable LTS dip was observed at GHS 4
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values are robust across years within a given environment 
(Fig. 8).

The discrepancy between GHS and LTS may be 
explained by a few factors. Firstly, breeders typically 
discard plants with a GHS lower than 3 or higher than 
4+, meaning that for a human these are the important 
boundaries to learn to perceive well. Secondly, it is easier 
for a human to identify extremes than it is to subtly rank 
intermediate phenotypes - especially when these sub-
tleties are currently not exploited within breeding pro-
grams. Thirdly, the GHS is attributed to a genotype based 
on a ’look and feel’ observation made at the macroscale, 
which is likely to be an integration of a number of factors. 
Conversely, the LTS is determined based on microscopy 
images. At the macroscale for example, the tactile feel of 
a leaf or its ability to reflect sunlight could be differently 
influenced by varying combinations of ’length x number’ 
of trichomes which could result in an identical LTS at the 
microscale. It is also possible that some of aspects of leaf 
hairiness integrated into a GHS at the macroscale could 

be missing in the data captured at the microscale, espe-
cially if it is located on the leaf edges.

HairNet2 predictions correlate with human expert image 
rankings
In order to compare the performance of HairNet2 and 
human experts on leaf images, a new dataset called Cot-
Leaf-X was created. For this dataset, two phenotypically 
diverse cotton populations were used: population A (rela-
tively low hairiness) and population B (higher hairiness). 
First images were captured for both populations, and 
additional Blade images were captured for population A 
(Table  1 and Figs.  1 and 9A–C). All these images were 
ranked on arbitrary ordinal scales by experts (0 to 5 for 
population A, and 2 to 5.5 for population B).

Interestingly, HairNet2 was able to efficiently seg-
ment trichomes on the blade and on the edge of a leaf 
(Fig.  9C). This is significant because both scenarios 
were not present in the dataset used to train the model 
and it demonstrates the flexibility of HairNet2 to work 
well in slightly adjacent scenarios. In all three subsets 

Fig. 5 Effect of year to year variation on LTS across GHS classes in both Glasshouse (GH) and Field (FD) environments. Only L3 and First images 
were considered for this analysis. Whilst year to year variation was observed in terms of absolute LTS values, trends were similar for individual years 
(A–D) and all years combined (E). A dip in LTS at GHS 4 was observed on all years combined in both environments, with an additional dip at GHS 4+ 
detectable in some years as well. X axes on panels A-D are identical to the x axis in E
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Fig. 6 HairNet2 LTS predictions for individual genotypes across different years (A–D) and environments (GH: Glasshouse, FD: Field). GHS classes 
are colour coded on the x axis of panel D and qualitative examples of the four 4+ genotypes are shown in E to highlight the variations in LTS 
within single classes
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Fig. 7 Proposed LTS-based genotypes ranking for the Glasshouse (GH, A) and the Field (FD, B). GHS classes are colour coded on the x axis 
of both panels and gray and ebony are highlighted with colours arrows to highlight the significant shift in their positions in the LTS-based 
ranking. This figure shows that LTS and GHS are in strong accordance for glabrous (GHS 1–2) and pilose (5–5+) genotypes but that genotypes 
with intermediate GHS are largely reorganised in the LTS-based rankings

Fig. 8 LTS distribution for the 10 genotypes common to Y1, Y2 and Y3 in the Glasshouse (GH, A) and the Field (FD, B). In each panel, the left plot 
displays less hairy genotypes, whilst the right plot shows the hairier ones which use a different y axis range
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(pop. A First, pop. A Blade, and pop. B First), LTS pre-
dictions from HairNet2 increased with human scores 
(Fig. 9D–G). This shows that unlike the partial correla-
tion between GHS and LTS observed at the genotype 
level, HairNet2 and Human expert image predictions 
correlated strongly across hairiness scales.

The observation that the hairiest images in popula-
tion A showed a higher LTS for First images than for 

Blade images may be explained by a number of phe-
nomenons. One possibility is that in hairy plants the 
midvein area of the First image is more hairy than the 
Blade area, whilst in less hairy plants the difference 
between these two areas is minimal. Alternatively, it 
is possible that this discrepancy is caused by the fact 
that the First image comes from a fixed location when 
the Blade could come from a range of areas on the 

Fig. 9 LTS from HairNet2 and expert visual image rankings on the CotLeaf-X dataset are highly correlated. CotLeaf-X includes First and Blade 
imaged from population A (A-C) and First images from population B (A). Plots in D–G show that for both populations the predicted LTS highly 
correlated with the visual scoring of images by experts
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leaf blade, including leaf edges where only part of the 
image encodes plant tissue (Additional file 1).

Conclusion
Leaf hairiness is an important cotton trait which is cur-
rently measured qualitatively by humans or with the 
deep-learning classifying model HairNet [8]. In this 
study, a number of new image datasets were created 
which are available at [link to be added after accept-
ance] and will help the broader community build digital 
tools to assist in the development of better crops. These 
datasets were used to develop and validate HairNet2, 
a quantitative deep-learning model able to efficiently 
segment and quantify leaf hairiness from images of leaf 
midveins, blades or edges. The output of HairNet2, Leaf 
Trichome Hairiness (LTS), showed that similarly to the 
results obtained with HairNet, leaf identity (L3/L4) and 
image position (First, Middle, Last) did not significantly 
affect genotype ranking, although LTS absolute values 
were different between L3 and L4. Converging with the 
HairNet study, growth environment and different years 
shows slight variations in LTS absolute values but the 
trends were conserved across conditions. When look-
ing at genotypes in more details, assessments of gla-
brous (GHS 1–2) and pilose (GHS 5–5+) genotypes 
was consistent between GHS and LTS. However, a new 
LTS-based ranking was suggested for genotypes with 
intermediate GHS (3–4+). Finally, the performance of 
HairNet2 was shown to correlate with visual scoring 
of images by human experts. Overall, this study dem-
onstrates that HairNet2 is a robust quantitative model 
which creates new opportunities to revisit the complex 
genetics which underpin leaf hairiness. In particular, 
it will enable the selection of plants with specific leaf 
hairiness characteristics which may be associated with 
other beneficial traits.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
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Additional file 1: Figure S1. Qualitative results of HairNet2 predictions on 
the CotLeaf-X dataset.
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